1
|
Taha M, Sultan S, Herizal M, Fatmi MQ, Selvaraj M, Ramasamy K, Halim SA, Lim SM, Rahim F, Ashraf K, Shehzad A. Synthesis, anticancer, molecular docking and QSAR studies of benzoylhydrazone. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
2
|
Mao XM, Zhou P, Li SY, Zhang XY, Shen JX, Chen QX, Zhuang JX, Shen DY. Diosgenin Suppresses Cholangiocarcinoma Cells Via Inducing Cell Cycle Arrest And Mitochondria-Mediated Apoptosis. Onco Targets Ther 2019; 12:9093-9104. [PMID: 31806994 PMCID: PMC6839585 DOI: 10.2147/ott.s226261] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose Diosgenin (DSG) is the precursor of steroid hormones and plays a crucial part in the proliferation of various carcinomas including human colorectal cancer and gastric carcinoma. Nevertheless, its specific features and mechanisms in human cholangiocarcinoma (CCA) remain unknown. Methods MTS assay, colony-forming assay, and EdU assay were performed to determine the role of DSG on the progression of human CCA cells. The distributions of cell cycle, the ratio of apoptosis, and the mitochondrial membrane potential (ΔΨm) were studied by flow cytometry (FCM). AO/EB and Hoechst 33258 staining were performed to observe the morphological features of cell apoptosis. TEM was performed to observe the ultrastructures of QBC939 and HuCCT1 cells. The mRNA and protein expression of mitochondrial apoptotic pathway and GSK3β/β-catenin pathway were further confirmed by qPCR and Western blotting. The xenograft tumor model of HuCCT1 cells was built. Immunohistochemistry of tumor tissues was performed. Results Our results indicated that DSG inhibited the progression of six CCA cell lines. In vivo tumor studies also indicated that DSG significantly inhibited tumor growth in xenografts in nude mice. The expression of mitosis-promoting factor cyclinB1 was decreased along with the elevating level of cell cycle inhibitor p21, resulting in arresting CCA cell cycles at G2/M phase. Furthermore, DSG induced apoptosis with the increased expressions of cytosol cytochrome C, cleaved-caspase-3, cleaved-PARP1 and the Bax/Bcl-2 ratio. Mechanistically, our study showed that GSK3β/β-catenin pathway was involved in the apoptosis of CCA cells. Thus, DSG might provide a new clue for the drug therapy of CCA. Conclusion In our data, DSG was found to have efficient antitumor potential of human CCA cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao-Mei Mao
- School of Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Pan Zhou
- School of Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Si-Yang Li
- Biobank, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| | - Xiao-Yun Zhang
- Biobank, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| | - Jin-Xing Shen
- Biobank, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| | - Qing-Xi Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jiang-Xing Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Dong-Yan Shen
- Biobank, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen 361003, People's Republic of China
| |
Collapse
|
3
|
Munoz JL, Walker ND, Mareedu S, Pamarthi SH, Sinha G, Greco SJ, Rameshwar P. Cycling Quiescence in Temozolomide Resistant Glioblastoma Cells Is Partly Explained by microRNA-93 and -193-Mediated Decrease of Cyclin D. Front Pharmacol 2019; 10:134. [PMID: 30853911 PMCID: PMC6395452 DOI: 10.3389/fphar.2019.00134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/05/2019] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a fatal malignancy of the central nervous system, commonly associated with chemoresistance. The alkylating agent Temozolomide (TMZ) is the front-line chemotherapeutic agent and has undergone intense studies on resistance. These studies reported on mismatch repair gene upregulation, ABC-targeted drug efflux, and cell cycle alterations. The mechanism by which TMZ induces cell cycle arrest has not been well-established. TMZ-resistant GBM cells have been linked to microRNA (miRNA) and exosomes. A cell cycle miRNA array identified distinct miRNAs only in exosomes from TMZ-resistant GBM cell lines and primary spheres. We narrowed the miRs to miR-93 and -193 and showed in computational analyses that they could target Cyclin D1. Since Cyclin D1 is a major regulator of cell cycle progression, we performed cause-effect studies and showed a blunting effects of miR-93 and -193 in Cyclin D1 expression. These two miRs also decreased cell cycling quiescence and induced resistance to TMZ. Taken together, our data provide a mechanism by which GBM cells can exhibit TMZ-induced resistance through miRNA targeting of Cyclin D1. The data provide a number of therapeutic approaches to reverse chemoresistance at the miRNA, exosomal and cell cycle points.
Collapse
Affiliation(s)
- Jessian L Munoz
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.,Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Nykia D Walker
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Satvik Mareedu
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.,Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sri Harika Pamarthi
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Garima Sinha
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.,Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Steven J Greco
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.,Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
4
|
An MJ, Kim DH, Kim CH, Kim M, Rhee S, Seo SB, Kim JW. Histone demethylase KDM3B regulates the transcriptional network of cell-cycle genes in hepatocarcinoma HepG2 cells. Biochem Biophys Res Commun 2018; 508:576-582. [PMID: 30514438 DOI: 10.1016/j.bbrc.2018.11.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most lethal cancer worldwide. Although gene mutations associated with HCC development have been intensively studied, how epigenetic factors specifically modulate the functional properties of HCC by regulating target gene expression is unclear. Here we demonstrated the overexpression of KDM3B in liver tissue of HCC patients using public RNA-seq data. Ablation of KDM3B by CRISPR/Cas9 retarded the cell cycle and proliferation of hepatocarcinoma HepG2 cells. Approximately 30% of KDM3B knockout cells exhibited mitotic spindle multipolarity as a chromosome instability (CIN) phenotype. RNA-seq analysis of KDM3B knockout revealed significantly down-regulated expression of cell cycle related genes, especially cell proliferation factor CDC123. Furthermore, the expression level of Cyclin D1 was reduced in KDM3B knockout by proteosomal degradation without any change in the expression of CCND1, which encodes Cyclin D1. The results implicate KDM3B as a crucial epigenetic factor in cell cycle regulation that manipulates chromatin dynamics and transcription in HCC, and identifies a potential gene therapy target for effective treatment of HCC.
Collapse
Affiliation(s)
- Mi-Jin An
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Dae-Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Mijin Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Kawakami M, Mustachio LM, Rodriguez-Canales J, Mino B, Roszik J, Tong P, Wang J, Lee JJ, Myung JH, Heymach JV, Johnson FM, Hong S, Zheng L, Hu S, Villalobos PA, Behrens C, Wistuba I, Freemantle S, Liu X, Dmitrovsky E. Next-Generation CDK2/9 Inhibitors and Anaphase Catastrophe in Lung Cancer. J Natl Cancer Inst 2017; 109:2982387. [PMID: 28376145 DOI: 10.1093/jnci/djw297] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background The first generation CDK2/7/9 inhibitor seliciclib (CYC202) causes multipolar anaphase and apoptosis in lung cancer cells with supernumerary centrosomes (known as anaphase catastrophe). We investigated a new and potent CDK2/9 inhibitor, CCT68127 (Cyclacel). Methods CCT68127 was studied in lung cancer cells (three murine and five human) and control murine pulmonary epithelial and human immortalized bronchial epithelial cells. Robotic CCT68127 cell-based proliferation screens were used. Cells undergoing multipolar anaphase and inhibited centrosome clustering were scored. Reverse phase protein arrays (RPPAs) assessed CCT68127 effects on signaling pathways. The function of PEA15, a growth regulator highlighted by RPPAs, was analyzed. Syngeneic murine lung cancer xenografts (n = 4/group) determined CCT68127 effects on tumorigenicity and circulating tumor cell levels. All statistical tests were two-sided. Results CCT68127 inhibited growth up to 88.5% (SD = 6.4%, P < .003) at 1 μM, induced apoptosis up to 42.6% (SD = 5.5%, P < .001) at 2 μM, and caused G1 or G2/M arrest in lung cancer cells with minimal effects on control cells (growth inhibition at 1 μM: 10.6%, SD = 3.6%, P = .32; apoptosis at 2 μM: 8.2%, SD = 1.0%, P = .22). A robotic screen found that lung cancer cells with KRAS mutation were particularly sensitive to CCT68127 ( P = .02 for IC 50 ). CCT68127 inhibited supernumerary centrosome clustering and caused anaphase catastrophe by 14.1% (SD = 3.6%, P < .009 at 1 μM). CCT68127 reduced PEA15 phosphorylation by 70% (SD = 3.0%, P = .003). The gain of PEA15 expression antagonized and its loss enhanced CCT68127-mediated growth inhibition. CCT68127 reduced lung cancer growth in vivo ( P < .001) and circulating tumor cells ( P = .004). Findings were confirmed with another CDK2/9 inhibitor, CYC065. Conclusions Next-generation CDK2/9 inhibition elicits marked antineoplastic effects in lung cancer via anaphase catastrophe and reduced PEA15 phosphorylation.
