1
|
Hwang JH, An GJ, Kim CH, Chung HY, Lim KM. Trivalent arsenicals induce skin toxicity through thiol depletion. Toxicol Appl Pharmacol 2024; 492:117115. [PMID: 39357682 DOI: 10.1016/j.taap.2024.117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Arsenic, a widespread environmental contaminant, is highly toxic to human health. Arsenic exposure is associated with the occurrence of skin lesions and diseases. This study investigated the dermal toxicity of trivalent arsenicals (AsIII and MMAIII) and its underlying mechanism using human keratinocyte cell line and ex vivo porcine skin. AsIII and MMAIII induced concentration-dependent cell apoptosis and necrosis in HaCaT cells, which was confirmed in ex vivo porcine skin. AsIII and MMAIII increased reactive oxygen species generation and GSH depletion. Interestingly, radical scavenger antioxidants such as Vitamin C failed to mitigate arsenic-induced cytotoxicity, while thiol-containing compounds effectively alleviated it, suggesting a key role of thiol depletion in the trivalent arsenical-induced dermal toxicity. DMSA showed the strongest protective effects against AsIII and MMAIII-induced cytotoxicity in HaCaT cells. Of note, DMSA restored arsenical-induced tissue damage, and reduced the apoptosis in ex vivo porcine skin, highlighting its potential use to alleviate arsenic-induced skin lesions and diseases.
Collapse
Affiliation(s)
- Jee-Hyun Hwang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gwang Jin An
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Hwan Kim
- Chem-Bio Technology Center, Agency for Defense Development, Republic of Korea
| | - Han Young Chung
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Odarenko KV, Sen’kova AV, Salomatina OV, Markov OV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone para-methylanilide effectively suppresses aggressive phenotype of glioblastoma cells including TGF-β1-induced glial-mesenchymal transition in vitro and inhibits growth of U87 glioblastoma xenografts in mice. Front Pharmacol 2024; 15:1428924. [PMID: 39135794 PMCID: PMC11317440 DOI: 10.3389/fphar.2024.1428924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Soloxolone amides are semisynthetic triterpenoids that can cross the blood-brain barrier and inhibit glioblastoma growth both in vitro and in vivo. Here we investigate the impact of these compounds on processes associated with glioblastoma invasiveness and therapy resistance. Screening of soloxolone amides against glioblastoma cells revealed the ability of compound 7 (soloxolone para-methylanilide) to inhibit transforming growth factor-beta 1 (TGF-β1)-induced glial-mesenchymal transition Compound 7 inhibited morphological changes, wound healing, transwell migration, and expression of mesenchymal markers (N-cadherin, fibronectin, Slug) in TGF-β1-induced U87 and U118 glioblastoma cells, while restoring their adhesiveness. Confocal microscopy and molecular docking showed that 7 reduced SMAD2/3 nuclear translocation probably by direct interaction with the TGF-β type I and type II receptors (TβRI/II). In addition, 7 suppressed stemness of glioblastoma cells as evidenced by inhibition of colony forming ability, spheroid growth, and aldehyde dehydrogenase (ALDH) activity. Furthermore, 7 exhibited a synergistic effect with temozolomide (TMZ) on glioblastoma cell viability. Using N-acetyl-L-cysteine (NAC) and flow cytometry analysis of Annexin V-FITC-, propidium iodide-, and DCFDA-stained cells, 7 was found to synergize the cytotoxicity of TMZ by inducing ROS-dependent apoptosis. Further in vivo studies showed that 7, alone or in combination with TMZ, effectively suppressed the growth of U87 xenograft tumors in mice. Thus, 7 demonstrated promising potential as a component of combination therapy for glioblastoma, reducing its invasiveness and increasing its sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Guo H, Jin W, Liu K, Liu S, Mao S, Zhou Z, Xie L, Wang G, Chen Y, Liang Y. Oral GSH Exerts a Therapeutic Effect on Experimental Salmonella Meningitis by Protecting BBB Integrity and Inhibiting Salmonella-induced Apoptosis. J Neuroimmune Pharmacol 2023; 18:112-126. [PMID: 36418663 DOI: 10.1007/s11481-022-10055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Bacterial meningitis (BM) is the main cause of the central nervous system (CNS) infection and continues to be an important cause of mortality and morbidity. Glutathione (GSH), an endogenous tripeptide antioxidant, has been proved to exert crucial role in reducing superoxide radicals, hydroxyl radicals and peroxynitrites. The purpose of this study is to expand the application scope of GSH via exploring its therapeutic effect on BM caused by Salmonella typhimurium SL1344 and then provide a novel approach for the treatment of BM. The results suggested that intragastric administration of GSH could significantly increase median survival and improve experimental autoimmune encephalomyelitis score of BM model mice. However, exogenous GSH did not affect the adhesion, invasion and cytotoxicity of SL1344 to C6, BV2 and primary microglia. Due to the contradiction between the therapeutic and bactericidal effects of GSH, the effect of GSH on blood-brain barrier (BBB) was investigated to explore its action target for the treatment of meningitis. GSH was found to repair the damage of BBB and then prevent the leakage of SL1344 from the brain to the blood circulation. The repaired BBB could also effectively reduce the entry of macrophages and neutrophils into the brain, and significantly reverse the microglia activation induced by SL1344. More importantly, exogenous GSH was proved to reduce mouse brain cell apoptosis by inhibiting the activation of caspase-8 followed by caspase-3, and reversing the up-regulation of ICAD and PARP-1 caused by SL1344.
