1
|
Karati D, Meur S, Roy S, Mukherjee S, Debnath B, Jha SK, Sarkar BK, Naskar S, Ghosh P. Glycogen synthase kinase 3 (GSK3) inhibition: a potential therapeutic strategy for Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03500-1. [PMID: 39432068 DOI: 10.1007/s00210-024-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. According to estimates from the World Health Organization (WHO), 18 million individuals worldwide suffer from AD. Major initiatives to identify risk factors, enhance care giving, and conduct basic research to delay the beginning of AD were started by the USA, France, Germany, France, and various other nations. Widely recognized as a key player in the development and subsequent progression of AD pathogenesis, glycogen synthase kinase-3 (GSK-3) controls a number of crucial targets associated with neuronal degeneration. GSK-3 inhibition has been linked to reduced tau hyperphosphorylation, β-amyloid formation, and neuroprotective benefits in Alzheimer's disease. Lithium, the very first inhibitor of GSK-3β that was used therapeutically, has been successfully used for many years with remarkable results. A great variety of structurally varied strong GSK-3β blockers have been identified in recent years. The purpose of this thorough review is to cover the biological and structural elements of glycogen synthase kinase, as well as the medicinal chemistry aspects of GSK inhibitors that have been produced in recent years.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India.
| | - Biplab Debnath
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal, 711316, India
| | - Sajal Kumar Jha
- Department of Pharmaceutical Technology, Bengal College of Pharmaceutical Technology, Dubrajpur, West Bengal, 731123, India
| | | | - Saheli Naskar
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Priya Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| |
Collapse
|
2
|
CRMP2 Is Involved in Regulation of Mitochondrial Morphology and Motility in Neurons. Cells 2021; 10:cells10102781. [PMID: 34685760 PMCID: PMC8535169 DOI: 10.3390/cells10102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Regulation of mitochondrial morphology and motility is critical for neurons, but the exact mechanisms are unclear. Here, we demonstrate that these mechanisms may involve collapsin response mediator protein 2 (CRMP2). CRMP2 is attached to neuronal mitochondria and binds to dynamin-related protein 1 (Drp1), Miro 2, and Kinesin 1 light chain (KLC1). Treating neurons with okadaic acid (OA), an inhibitor of phosphatases PP1 and PP2A, resulted in increased CRMP2 phosphorylation at Thr509/514, Ser522, and Thr555, and augmented Drp1 phosphorylation at Ser616. The CRMP2-binding small molecule (S)-lacosamide ((S)-LCM) prevented an OA-induced increase in CRMP2 phosphorylation at Thr509/514 and Ser522 but not at Thr555, and also failed to alleviate Drp1 phosphorylation. The increased CRMP2 phosphorylation correlated with decreased CRMP2 binding to Drp1, Miro 2, and KLC1. (S)-LCM rescued CRMP2 binding to Drp1 and Miro 2 but not to KLC1. In parallel with CRMP2 hyperphosphorylation, OA increased mitochondrial fission and suppressed mitochondrial traffic. (S)-LCM prevented OA-induced alterations in mitochondrial morphology and motility. Deletion of CRMP2 with a small interfering RNA (siRNA) resulted in increased mitochondrial fission and diminished mitochondrial traffic. Overall, our data suggest that the CRMP2 expression level and phosphorylation state are involved in regulating mitochondrial morphology and motility in neurons.
Collapse
|
3
|
Dopamine transporter is downregulated and its association with chaperone protein Hsc70 is enhanced by activation of dopamine D 3 receptor. Brain Res Bull 2020; 165:263-271. [PMID: 33049353 DOI: 10.1016/j.brainresbull.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
Synaptic dopamine (DA) concentrations are largely determined by the activities of presynaptic D2 and D3 autoreceptors (D2R and D3R) and DA transporter (DAT). Furthermore, the activity of DAT is regulated by phosphorylation events and protein interactions that affect its surface expression. Because DA autoreceptors and DAT coordinately maintain synaptic DA homeostasis, we hypothesized that D3R might crosstalk with DAT to fine-tune synaptic DA concentrations. To test this hypothesis, we established [3H]DA uptake and DAT surface expression assays in hD3/rDAT-double-transfected HEK-293 cells or limbic forebrain synaptosomal preparations. Ropinirole, a preferential D3R agonist, reduced [3H]DA uptake in HEK-hD3/rDAT cells in a dose-dependent manner, an effect which could be blocked by the D2R/D3R antagonist, raclopride. Furthermore, ropinirole also reduced DAT surface expression in limbic forebrain synaptosomes, and this effect could be blocked by raclopride or the internalization inhibitor, concanavalin A. To identify potential mediators of this apparent D3R-DAT crosstalk, DAT-associated proteins were co-immunoprecipitated from limbic forebrain synaptosomes after D3R activation and identified by MALDI-TOF. From this analysis, the Hsc70 chaperone was identified as a DAT-associated protein. Interestingly, ropinirole induced the association of Hsc70/Hsp70 with DAT, and the Hsc70/Hsp70 inhibitor, apoptozole, prevented the ropinirole-induced reduction of DAT surface expression. Together, these results suggest that D3R negatively regulates DAT activity by promoting the association of DAT and Hsc70/Hsp70.