Collapse
Affiliation(s)
- Masanori Kawakami
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa Maria Mustachio
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canales
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Mino
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pan Tong
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ja Hye Myung
- Department of Biopharmaceutical Sciences, College of Pharmacy, The University of Illinois, Chicago, IL, USA
| | - John V Heymach
- Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faye M Johnson
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, College of Pharmacy, The University of Illinois, Chicago, IL, USA
| | - Lin Zheng
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanhu Hu
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Pamela Andrea Villalobos
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Freemantle
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Xi Liu
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ethan Dmitrovsky
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
6
|
Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells. Int J Mol Sci 2016; 17:ijms17111899. [PMID: 27854312 PMCID: PMC5133898 DOI: 10.3390/ijms17111899] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCFβ-TrCP) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine′s potential as an anti-tumor agent for clinical cancer therapy.
Collapse
|
7
|
Balachandran C, Emi N, Arun Y, Yamamoto N, Duraipandiyan V, Inaguma Y, Okamoto A, Ignacimuthu S, Al-Dhabi NA, Perumal PT. In vitro antiproliferative activity of 2,3-dihydroxy-9,10-anthraquinone induced apoptosis against COLO320 cells through cytochrome c release caspase mediated pathway with PI3K/AKT and COX-2 inhibition. Chem Biol Interact 2016; 249:23-35. [PMID: 26915975 DOI: 10.1016/j.cbi.2016.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/30/2016] [Accepted: 02/19/2016] [Indexed: 12/22/2022]
Abstract
The present study investigated the anticancer activity of 2,3-dihydroxy-9,10-anthraquinone against different cancer cells such as MCF-7, COLO320, HepG-2, Skov-3, MOLM-14, NB-4, CEM, K562, Jurkat, HL-60, U937, IM-9 and Vero. 2,3-dihydroxy-9,10-anthraquinone showed good antiproliferative activity against COLO320 cells when compared to other tested cells. The cytotoxicity results showed 79.8% activity at the dose of 2.07 μM with IC50 value of 0.13 μM at 24 h in COLO320 cells. So we chose COLO320 cells for further anticancer studies. mRNA expression was confirmed by qPCR analysis using SYBR green method. Treatment with 2,3-dihydroxy-9,10-anthraquinone was found to trigger intrinsic apoptotic pathway as indicated by down regulation of Bcl-2, Bcl-xl; up regulation of Bim, Bax, Bad; release of cytochrome c and pro-caspases cleaving to caspases. Furthermore, 2,3-dihydroxy-9,10-anthraquinone stopped at G0/G1 phase with modulation in protein levels of cyclins. On the other hand PI3K/AKT signaling plays an important role in cell metabolism. We found that 2,3-dihydroxy-9,10-anthraquinone inhibits PI3K/AKT activity after treatment. Also, COX-2 enzyme plays a major role in colorectal cancer. Our results showed that the treatment significantly reduced COX-2 enzyme in COLO320 cells. These results indicated antiproliferative activity of 2,3-dihydroxy-9,10-anthraquinone involving apoptotic pathways, mitochondrial functions, cell cycle checkpoint and controlling the over expression genes during the colorectal cancer. Molecular docking studies showed that the compound bound stably to the active sites of Bcl-2, COX-2, PI3K and AKT. This is the first report of anticancer mechanism involving 2,3-dihydroxy-9,10-anthraquinone in COLO320 cells. The present results might provide helpful suggestions for the design of antitumor drugs toward colorectal cancer treatment.
Collapse
Affiliation(s)
- C Balachandran
- Department of Hematology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan; Division of Cancer Biology, Entomology Research Institute, Loyola College, Chennai, 600 034, India.
| | - N Emi
- Department of Hematology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Y Arun
- Organic & Bio-organic Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | - N Yamamoto
- Laboratory of Molecular Biology, Institute of Joint Research, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - V Duraipandiyan
- Division of Cancer Biology, Entomology Research Institute, Loyola College, Chennai, 600 034, India; Department of Botany and Microbiology, Addiriya Chair for Environmental Studies, College of Science, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Yoko Inaguma
- Department of Hematology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Akinao Okamoto
- Department of Hematology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - S Ignacimuthu
- Division of Cancer Biology, Entomology Research Institute, Loyola College, Chennai, 600 034, India; Visiting Professor Program, Deanship of Scientific Research, College of Science, King Saud Univeristy, Saudi Arabia
| | - N A Al-Dhabi
- Department of Botany and Microbiology, Addiriya Chair for Environmental Studies, College of Science, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - P T Perumal
- Organic & Bio-organic Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| |
Collapse
|
8
|
de Andrade FG, Marie SKN, Uno M, Matushita H, Taricco MA, Teixeira MJ, Rosemberg S, Oba-Shinjo SM. Immunohistochemical expression of cyclin D1 is higher in supratentorial ependymomas and predicts relapses in gross total resection cases. Neuropathology 2015; 35:312-23. [PMID: 25946121 DOI: 10.1111/neup.12195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022]
Abstract
Ependymomas are tumors of the CNS. Although cyclin D1 overexpression has been related to several cancers, its prognostic value in ependymomas has not yet been fully established. We evaluated cyclin D1 expression by an immunohistochemistry analysis of 149 samples of ependymomas, including some relapses, corresponding to 121 patients. Eighty-one patients were adults, 60 were intracranial cases and 92 tumors were grade II. Gross total resection (GTR) was achieved in 62% of cases, and relapse was confirmed in 41.4% of cases. Cyclin D1 protein expression was analyzed by immunohistochemistry and scored with a labeling index (LI) calculated as the percentage of positively stained cells by intensity. We also analyzed expression of CCND1 and NOTCH1 in 33 samples of ependymoma by quantitative real-time PCR. A correlation between cyclin D1 LI score and anaplastic cases (P < 0.001), supratentorial location (P < 0.001) and age (P = 0.001) were observed. A stratified analysis demonstrated that cyclin D1 protein expression was strong in tumors with a supratentorial location, independent of the histological grade or age. Relapse was more frequent in cases with a higher cyclin D1 LI score (P = 0.046), and correlation with progression-free survival was observed in cases with GTR (P = 0.002). Only spinal canal tumor location and GTR were suggestive markers of PFS in multivarite analyses. Higher expression levels were observed in anaplastic cases for CCND1 (P = 0.002), in supratentorial cases for CCND1 (P = 0.008) and NOTCH1 (P = 0.011). There were correlations between the cyclin D1 mRNA and protein expression levels (P < 0.0001) and between CCND1 and NOTCH1 expression levels (P = 0.003). Higher cyclin D1 LI was predominant in supratentorial location and predict relapse in GTR cases. Cyclin D1 could be used as an immunohistochemical marker to guide follow-up and treatment in these cases.