Collapse
Affiliation(s)
- Huimin Guo
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China
| | - Wei Jin
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China
| | - Keanqi Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China
| | - Shijia Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China
| | - Shuying Mao
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China
| | - Zhihao Zhou
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China.
| | - Yugen Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, 210000, Nanjing, P.R. China.
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, 210009, Nanjing, P.R. China.
| |
Collapse
|
4
|
Tempol differently affects cellular redox changes and antioxidant enzymes in various lung-related cells. Sci Rep 2021; 11:14869. [PMID: 34290305 PMCID: PMC8295274 DOI: 10.1038/s41598-021-94340-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023] Open
Abstract
Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a potential redox agent in cells. The present study investigated changes in cellular reactive oxygen species (ROS) and glutathione (GSH) levels and in antioxidant enzymes, in Tempol-treated Calu-6 and A549 lung cancer cells, normal lung WI-38 VA-13 cells, and primary pulmonary fibroblasts. Results demonstrated that Tempol (0.5–4 mM) either increased or decreased general ROS levels in lung cancer and normal cells at 48 h and specifically increased O2•− levels in these cells. In addition, Tempol differentially altered the expression and activity of antioxidant enzymes such as superoxide dismutase, catalase, and thioredoxin reductase1 (TrxR1) in A549, Calu-6, and WI-38 VA-13 cells. In particular, Tempol treatment increased TrxR1 protein levels in these cells. Tempol at 1 mM inhibited the growth of lung cancer and normal cells by about 50% at 48 h but also significantly induced cell death, as evidenced by annexin V-positive cells. Furthermore, down-regulation of TrxR1 by siRNA had some effect on ROS levels as well as cell growth inhibition and death in Tempol-treated or -untreated lung cells. In addition, some doses of Tempol significantly increased the numbers of GSH-depleted cells in both cancer cells and normal cells at 48 h. In conclusion, Tempol differentially increased or decreased levels of ROS and various antioxidant enzymes in lung cancer and normal cells, and induced growth inhibition and death in all lung cells along with an increase in O2•− levels and GSH depletion.