Collapse
|
4
|
Lin FY, Lin YF, Lin YS, Yang CM, Wang CC, Hsiao YH. Relative D3 vitamin deficiency and consequent cognitive impairment in an animal model of Alzheimer's disease: Potential involvement of collapsin response mediator protein-2. Neuropharmacology 2019; 164:107910. [PMID: 31838171 DOI: 10.1016/j.neuropharm.2019.107910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) starts with memory impairments that can be observed before the appearance of significant neuropathology; thus, identifying mechanisms to stop AD progression is an urgent priority. Epidemiological and clinical data show that the consequences of vitamin D deficiency are relevant to disease risk and can be observed in the progression of many diseases, especially AD, whereas higher serum levels of vitamin D are associated with better cognitive test performance. However, the potential therapeutic strategy and underlying mechanisms of vitamin D supplementation against AD still need to be further investigated. In the present study, we found that 3xTg-AD mice with vitamin D supplementation exhibited an increase in serum vitamin D concentrations and improved cognition. We measured serum vitamin D binding protein (VDBP) concentrations and found that serum VDBP levels were increased in 3xTg-AD mice compared to B6129S control mice, but there was no significant difference between control- and vitamin D-treated 3xTg-AD groups. The vitamin D-mediated memory improvement may be accompanied by the suppression of increased hippocampal collapsin response mediator protein-2 (CRMP2) phosphorylation, and the restoration of CRMP2 phosphorylation by okadaic acid (OA) could abolish the beneficial effects of vitamin D. In addition, we found that CRMP2 was associated with NR2B and PSD-95 in 3xTg-AD mice with vitamin D supplementation. This CRMP2-NR2B interaction could be disrupted by a TAT-CBD3 peptide or OA, leading to attenuated memory protection in vitamin D-treated 3xTg-AD mice. Therefore, CRMP2 may be involved in vitamin D-mediated memory improvement in AD.
Collapse
Affiliation(s)
- Fang-Yu Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Fen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Shuen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Ming Yang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan; Clinical Competency Center, Chi Mei Medical Center, Tainan, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Liu Y, Liu C, Zeng M, Han X, Zhang K, Fu Y, Li J, Li Y. Influence of sevoflurane exposure on mitogen-activated protein kinases and Akt/GSK-3β/CRMP-2 signaling pathways in the developing rat brain. Exp Ther Med 2018; 15:2066-2073. [PMID: 29434807 PMCID: PMC5776508 DOI: 10.3892/etm.2017.5651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/20/2017] [Indexed: 01/06/2023] Open
Abstract
Prolonged exposure to volatile anesthetics causes neurodegeneration in developing animal brains. However, their underlying mechanisms of action remain unclear. The current study investigated the expression of proteins associated with the mitogen-activated protein kinases (MAPK) and protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/collapsin response mediator protein 2 (CRMP-2) signaling pathways in the cortices of neonatal mice following exposure to sevoflurane. Seven-day-old (P7) neonatal C57BL/6 mice were randomly divided into 2 groups and either exposed to 2.6% sevoflurane or air for 6 h. Terminal deoxyribonucleotide transferase mediated dUTP nick end labeling (TUNEL) staining, as well as the expression of activated caspase-3 and α-fodrin, was used to detect neuronal apoptosis in the cortices of mice. MAPK signaling pathways were investigated by detecting the expression of phosphorylated (p-) extracellular signal-regulated kinase 1/2 (ERK1/2), p-cyclic adenosine monophosphate response element-binding protein (CREB), p-p38, p-nuclear factor (NF-κB) and p-c-Jun N-terminal kinase (p-JNK). Akt/GSK-3β/CRMP-2 signaling pathways were assessed by detecting the expression of p-Akt, p-GSK-3β and p-CRMP-2 in the cortices of P7 mice 2 h following exposure to sevoflurane. The results demonstrated that sevoflurane significantly increased the apoptosis of cells in the retrosplenial cortex (RS), frontal cortex (FC) and parietal association cortex (PtA), increased the expression of cleaved caspase-3 expression and promoted the formation of 145 kDa and 120 kDa fragments from α-fodrin. Sevoflurane inhibited the phosphorylation of ERK1/2 and CREB, stimulated the phosphorylation of p38 and NF-κB, but did not significantly affect the phosphorylation of JNK. Furthermore, sevoflurane inhibited the phosphorylation of Akt, decreased the phosphorylation of GSK-3β at ser9 and increased the phosphorylation of CRMP2 at Thr514. These results suggest that multiple signaling pathways, including ERK1/2, P38 and Akt/GSK-3β/CRMP-2 may be involved in sevoflurane-induced neuroapoptosis in the developing brain.