Collapse
Affiliation(s)
- Fernanda Gonçalves de Andrade
- Laboratory of Cellular and Molecular Biology, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil.,Division of Neurosurgery, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Cellular and Molecular Biology, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | - Miyuki Uno
- Laboratory of Cellular and Molecular Biology, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Matushita
- Division of Neurosurgery, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | - Mario Augusto Taricco
- Division of Neurosurgery, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sergio Rosemberg
- Pathology, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sueli Mieko Oba-Shinjo
- Laboratory of Cellular and Molecular Biology, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Hu S, Danilov AV, Godek K, Orr B, Tafe LJ, Rodriguez-Canales J, Behrens C, Mino B, Moran CA, Memoli VA, Mustachio LM, Galimberti F, Ravi S, DeCastro A, Lu Y, Sekula D, Andrew AS, Wistuba II, Freemantle S, Compton DA, Dmitrovsky E. CDK2 Inhibition Causes Anaphase Catastrophe in Lung Cancer through the Centrosomal Protein CP110. Cancer Res 2015; 75:2029-38. [PMID: 25808870 DOI: 10.1158/0008-5472.can-14-1494] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 02/13/2015] [Indexed: 01/06/2023]
Abstract
Aneuploidy is frequently detected in human cancers and is implicated in carcinogenesis. Pharmacologic targeting of aneuploidy is an attractive therapeutic strategy, as this would preferentially eliminate malignant over normal cells. We previously discovered that CDK2 inhibition causes lung cancer cells with more than two centrosomes to undergo multipolar cell division leading to apoptosis, defined as anaphase catastrophe. Cells with activating KRAS mutations were especially sensitive to CDK2 inhibition. Mechanisms of CDK2-mediated anaphase catastrophe and how activated KRAS enhances this effect were investigated. Live-cell imaging provided direct evidence that following CDK2 inhibition, lung cancer cells develop multipolar anaphase and undergo multipolar cell division with the resulting progeny apoptotic. The siRNA-mediated repression of the CDK2 target and centrosome protein CP110 induced anaphase catastrophe of lung cancer cells. In contrast, CP110 overexpression antagonized CDK2 inhibitor-mediated anaphase catastrophe. Furthermore, activated KRAS mutations sensitized lung cancer cells to CDK2 inhibition by deregulating CP110 expression. Thus, CP110 is a critical mediator of CDK2 inhibition-driven anaphase catastrophe. Independent examination of murine and human paired normal-malignant lung tissues revealed marked upregulation of CP110 in malignant versus normal lung. Human lung cancers with KRAS mutations had significantly lower CP110 expression as compared with KRAS wild-type cancers. Thus, a direct link was found between CP110 and CDK2 inhibitor antineoplastic response. CP110 plays a mechanistic role in response of lung cancer cells to CDK2 inhibition, especially in the presence of activated KRAS mutations.
Collapse
Affiliation(s)
- Shanhu Hu
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Alexey V Danilov
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Kristina Godek
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Bernardo Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Laura J Tafe
- Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire. Department of Pathology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cesar A Moran
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vincent A Memoli
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire. Department of Pathology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Lisa Maria Mustachio
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Fabrizio Galimberti
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Saranya Ravi
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Andrew DeCastro
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Yun Lu
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - David Sekula
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Angeline S Andrew
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire. Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Freemantle
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Duane A Compton
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.
| |
Collapse
|
10
|
Zhou JY, Tang CB, Chen FX, Liu JQ, Lv XT, Fei SJ. MK886 inhibits cell proliferation and promotes apoptosis in human colon cancer cell lines SW480 and Caco-2. Shijie Huaren Xiaohua Zazhi 2014; 22:982-987. [DOI: 10.11569/wcjd.v22.i7.982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effects of 5-lipoxygenase activating protein (FLAP) MK886 on cell proliferation and apoptosis in human colon cancer cell lines SW480 and Caco-2.
METHODS: MTT assay was used to detect the effects of treatment with MK886 at different concentrations (6.25, 12.5, 25, 50, 100, 200 µmol/L) for different durations (24, 48, 72 h) on the proliferation of SW480 and Caco-2 cells. The apoptosis of cells treated with MK886 at concentrations of 12.5, 25, 50, and 100 µmol/L for 72 h was assessed by flow cytometry with annexin V-FITC/PI. The cell cycle of cells treated with MK886 at concentrations of 12.5, 25, and 50 µmol/L for 72 h was assessed by flow cytometry.
RESULTS: MK886 at concentrations between 50 and 200 µmol/L inhibited the proliferation of SW480 cells in a dose- and time-dependent manner. Treatment with MK886 at concentrations from 12.5 to 25 µmol/L for 24 h did not significantly inhibit the proliferation of SW480 cells, but treatment for 48 h or 72 h significantly inhibit cell proliferation in a dose- and time-dependent manner. MK886 at a concentration of 6.25 µmol/L had no significant effects on the proliferation of SW480 cells. In Caco-2 cells, MK886 at concentrations from 25 to 200 µmol/L inhibited cell proliferation in a dose- and time-dependent manner, but MK886 at concentrations between 6.25 and 12.5 µmol/L MK886 had no significant inhibitory effect on the proliferation of Caco-2 cells. Treatment with MK886 at a concentration of 200 µmol/L for 24 h significantly inhibited the growth of SW480 and Caco-2 cells, and the reduced rate of cell growth was 90%. MK886 at concentrations from 12.5 to 100 µmol/L increased the apoptosis rate of the two cell lines in a dose- and time-dependent manner. Treatment with MK886 at concentrations from 12.5 to 50 µmol/L for 72 h increased the percentage of cells in G0/G1 phase but decreased that in S phase.
CONCLUSION: MK886 significantly inhibits the growth of SW480 and Caco-2 cells possibly by blocking cells in G0/G1 phase and inducing cell apoptosis.
Collapse
|
11
|
Park DK, Lim YH, Park HJ. Antrodia camphorata grown on germinated brown rice inhibits HT-29 human colon carcinoma proliferation through inducing G0/G1 phase arrest and apoptosis by targeting the β-catenin signaling. J Med Food 2014; 16:681-91. [PMID: 23957353 DOI: 10.1089/jmf.2012.2605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antrodia camphorata (AC) has been used as a traditional medicine to treat food and drug intoxication, diarrhea, abdominal pain, hypertension, pruritis (skin itch), and liver cancer in East Asia. In this study, we investigated anticancer activities of AC grown on germinated brown rice (CBR) in HT-29 human colon cancer cells. We found that the inhibitory efficacy of CBR 80% ethanol (EtOH) extract on HT-29 and CT-26 cell proliferation was more effective than ordinary AC EtOH 80% extract. Next, 80% EtOH extract of CBR was further separated into four fractions; hexane, ethyl acetate (EtOAc), butanol (BuOH), and water. Among them, CBR EtOAc fraction showed the strongest inhibitory activity against HT-29 cell proliferation. Therefore, CBR EtOAc fraction was chosen for further studies. Annexin V-fluorescein isothiocyanate staining data indicated that CBR EtOAc fraction induced apoptosis. Induction of G0/G1 cell cycle arrest on human colon carcinoma cell was observed in CBR EtOAc fraction-treated cells. We found that CBR decreased the level of proteins involved in G0/G1 cell cycle arrest and apoptosis. CBR EtOAc fraction inhibited the β-catenin signaling pathway, supporting its suppressive activity on the level of cyclin D1. High performance liquid chromatography analysis data indicated that CBR EtOAc fraction contained adenosine. This is the first investigation that CBR has a greater potential as a novel chemopreventive agent than AC against colon cancer. These data suggest that CBR might be useful as a chemopreventive agent against colorectal cancer.
Collapse
Affiliation(s)
- Dong Ki Park
- Cell Activation Research Institute, Konkuk University, Seoul, Korea
| | | | | |
Collapse
|
12
|
Targeting cell cycle and hormone receptor pathways in cancer. Oncogene 2013; 32:5481-91. [PMID: 23708653 PMCID: PMC3898261 DOI: 10.1038/onc.2013.83] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 12/21/2022]
Abstract
The cyclin/cyclin-dependent kinase (CDK)/retinoblastoma (RB)-axis is a critical modulator of cell cycle entry and is aberrant in many human cancers. New nodes of therapeutic intervention are needed that can delay or combat the onset of malignancies. The antitumor properties and mechanistic functions of PD-0332991 (PD; a potent and selective CDK4/6 inhibitor) were investigated using human prostate cancer (PCa) models and primary tumors. PD significantly impaired the capacity of PCa cells to proliferate by promoting a robust G1-arrest. Accordingly, key regulators of the G1-S cell cycle transition were modulated including G1 cyclins D, E and A. Subsequent investigation demonstrated the ability of PD to function in the presence of existing hormone-based regimens and to cooperate with ionizing radiation to further suppress cellular growth. Importantly, it was determined that PD is a critical mediator of PD action. The anti-proliferative impact of CDK4/6 inhibition was revealed through reduced proliferation and delayed growth using PCa cell xenografts. Finally, first-in-field effects of PD on proliferation were observed in primary human prostatectomy tumor tissue explants. This study shows that selective CDK4/6 inhibition, using PD either as a single-agent or in combination, hinders key proliferative pathways necessary for disease progression and that RB status is a critical prognostic determinant for therapeutic efficacy. Combined, these pre-clinical findings identify selective targeting of CDK4/6 as a bona fide therapeutic target in both early stage and advanced PCa and underscore the benefit of personalized medicine to enhance treatment response.
Collapse
|
13
|
Ma T, Galimberti F, Erkmen CP, Memoli V, Chinyengetere F, Sempere L, Beumer JH, Anyang BN, Nugent W, Johnstone D, Tsongalis GJ, Kurie JM, Li H, Direnzo J, Guo Y, Freemantle SJ, Dragnev KH, Dmitrovsky E. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther 2013; 12:1545-55. [PMID: 23686769 DOI: 10.1158/1535-7163.mct-12-0933] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Histone deacetylase inhibitor (HDACi; vorinostat) responses were studied in murine and human lung cancer cell lines and genetically engineered mouse lung cancer models. Findings were compared with a window of opportunity trial in aerodigestive tract cancers. In human (HOP62, H522, and H23) and murine transgenic (ED-1, ED-2, LKR-13, and 393P, driven, respectively, by cyclin E, degradation-resistant cyclin E, KRAS, or KRAS/p53) lung cancer cell lines, vorinostat reduced growth, cyclin D1, and cyclin E levels, but induced p27, histone acetylation, and apoptosis. Other biomarkers also changed. Findings from transgenic murine lung cancer models were integrated with those from a window of opportunity trial that measured vorinostat pharmacodynamic responses in pre- versus posttreatment tumor biopsies. Vorinostat repressed cyclin D1 and cyclin E expression in murine transgenic lung cancers and significantly reduced lung cancers in syngeneic mice. Vorinostat also reduced cyclin D1 and cyclin E expression, but increased p27 levels in post- versus pretreatment human lung cancer biopsies. Notably, necrotic and inflammatory responses appeared in posttreatment biopsies. These depended on intratumoral HDACi levels. Therefore, HDACi treatments of murine genetically engineered lung cancer models exert similar responses (growth inhibition and changes in gene expression) as observed in lung cancer cell lines. Moreover, enhanced pharmacodynamic responses occurred in the window of opportunity trial, providing additional markers of response that can be evaluated in subsequent HDACi trials. Thus, combining murine and human HDACi trials is a strategy to translate preclinical HDACi treatment outcomes into the clinic. This study uncovered clinically tractable mechanisms to engage in future HDACi trials.
Collapse
Affiliation(s)
- Tian Ma
- Departments of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
p42.3: A promising biomarker for the progression and prognosis of human colorectal cancer. J Cancer Res Clin Oncol 2013; 139:1211-20. [DOI: 10.1007/s00432-013-1434-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
|
15
|
McCourt P, Gallo-Ebert C, Gonghong Y, Jiang Y, Nickels JT. PP2A(Cdc55) regulates G1 cyclin stability. Cell Cycle 2013; 12:1201-10. [PMID: 23518505 PMCID: PMC3674085 DOI: 10.4161/cc.24231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maintaining accurate progression through the cell cycle requires the proper temporal expression and regulation of cyclins. The mammalian D-type cyclins promote G1-S transition. D1 cyclin protein stability is regulated through its ubiquitylation and resulting proteolysis catalyzed by the SCF E3 ubiquitin ligase complex containing the F-box protein, Fbx4. SCF E3-ligase-dependent ubiquitylation of D1 is trigged by an increase in the phosphorylation status of the cyclin. As inhibition of ubiquitin-dependent D1 degradation is seen in many human cancers, we set out to uncover how D-type cyclin phosphorylation is regulated. Here we show that in S. cerevisiae, a heterotrimeric protein phosphatase 2A (PP2A(Cdc55)) containing the mammalian PPP2R2/PR55 B subunit ortholog Cdc55 regulates the stability of the G1 cyclin Cln2 by directly regulating its phosphorylation state. Cells lacking Cdc55 contain drastically reduced Cln2 levels caused by degradation due to cdk-dependent hyperphosphorylation, as a Cln2 mutant unable to be phosphorylated by the yeast cdk Cdc28 is highly stable in cdc55-null cells. Moreover, cdc55-null cells become inviable when the SCF(Grr1) activity known to regulate Cln2 levels is eliminated or when Cln2 is overexpressed, indicating a critical relationship between SCF and PP2A functions in regulating cell cycle progression through modulation of G1-S cyclin degradation/stability. In sum, our results indicate that PP2A is absolutely required to maintain G1-S cyclin levels through modulating their phosphorylation status, an event necessary to properly transit through the cell cycle.
Collapse
Affiliation(s)
- Paula McCourt
- Venenum Biodesign, Genesis Biotechnology Group, Hamilton, NJ, USA
| | | | | | | | | |
Collapse
|
16
|
Yu XJ, Han QB, Wen ZS, Ma L, Gao J, Zhou GB. Gambogenic acid induces G1 arrest via GSK3β-dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett 2012; 322:185-94. [PMID: 22410463 DOI: 10.1016/j.canlet.2012.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/18/2012] [Accepted: 03/02/2012] [Indexed: 02/08/2023]
Abstract
Cyclin D1, an oncogenic G1 cyclin which can be induced by environmental carcinogens and whose over-expression may cause dysplasia and carcinoma, has been shown to be a target for cancer chemoprevention and therapy. In this study, we investigated the effects and underlying mechanisms of action of a polyprenylated xanthone, gambogenic acid (GEA) on gefitinib-sensitive and -resistant lung cancer cells. We found that GEA inhibited proliferation, caused G1 arrest and repressed colony-forming activity of lung cancer cells. GEA induced degradation of cyclin D1 via the proteasome pathway, and triggered dephosphorylation of GSK3β which was required for cyclin D1 turnover, because GSK3β inactivation by its inhibitor or specific siRNA markedly attenuated GEA-caused cyclin D1 catabolism. GEA induced autophagy of lung cancer cells, possibly due to activation of GSK3β and inactivation of AKT/mTOR signal pathway. These results indicate that GEA is a cyclin D1 inhibitor and a GSK3β activator which may have chemopreventive and therapeutic potential for lung cancer.