Collapse
Affiliation(s)
- Yafang Liu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chuiliang Liu
- Department of Anesthesiology, Chancheng Center Hospital, Guangdong Medical College, Foshan, Guangdong 528030, P.R. China
| | - Minting Zeng
- Department of Anesthesiology, Guangzhou Women and Children's Medical Centre of Guangzhou Medical University, Guangzhou, Guangdong 510523, P.R. China
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yanni Fu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jue Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
6
|
Yuan Z, Luan G, Wang Z, Hao X, Li J, Suo Y, Li G, Wang H. Flavonoids from Potentilla parvifolia
Fisch
. and Their Neuroprotective Effects in Human Neuroblastoma SH-SY5Y Cells in vitro. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201600487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Zhenzhen Yuan
- Key Laboratory of Tibetan Medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810008 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Guangxiang Luan
- Key Laboratory of Tibetan Medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810008 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging; College of Life Sciences; Yantai University; Yantai 264005 P. R. China
| | - Xueyan Hao
- Center for Mitochondria and Healthy Aging; College of Life Sciences; Yantai University; Yantai 264005 P. R. China
| | - Ji Li
- Center for Mitochondria and Healthy Aging; College of Life Sciences; Yantai University; Yantai 264005 P. R. China
| | - Yourui Suo
- Key Laboratory of Tibetan Medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810008 P. R. China
| | - Gang Li
- Center for Mitochondria and Healthy Aging; College of Life Sciences; Yantai University; Yantai 264005 P. R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810008 P. R. China
- State Key Laboratory of Plateau Ecology and Agriculture; Qinghai University; Xining 810008 P. R. China
| |
Collapse
|
7
|
Mehan ND, Strauss KI. Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability. Neurobiol Aging 2011; 33:1857-73. [PMID: 22088680 DOI: 10.1016/j.neurobiolaging.2011.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/17/2011] [Indexed: 11/16/2022]
Abstract
This proteomic study investigates the widely observed clinical phenomenon, that after comparable brain injuries, geriatric patients fare worse and recover less cognitive and neurologic function than younger victims. Utilizing a rat traumatic brain injury model, sham surgery or a neocortical contusion was induced in 3 age groups. Geriatric (21 months) rats performed worse on behavioral measures than young adults (12-16 weeks) and juveniles (5-6 weeks). Motor coordination and certain cognitive deficits showed age-dependence both before and after injury. Brain proteins were analyzed using silver-stained two-dimensional electrophoresis gels. Spot volume changes (>2-fold change, p<0.01) were identified between age and injury groups using computer-assisted densitometry. Sequences were determined by mass spectrometry of tryptic peptides. The 19 spots identified represented 13 different genes that fell into 4 general age- and injury-dependent expression patterns. Fifteen isoforms changed differentially with respect to both age and injury (p<0.05). Further investigations into the nature and function of these isoforms may yield insights into the vulnerability of older patients and resilience of younger patients in recovery after brain injuries.