Collapse
Affiliation(s)
- Xian-Jun Yu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
17
|
Shimonishi S, Muraguchi T, Mitake M, Sakane C, Okamoto K, Shidoji Y. Rapid downregulation of cyclin D1 induced by geranylgeranoic acid in human hepatoma cells. Nutr Cancer 2012; 64:473-80. [PMID: 22369110 DOI: 10.1080/01635581.2012.655401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Geranylgeranoic acid (GGA) and its derivatives are currently under development as chemopreventive agents against second primary hepatoma in Japan. We aimed to evaluate chemoprevention targets of GGA and a surrogate marker of chemopreventive response to clarify the molecular mechanism of hepatoma chemoprevention with GGA. Human hepatoma-derived cell lines such as HuH-7, PLC/PRF/5, and HepG-2, were treated with GGA and its derivatives. Cellular dynamics of several cell-cycle-related proteins were assessed by either immunoblotting or immunofluorescence method. The cellular expression of cyclin D1 protein was suppressed immediately after GGA treatment. This reduction was partially blocked by pretreatment with 26S proteasome inhibitor MG-132, indicating that proteasomal degradation was involved in GGA-induced disappearance of cyclin D1. A phosphorylation of retinoblastoma protein (RB) at serine 780, a target site of cyclin D1-dependent kinase 4, was rapidly decreased in GGA-treated HuH-7 cells. Furthermore, subcellular fractionation, Western blotting, and immunofluorescence revealed GGA-induced nuclear accumulation of RB. These results strongly suggest that cyclin D1 may be a target of chemopreventive GGA in human hepatoma cells. GGA-induced rapid repression of cyclin D1, and a consequent dephosphorylation and nuclear translocation of RB, may influence cell cycle progression and may be relevant to GGA-induced cell death mechanisms.
Collapse
Affiliation(s)
- Shohei Shimonishi
- Molecular and Cellular Biology, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
18
|
NAWAB AKBAR, THAKUR VIJAYS, YUNUS MOHAMMAD, MAHDI ABBASALI, GUPTA SANJAY. Selective cell cycle arrest and induction of apoptosis in human prostate cancer cells by a polyphenol-rich extract of Solanum nigrum. Int J Mol Med 2012; 29:277-84. [PMID: 22076244 PMCID: PMC3981642 DOI: 10.3892/ijmm.2011.835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/02/2011] [Indexed: 01/05/2023] Open
Abstract
Progression of prostate cancer is associated with escape of tumor cells from cell cycle arrest and apoptosis. Agents capable of selectively eliminating cancer cells by cell cycle arrest and/or induction of apoptosis offer a highly desirable approach. Here we demonstrate that a polyphenolic extract derived from ripe berries of Solanum nigrum (SN) differentially causes cell cycle arrest and apoptosis in various human prostate cancer cells without affecting normal prostate epithelial cells. Virally transformed normal human prostate epithelial PZ-HPV-7 cells and their cancer counterpart CA-HPV-10 cells, were used to evaluate the growth-inhibitory effects of the SN extract. SN treatment (5-20 µg/ml) of PZ-HPV-7 cells resulted in growth inhibitory responses of low magnitude. In sharp contrast, SN treatment of CA-HPV-10 cells increased cytotoxicity, decreased cell viability and induced apoptosis. Similar results were noted in the human prostate cancer LNCaP, 22Rv1, DU145 and PC-3 cell lines, where significant reductions in cell viability and induction of apoptosis was observed in all these cells, an effect independent of disease stage and androgen association. Cell cycle analysis revealed that SN treatment (5-20 µg/ml) resulted in a dose-dependent G2/M phase arrest and subG1 accumulation in the CA-HPV-10 but not in the PZ-HPV-7 cell line. Our results, for the first time, demonstrate that the SN extract is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. SN may be developed as a promising therapeutic and/or preventive agent against prostate cancer.
Collapse
Affiliation(s)
- AKBAR NAWAB
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - VIJAY S. THAKUR
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - MOHAMMAD YUNUS
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - ABBAS ALI MAHDI
- Department of Biochemistry, King George’s Medical University, Lucknow 226003, India
| | - SANJAY GUPTA
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Abstract
BACKGROUND The sigma-2 receptor has been identified as a biomarker of proliferating cells in solid tumours. In the present study, we studied the mechanisms of sigma-2 ligand-induced cell death in the mouse breast cancer cell line EMT-6 and the human melanoma cell line MDA-MB-435. METHODS EMT-6 and MDA-MB-435 cells were treated with sigma-2 ligands. The modulation of multiple signaling pathways of cell death was evaluated. RESULTS Three sigma-2 ligands (WC-26, SV119 and RHM-138) induced DNA fragmentation, caspase-3 activation and PARP-1 cleavage. The caspase inhibitor Z-VAD-FMK partially blocked DNA fragmentation and cytotoxicity caused by these compounds. These data suggest that sigma-2 ligand-induced apoptosis and caspase activation are partially responsible for the cell death. WC-26 and siramesine induced formation of vacuoles in the cells. WC-26, SV119, RHM-138 and siramesine increased the synthesis and processing of microtubule-associated protein light chain 3, an autophagosome marker, and decreased the expression levels of the downstream effectors of mammalian target of rapamycin (mTOR), p70S6K and 4EBP1, suggesting that sigma-2 ligands induce autophagy, probably by inhibition of the mTOR pathway. All four sigma-2 ligands decreased the expression of cyclin D1 in a time-dependent manner. In addition, WC-26 and SV119 mainly decreased cyclin B1, E2 and phosphorylation of retinoblastoma protein (pRb); RHM-138 mainly decreased cyclin E2; and 10 μM siramesine mainly decreased cyclin B1 and pRb. These data suggest that sigma-2 ligands also impair cell-cycle progression in multiple phases of the cell cycle. CONCLUSION Sigma-2 ligands induce cell death by multiple signalling pathways.
Collapse
|
20
|
Dragnev KH, Ma T, Cyrus J, Galimberti F, Memoli V, Busch AM, Tsongalis GJ, Seltzer M, Johnstone D, Erkmen CP, Nugent W, Rigas JR, Liu X, Freemantle SJ, Kurie JM, Waxman S, Dmitrovsky E. Bexarotene plus erlotinib suppress lung carcinogenesis independent of KRAS mutations in two clinical trials and transgenic models. Cancer Prev Res (Phila) 2011; 4:818-28. [PMID: 21636548 DOI: 10.1158/1940-6207.capr-10-0376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rexinoid bexarotene represses cyclin D1 by causing its proteasomal degradation. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib represses cyclin D1 via different mechanisms. We conducted a preclinical study and 2 clinical/translational trials (a window-of-opportunity and phase II) of bexarotene plus erlotinib. The combination repressed growth and cyclin D1 expression in cyclin-E- and KRAS/p53-driven transgenic lung cancer cells. The window-of-opportunity trial in early-stage non-small-cell lung cancer (NSCLC) patients (10 evaluable), including cases with KRAS mutations, repressed cyclin D1 (in tumor biopsies and buccal swabs) and induced necrosis and inflammatory responses. The phase II trial in heavily pretreated, advanced NSCLC patients (40 evaluable; a median of two prior relapses per patient (range, 0-5); 21% with prior EGFR-inhibitor therapy) produced three major clinical responses in patients with prolonged progression-free survival (583-, 665-, and 1,460-plus days). Median overall survival was 22 weeks. Hypertriglyceridemia was associated with an increased median overall survival (P = 0.001). Early PET (positron emission tomographic) response did not reliably predict clinical response. The combination was generally well tolerated, with toxicities similar to those of the single agents. In conclusion, bexarotene plus erlotinib was active in KRAS-driven lung cancer cells, was biologically active in early-stage mutant KRAS NSCLC, and was clinically active in advanced, chemotherapy-refractory mutant KRAS tumors in this study and previous trials. Additional lung cancer therapy or prevention trials with this oral regimen are warranted.
Collapse
Affiliation(s)
- Konstantin H Dragnev
- Hematology/Oncology Section, Department of Medicine, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim Y, Chongviriyaphan N, Liu C, Russell RM, Wang XD. Combined α-tocopherol and ascorbic acid protects against smoke-induced lung squamous metaplasia in ferrets. Lung Cancer 2011; 75:15-23. [PMID: 21665318 DOI: 10.1016/j.lungcan.2011.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/25/2011] [Accepted: 05/21/2011] [Indexed: 11/25/2022]
Abstract
Many epidemiological studies show the benefit of fruits and vegetables on reducing risk of lung cancer, the leading cause of cancer death in the United States. Previously, we demonstrated that cigarette smoke exposure (SM)-induced lung lesions in ferrets were prevented by a combination of low dose of β-carotene, α-tocopherol (AT), and ascorbic acid (AA). However, the role of a combination of AT and AA alone in the protective effect on lung carcinogenesis remains to be examined. In the present study, we investigated whether the combined AT (equivalent to ∼100 mg/day in the human) and AA (equivalent to ∼210 mg/day) supplementation prevents against SM (equivalent to 1.5 packs of cigarettes/day) induced lung squamous metaplasia in ferrets. Ferrets were treated for 6 weeks in the following three groups (9 ferrets/group): (i) Control (no SM, no AT+AA), (ii) SM alone, and (iii) SM+AT+AA. Results showed that SM significantly decreased concentrations of retinoic acid, AT, and reduced form of AA, not total AA, retinol and retinyl palmitate, in the lungs of ferrets. Combined AT+AA treatment partially restored the lowered concentrations of AT, reduced AA and retinoic acid in the lungs of SM-exposed ferrets to the levels in the control group. Furthermore, the combined AT+AA supplementation prevented SM-induced squamous metaplasia [0 positive/9 total ferrets (0%) vs. 5/8 (62%); p<0.05] and cyclin D1 expression (p<0.05) in the ferret lungs, in which both were positively correlated with expression of c-Jun expression. Although there were no significant differences in lung microsomal malondialdehyde (MDA) levels among the three groups, we found a positive correlation between MDA levels and cyclin D1, as well as c-Jun expressions in the lungs of ferrets. These data indicate that the combination of antioxidant AT+AA alone exerts protective effects against SM-induced lung lesions through inhibiting cyclin D1 expression and partially restoring retinoic acid levels to normal.
Collapse
Affiliation(s)
- Yuri Kim
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
22
|
Rhee HK, Yoo JH, Lee E, Kwon YJ, Seo HR, Lee YS, Choo HYP. Synthesis and cytotoxicity of 2-phenylquinazolin-4(3H)-one derivatives. Eur J Med Chem 2011; 46:3900-8. [PMID: 21704436 DOI: 10.1016/j.ejmech.2011.05.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 02/02/2023]
Abstract
Thirty 2-phenylquinazolin-4(3H)-one derivatives were prepared and their cytotoxic activities were tested in five human tumor cell lines. Some compounds (5e, 5k, 5t, 6c and 6f) showed relatively high cytotoxic activity. Especially, compound 6c showed the most cytotoxicity against all cell lines tested among the synthesized derivatives, and the inhibitory activity of 6c against HeLa cell was higher than that of adriamycin. The putative mechanism of antitumor action in apoptotic cell death was cell cycle arrest in the G0/G1 phase by compounds 5k, 5v, 5m, 6c, and 6f in HeLa cells. These compounds showed relatively high cytotoxicity in this cell type.
Collapse
Affiliation(s)
- Hee-Kyung Rhee
- College of Pharmacy & Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Goyeneche AA, Seidel EE, Telleria CM. Growth inhibition induced by antiprogestins RU-38486, ORG-31710, and CDB-2914 in ovarian cancer cells involves inhibition of cyclin dependent kinase 2. Invest New Drugs 2011; 30:967-80. [PMID: 21424700 PMCID: PMC3348464 DOI: 10.1007/s10637-011-9655-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/02/2011] [Indexed: 12/25/2022]
Abstract
Antiprogestins have been largely utilized in reproductive medicine, yet their repositioning for oncologic use is rapidly emerging. In this study we investigated the molecular mediators of the anti-ovarian cancer activity of the structurally related antiprogestins RU-38486, ORG-31710 and CDB-2914. We studied the responses of wt p53 OV2008 and p53 null SK-OV-3 cells to varying doses of RU-38486, ORG-31710 and CDB-2914. The steroids inhibited the growth of both cell lines with a potency of RU-38486 > ORG-31710 > CDB-2914, and were cytostatic at lower doses but lethal at higher concentrations. Antiprogestin-induced lethality associated with morphological features of apoptosis, hypodiploid DNA content, DNA fragmentation, and cleavage of executer caspase substrate PARP. Cell death ensued despite RU-38486 caused transient up-regulation of anti-apoptotic Bcl-2, ORG-31710 induced transient up-regulation of inhibitor of apoptosis XIAP, and CDB-2914 up-regulated both XIAP and Bcl-2. The antiprogestins induced accumulation of Cdk inhibitors p21cip1 and p27kip1 and increased association of p21cip1 and p27kip1 with Cdk-2. They also promoted nuclear localization of p21cip1 and p27kip1, reduced the nuclear abundances of Cdk-2 and cyclin E, and blocked the activity of Cdk-2 in both nucleus and cytoplasm. The cytotoxic potency of the antiprogestins correlated with the magnitude of the inhibition of Cdk-2 activity, ranging from G1 cell cycle arrest towards cell death. Our results suggest that, as a consequence of their cytostatic and lethal effects, antiprogestin steroids of well-known contraceptive properties emerge as attractive new agents to be repositioned for ovarian cancer therapeutics.
Collapse
Affiliation(s)
- Alicia A. Goyeneche
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, SD USA
| | - Erin E. Seidel
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, SD USA
| | - Carlos M. Telleria
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, SD USA
| |
Collapse
|
24
|
Senthilkumar K, Elumalai P, Arunkumar R, Banudevi S, Gunadharini ND, Sharmila G, Selvakumar K, Arunakaran J. Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Mol Cell Biochem 2010; 344:173-84. [PMID: 20658310 DOI: 10.1007/s11010-010-0540-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/14/2010] [Indexed: 01/02/2023]
Abstract
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.