Collapse
Affiliation(s)
- Neal D Mehan
- University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0517, USA
| | | |
Collapse
|
8
|
Kanamori T, Matsukawa N, Kobayashi H, Uematsu N, Sagisaka T, Toyoda T, Kato D, Oikawa S, Ojika K. Suppressed phosphorylation of collapsin response mediator protein-2 in the hippocampus of HCNP precursor transgenic mice. Brain Res 2010; 1355:180-8. [PMID: 20682295 DOI: 10.1016/j.brainres.2010.07.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 11/16/2022]
Abstract
We previously reported a novel peptide, Hippocampal Cholinergic Neurostimulating Peptide (HCNP), which induces acetylcholine synthesis by increasing the amount of choline acetyltransferase (ChAT) in medial septal nuclei. The HCNP precursor protein (HCNP-pp), composed of 186 amino acids, is an inhibitory factor of the c-Raf/MEK cascade and may be involved in fetal rat brain development via the inhibition of phosphorylation of Erk. To clarify the involvement of HCNP in hippocampal cholinergic circuitry, we previously generated HCNP-pp transgenic (HCNP-pp Tg) mice using the promoter of the α subunit of Ca(2+) calmodulin-dependent protein kinase II (CaMKIIα). These mice showed increased levels of ChAT in medial septal nuclei at 12 weeks of age, and the phenotype of depressive mood at 30 weeks of age. Here, through proteomic analysis we investigated the alteration of protein expression in the hippocampus of HCNP-pp Tg mice compared with wild-type littermate mice. We demonstrate that the activation of collapsin response mediator protein-2 (CRMP-2) is increased in the transgenic mice at 12 weeks of age when compared with wild-type littermate mice.
Collapse
Affiliation(s)
- Tetsuko Kanamori
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Protein phosphatase 2A (PP2A) is indispensable in development, and deficits of PP2A and deterioration of neuronal axons have been observed in several neurodegenerative disorders, but the direct link between PP2A and the neuronal axon development is still missing. Here, we show that PP2A is essential for axon development in transfected rat brain and the dissociated hippocampal neurons. Upregulation of PP2A catalytic subunit (PP2Ac) not only promotes formation and elongation of the functional axons but also rescues axon retardation induced by PP2A inhibition. PP2A can dephosphorylate collapsin response mediator protein-2 (CRMP2) that implements the axon polarization, whereas constitutive expression of phosphomimic-CRMP2 abrogates the effect of PP2A upregulation. We also demonstrate that PP2Ac is enriched in the distal axon of the hippocampal neurons. Our results reveal a mechanistic link between PP2A and axonogenesis/axonopathy, suggesting that upregulation of PP2A may be a promising therapeutic for some neurodegenerative disorders.
Collapse
|
10
|
Lim YW, Yoon SY, Choi JE, Kim SM, Lee HS, Choe H, Lee SC, Kim DH. Maintained activity of glycogen synthase kinase-3beta despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model. Biochem Biophys Res Commun 2010; 395:207-12. [PMID: 20362550 DOI: 10.1016/j.bbrc.2010.03.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/28/2010] [Indexed: 01/24/2023]
Abstract
Glycogen synthase kinase-3beta (GSK3beta) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3beta. However, the inactive form of GSK3beta which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3beta substrates, such as beta-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3beta at serine-9 and other substrates including tau, beta-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3beta inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3beta may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3beta inhibitors could be a valuable drug candidate in AD.
Collapse
Affiliation(s)
- Yong-Whan Lim
- Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kaindl AM, Koppelstaetter A, Nebrich G, Stuwe J, Sifringer M, Zabel C, Klose J, Ikonomidou C. Brief alteration of NMDA or GABAA receptor-mediated neurotransmission has long term effects on the developing cerebral cortex. Mol Cell Proteomics 2008; 7:2293-310. [PMID: 18587059 DOI: 10.1074/mcp.m800030-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurotransmitter signaling is essential for physiologic brain development. Sedative and anticonvulsant agents that reduce neuronal excitability via antagonism at N-methyl-D-aspartate receptors (NMDARs) and/or agonism at gamma-aminobutyric acid subtype A receptors (GABA(A)Rs) are applied frequently in obstetric and pediatric medicine. We demonstrated that a 1-day treatment of infant mice at postnatal day 6 (P6) with the NMDAR antagonist dizocilpine or the GABA(A)R agonist phenobarbital not only has acute but also long term effects on the cerebral cortex. Changes of the cerebral cortex proteome 1 day (P7), 1 week (P14), and 4 weeks (P35) following treatment at P6 suggest that a suppression of synaptic neurotransmission during brain development dysregulates proteins associated with apoptosis, oxidative stress, inflammation, cell proliferation, and neuronal circuit formation. These effects appear to be age-dependent as most protein changes did not occur in mice subjected to such pharmacological treatment in adulthood. Previously performed histological evaluations of the brains revealed widespread apoptosis and decreased cell proliferation following such a drug treatment in infancy and are thus consistent with brain protein changes reported in this study. Our results point toward several pathways modulated by a reduction of neuronal excitability that might interfere with critical developmental events and thus affirm concerns about the impact of NMDAR- and/or GABA(A)R-modulating drugs on human brain development.
Collapse
Affiliation(s)
- Angela M Kaindl
- Department of Pediatric Neurology, Institute of Human Genetics, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|