Collapse
Affiliation(s)
- Kalimuthu Senthilkumar
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamilnadu, India.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hao S, Shen H, Hou Y, Mars WM, Liu Y. tPA is a potent mitogen for renal interstitial fibroblasts: role of beta1 integrin/focal adhesion kinase signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1164-75. [PMID: 20639453 DOI: 10.2353/ajpath.2010.091269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proliferation and expansion of interstitial fibroblasts are predominant features of progressive chronic kidney diseases. However, how interstitial fibroblast proliferation is controlled remains ambiguous. Here we show that tissue-type plasminogen activator (tPA) is a potent mitogen that promotes interstitial fibroblast proliferation through a cascade of signaling events. In vitro, tPA promoted cell proliferation of rat kidney fibroblasts (NRK-49F), as assessed by cell counting, cell proliferation assay, and bromodeoxyuridine labeling. tPA also accelerated NRK-49F cell cycle progression. Fibroblast proliferation induced by tPA was associated with an increased expression of numerous proliferation-related genes, including c-fos, c-myc, proliferating cell nuclear antigen, and cyclin D1. The mitogenic effect of tPA was independent of its protease activity, but required LDL receptor-related protein 1. Interestingly, inhibition of beta1 integrin signaling prevented tPA-mediated fibroblast proliferation. tPA rapidly induced tyrosine phosphorylation of focal adhesion kinase (FAK), which led to activation of its downstream mitogen-activated protein kinase signaling. Blockade of FAK, but not integrin-linked kinase, abolished the tPA-triggered extracellular signal-regulated protein kinase 1/2 activation, proliferation-related gene induction, and fibroblast proliferation. In vivo, proliferation of interstitial myofibroblasts in tPA null mice was attenuated after obstructive injury, compared with the wild-type controls. These studies illustrate that tPA is a potent mitogen that promotes renal interstitial fibroblast proliferation through LDL receptor-related protein 1-mediated beta1 integrin and FAK signaling.
Collapse
Affiliation(s)
- Sha Hao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
26
|
Kong B, Michalski CW, Hong X, Valkovskaya N, Rieder S, Abiatari I, Streit S, Erkan M, Esposito I, Friess H, Kleeff J. AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling. Oncogene 2010; 29:5146-58. [PMID: 20581862 DOI: 10.1038/onc.2010.258] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial-to-mesenchymal transdifferentiation (EMT) mediated by transforming growth factor-β (TGF-β) signaling leads to aggressive cancer progression. In this study, we identified zinc-α2-glycoprotein (AZGP1, ZAG) as a tumor suppressor in pancreatic ductal adenocarcinoma whose expression is lost due to histone deacetylation. In vitro, ZAG silencing strikingly increased invasiveness of pancreatic cancer cells accompanied by the induction of a mesenchymal phenotype. Expression analysis of a set of EMT markers showed an increase in the expression of mesenchymal markers (vimentin (VIM) and integrin-α5) and a concomitant reduction in the expression of epithelial markers (cadherin 1 (CDH1), desmoplakin and keratin-19). Blockade of endogenous TGF-β signaling inhibited these morphological changes and the downregulation of CDH1, as elicited by ZAG silencing. In a ZAG-negative cell line, human recombinant ZAG (rZAG) specifically inhibited exogenous TGF-β-mediated tumor cell invasion and VIM expression. Furthermore, rZAG blocked TGF-β-mediated ERK2 phosphorylation. PCR array analysis revealed that ZAG-induced epithelial transdifferentiation was accompanied by a series of concerted cellular events including a shift in the energy metabolism and prosurvival signals. Thus, epigenetically regulated ZAG is a novel tumor suppressor essential for maintaining an epithelial phenotype.
Collapse
Affiliation(s)
- B Kong
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pawar SA, Sarkar TR, Balamurugan K, Sharan S, Wang J, Zhang Y, Dowdy SF, Huang AM, Sterneck E. C/EBP{delta} targets cyclin D1 for proteasome-mediated degradation via induction of CDC27/APC3 expression. Proc Natl Acad Sci U S A 2010; 107:9210-5. [PMID: 20439707 PMCID: PMC2889124 DOI: 10.1073/pnas.0913813107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factor CCAAT/enhancer binding protein delta (C/EBPdelta, CEBPD, NFIL-6beta) has tumor suppressor function; however, the molecular mechanism(s) by which C/EBPdelta exerts its effect are largely unknown. Here, we report that C/EBPdelta induces expression of the Cdc27 (APC3) subunit of the anaphase promoting complex/cyclosome (APC/C), which results in the polyubiquitination and degradation of the prooncogenic cell cycle regulator cyclin D1, and also down-regulates cyclin B1, Skp2, and Plk-1. In C/EBPdelta knockout mouse embryo fibroblasts (MEF) Cdc27 levels were reduced, whereas cyclin D1 levels were increased even in the presence of activated GSK-3beta. Silencing of C/EBPdelta, Cdc27, or the APC/C coactivator Cdh1 (FZR1) in MCF-10A breast epithelial cells increased cyclin D1 protein expression. Like C/EBPdelta, and in contrast to cyclin D1, Cdc27 was down-regulated in several breast cancer cell lines, suggesting that Cdc27 itself may be a tumor suppressor. Cyclin D1 is a known substrate of polyubiquitination complex SKP1/CUL1/F-box (SCF), and our studies show that Cdc27 directs cyclin D1 to alternative degradation by APC/C. These findings shed light on the role and regulation of APC/C, which is critical for most cellular processes.
Collapse
Affiliation(s)
- Snehalata A. Pawar
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Tapasree Roy Sarkar
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Kuppusamy Balamurugan
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Shikha Sharan
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Jun Wang
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Youhong Zhang
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Steven F. Dowdy
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego School of Medicine, La Jolla, CA 92093-0686
| | - A-Mei Huang
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| | - Esta Sterneck
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201; and
| |
Collapse
|
28
|
Pan MH, Lin CL, Tsai JH, Ho CT, Chen WJ. 3,5,3',4',5'-pentamethoxystilbene (MR-5), a synthetically methoxylated analogue of resveratrol, inhibits growth and induces G1 cell cycle arrest of human breast carcinoma MCF-7 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:226-234. [PMID: 19916542 DOI: 10.1021/jf903067g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
3,5,3',4',5'-pentamethoxystilbene (MR-5) is a synthetically methoxylated analogue of resveratrol and has been suggested to have antitumor activity because of structural similarity to resveratrol. Herein, we investigate the antiproliferative effect of MR-5 in human breast cancer MCF-7 cells and demonstrate that MR-5 had a more potent inhibition on cell growth compared with resveratrol and other methoxylated derivatives. Exploring the growth-inhibitory mechanisms of MR-5, we found that it is accompanied by G1 cell cycle arrest, which coincides with a marked inhibition of G1 cell cycle regulatory proteins, including decreased cyclins (D1/D3/E) and cyclin-dependent kinases (CDK2/4/6) and increased CDK inhibitors (CKIs) such as p15, p16, p21, and p27. Furthermore, the increase in CKI levels by MR-5 resulted in a concomitant increase in their interactions of CDK4 and CDK2, along with a strong inhibition in CDK4 kinase activity and the accumulation of hypophosphorylated Rb. MR-5 also modulated some critical kinase activities related to cell cycle regulation, including Akt, mitogen-activated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), and focal adhesion kinase (FAK) in MCF-7 cells. In total, our results demonstrate that MR-5 affects multiple cellular targets that contribute to its antiproliferative activity in MCF-7 cells and provide novel information for synthetic chemists to design new antitumor agents with introduction of methoxylated group(s) in the basic compound.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, No. 142 Hai-Chuan Road, Nan-Tzu, Kaohsiung 811, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Galimberti F, Thompson SL, Liu X, Li H, Memoli V, Green SR, DiRenzo J, Greninger P, Sharma SV, Settleman J, Compton DA, Dmitrovsky E. Targeting the cyclin E-Cdk-2 complex represses lung cancer growth by triggering anaphase catastrophe. Clin Cancer Res 2009; 16:109-20. [PMID: 20028770 DOI: 10.1158/1078-0432.ccr-09-2151] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Cyclin-dependent kinases (Cdk) and their associated cyclins are targets for lung cancer therapy and chemoprevention given their frequent deregulation in lung carcinogenesis. This study uncovered previously unrecognized consequences of targeting the cyclin E-Cdk-2 complex in lung cancer. EXPERIMENTAL DESIGN Cyclin E, Cdk-1, and Cdk-2 were individually targeted for repression with siRNAs in lung cancer cell lines. Cdk-2 was also pharmacologically inhibited with the reversible kinase inhibitor seliciclib. Potential reversibility of seliciclib effects was assessed in washout experiments. Findings were extended to a large panel of cancer cell lines using a robotic-based platform. Consequences of cyclin E-Cdk-2 inhibition on chromosome stability and on in vivo tumorigenicity were explored as were effects of combining seliciclib with different taxanes in lung cancer cell lines. RESULTS Targeting the cyclin E-Cdk-2 complex, but not Cdk-1, resulted in marked growth inhibition through the induction of multipolar anaphases triggering apoptosis. Treatment with the Cdk-2 kinase inhibitor seliciclib reduced lung cancer formation in a murine syngeneic lung cancer model and decreased immunohistochemical detection of the proliferation markers Ki-67 and cyclin D1 in lung dysplasia spontaneously arising in a transgenic cyclin E-driven mouse model. Combining seliciclib with a taxane resulted in augmented growth inhibition and apoptosis in lung cancer cells. Pharmacogenomic analysis revealed that lung cancer cell lines with mutant ras were especially sensitive to seliciclib. CONCLUSIONS Induction of multipolar anaphases leading to anaphase catastrophe is a previously unrecognized mechanism engaged by targeting the cyclin E-Cdk-2 complex. This exerts substantial antineoplastic effects in the lung.
Collapse
Affiliation(s)
- Fabrizio Galimberti
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Robert F, Carrier M, Rawe S, Chen S, Lowe S, Pelletier J. Altering chemosensitivity by modulating translation elongation. PLoS One 2009; 4:e5428. [PMID: 19412536 PMCID: PMC2671598 DOI: 10.1371/journal.pone.0005428] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/02/2009] [Indexed: 11/19/2022] Open
Abstract
Background The process of translation occurs at a nexus point downstream of a number of signal pathways and developmental processes. Modeling activation of the PTEN/AKT/mTOR pathway in the Eμ-Myc mouse is a valuable tool to study tumor genotype/chemosensitivity relationships in vivo. In this model, blocking translation initiation with silvestrol, an inhibitor of the ribosome recruitment step has been showed to modulate the sensitivity of the tumors to the effect of standard chemotherapy. However, inhibitors of translation elongation have been tested as potential anti-cancer therapeutic agents in vitro, but have not been extensively tested in genetically well-defined mouse tumor models or for potential synergy with standard of care agents. Methodology/Principal Findings Here, we chose four structurally different chemical inhibitors of translation elongation: homoharringtonine, bruceantin, didemnin B and cycloheximide, and tested their ability to alter the chemoresistance of Eμ-myc lymphomas harbouring lesions in Pten, Tsc2, Bcl-2, or eIF4E. We show that in some genetic settings, translation elongation inhibitors are able to synergize with doxorubicin by reinstating an apoptotic program in tumor cells. We attribute this effect to a reduction in levels of pro-oncogenic or pro-survival proteins having short half-lives, like Mcl-1, cyclin D1 or c-Myc. Using lymphomas cells grown ex vivo we reproduced the synergy observed in mice between chemotherapy and elongation inhibition and show that this is reversed by blocking protein degradation with a proteasome inhibitor. Conclusion/Significance Our results indicate that depleting short-lived pro-survival factors by inhibiting their synthesis could achieve a therapeutic response in tumors harboring PTEN/AKT/mTOR pathway mutations.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marilyn Carrier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Svea Rawe
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Samuel Chen
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Scott Lowe
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
31
|
Freemantle SJ, Guo Y, Dmitrovsky E. Retinoid chemoprevention trials: cyclin D1 in the crosshairs. Cancer Prev Res (Phila) 2009; 2:3-6. [PMID: 19139010 DOI: 10.1158/1940-6207.capr-08-0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sarah J Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen, Hanover, NH 03755, USA.
| | | | | |
Collapse
|
32
|
Feng Q, Sekula D, Guo Y, Liu X, Black CC, Galimberti F, Shah SJ, Sempere LF, Memoli V, Andersen JB, Hassel BA, Dragnev K, Dmitrovsky E. UBE1L causes lung cancer growth suppression by targeting cyclin D1. Mol Cancer Ther 2009; 7:3780-8. [PMID: 19074853 DOI: 10.1158/1535-7163.mct-08-0753] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UBE1L is the E1-like ubiquitin-activating enzyme for the IFN-stimulated gene, 15-kDa protein (ISG15). The UBE1L-ISG15 pathway was proposed previously to target lung carcinogenesis by inhibiting cyclin D1 expression. This study extends prior work by reporting that UBE1L promotes a complex between ISG15 and cyclin D1 and inhibited cyclin D1 but not other G1 cyclins. Transfection of the UBE1L-ISG15 deconjugase, ubiquitin-specific protein 18 (UBP43), antagonized UBE1L-dependent inhibition of cyclin D1 and ISG15-cyclin D1 conjugation. A lysine-less cyclin D1 species was resistant to these effects. UBE1L transfection reduced cyclin D1 protein but not mRNA expression. Cycloheximide treatment augmented this cyclin D1 protein instability. UBE1L knockdown increased cyclin D1 protein. UBE1L was independently retrovirally transduced into human bronchial epithelial and lung cancer cells. This reduced cyclin D1 expression and clonal cell growth. Treatment with the retinoid X receptor agonist bexarotene induced UBE1L and reduced cyclin D1 immunoblot expression. A proof-of-principle bexarotene clinical trial was independently examined for UBE1L, ISG15, cyclin D1, and Ki-67 immunohistochemical expression profiles in pretreatment versus post-treatment tumor biopsies. Increased UBE1L with reduced cyclin D1 and Ki-67 expression occurred in human lung cancer when a therapeutic bexarotene intratumoral level was achieved. Thus, a mechanism for UBE1L-mediated growth suppression was found by UBE1L-ISG15 preferentially inhibiting cyclin D1. Molecular therapeutic implications are discussed.
Collapse
Affiliation(s)
- Qing Feng
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Remsen 7650, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Targeting the epidermal growth factor receptor in high-grade astrocytomas. Curr Treat Options Oncol 2008; 9:23-31. [PMID: 18247132 DOI: 10.1007/s11864-008-0053-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
Abstract
OPINION STATEMENT High-grade astrocytomas, including glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), are the most common and aggressive primary malignant brain tumors in adults. Despite improvements in survival with the addition of temozolomide to radiation in the adjuvant setting, the prognosis of patients affected by these tumors remains relatively poor. One approach to improve outcomes in these patients is to target the epidermal growth factor receptor (EGFR). EGFR-targeted therapy is a rational approach since EGFR overexpression and mutant EGFRvIII expression occur in approximately 50% of patients with GBM. Unfortunately, monotherapy with anti-EGFR agents in malignant gliomas has not provided the dramatic results sometimes seen with other targeted therapies, such as imatinib in chronic myelogenous leukemia. Anti-EGFR agents currently being studied in malignant gliomas include the tyrosine kinase inhibitors (TKI), monoclonal antibodies (MAb), and anti-EGFR vaccines. Of all these agents, the tyrosine kinase inhibitors-which include erlotinib and gefitinib-have been the most extensively tested in clinical trials. Retrospective analyses have highlighted co-expression of EGFRvIII and wild-type PTEN (phosphatase and tensin homologue deleted in chromosome 10) as a significant predictor of EGFR TKI response in patients with GBM. As the EGFR signaling pathway is exceptionally complex, newer approaches targeting multiple points in the pathway are being developed to improve treatment efficacy.
Collapse
|