Collapse
|
5
|
Liu Y, Liang Y, Zheng B, Chu L, Ma D, Wang H, Chu X, Zhang J. Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic Injury: Involvement of Suppression in Oxidative Stress and Inflammation Through Activation of Nrf2 Signaling Pathway in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1921-1931. [PMID: 32546959 PMCID: PMC7245440 DOI: 10.2147/dddt.s247947] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Purpose Arsenic trioxide (ATO) has been shown to induce hepatic injury. Crocetin is a primary constituent of saffron, which has been verified to have antioxidant and anti-inflammatory effects. In the current experiment, we evaluated the efficacy of crocetin against ATO-induced hepatic injury and explored the potential molecular mechanisms in rats. Methods Rats were pretreated with 25 or 50 mg/kg crocetin 6 h prior to treating with 5 mg/kg ATO to induce hepatic injury daily for 7 days. Results Treatment with crocetin attenuated ATO-induced body weight loss, decreases in food and water consumption, and improved ATO-induced hepatic pathological damage. Crocetin significantly inhibited ATO-induced alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) increases. Crocetin prevented ATO-induced liver malondialdehyde (MDA) and reactive oxygen species (ROS) levels. Crocetin abrogated the ATO-induced decrease of catalase (CAT) and superoxide dismutase (SOD) activity. Crocetin was found to significantly restore the protein levels of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor-alpha (TNF-α). Furthermore, crocetin promoted the expression of nuclear factor erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NADP(H): quinone oxidoreductase 1 (NQO1). Conclusion These findings suggest that crocetin ameliorates ATO-induced hepatic injury in rats. In addition, the effect of crocetin might be related to its role in antioxidant stress, as an anti-inflammatory agent, and in regulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yanshuang Liu
- Department of Diagnostics, School of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Yingran Liang
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Bin Zheng
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Li Chu
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Donglai Ma
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Hongfang Wang
- Department of Pharmaceutics, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Jianping Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, People's Republic of China.,Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| |
Collapse
|
6
|
Liu Z, Wang Q, Wang H, Su W, Dong S. A FRET Based Two-Photon Fluorescent Probe for Visualizing Mitochondrial Thiols of Living Cells and Tissues. SENSORS 2020; 20:s20061746. [PMID: 32245186 PMCID: PMC7147317 DOI: 10.3390/s20061746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023]
Abstract
Glutathione (GSH) is the main component of the mitochondrial thiol pool and plays key roles in the biological processes. Many evidences have suggested that cysteine and homocysteine also exist in mitochondria and are interrelated with GSH in biological systems. The fluctuation of the levels of mitochondrial thiols has been linked to many diseases and cells’ dysfunction. Therefore, the monitoring of mitochondrial thiol status is of great significance for clinical studies. We report here a novel fluorescence resonance energy transfer based two-photon probe MT-1 for mitochondrial thiols detection. MT-1 was constructed by integrating the naphthalimide moiety (donor) and rhodamine B (accepter and targeting group) through a newly designed linker. MT-1 shows a fast response, high selectivity, and sensitivity to thiols, as well as a low limit of detection. The two-photon property of MT-1 allows the direct visualization of thiols in live cells and tissues by two-photon microscopy. MT-1 can serve as an effective tool to unravel the diverse biological functions of mitochondrial thiols in living systems.
Collapse
Affiliation(s)
- Zhengkun Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
| | - Qianqian Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
| | - Hao Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
| | - Wenting Su
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
| | - Shouliang Dong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- Correspondence: ; Tel.: +86-931-891-2428
| |
Collapse
|
7
|
Liu Z, Wang Q, Wang H, Su W, Dong S. A chloroacetate based ratiometric fluorescent probe for cysteine detection in biosystems. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Zhao Y, Su X, Gao Y, Yin H, Wang L, Qiao R, Wang S. Exposure of low-concentration arsenic-initiated inflammation and autophagy in rat lungs. J Biochem Mol Toxicol 2019; 33:e22334. [PMID: 30958909 DOI: 10.1002/jbt.22334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/20/2019] [Accepted: 03/15/2019] [Indexed: 02/02/2023]
Abstract
Chronic arsenic exposure through water intake is a worldwide issue, which has caused many diseases. Lungs are the first target organ of arsenic and lung inflammation, autophagy, and even the onset of tumors can be induced by arsenic exposure. Here, we tested the outcome of low-concentration arsenic exposure in rat lungs. Tissue changes, inflammation, autophagy, and other physiological responses were observed in this study. Results showed that low-concentration exposure of arsenite through water intake could initiate autophagy and inflammation in lungs but high concentration exposure produced a weak autophagy response and accentuated inflammation with the possibility of a chronic inflammation environment emerging followed by tumorigenesis.
Collapse
Affiliation(s)
- Yuhang Zhao
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xin Su
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Haijing Yin
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Li Wang
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Rui Qiao
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
9
|
A candidate for lung cancer treatment: arsenic trioxide. Clin Transl Oncol 2019; 21:1115-1126. [PMID: 30756240 DOI: 10.1007/s12094-019-02054-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Arsenic trioxide (ATO), a highly effective drug in treating acute promyelocytic leukemia with low toxicity, demonstrates a significant effect on lung cancer. The anti-cancer mechanisms of ATO include inhibition of cancer stem-like cells, induction of apoptosis, anti-angiogenesis, sensitization of chemotherapy and radiotherapy, anti-cancer effects of hypoxia, and immunoregulation properties. In addition, some studies have reported that different lung cancers respond differently to ATO. It was concluded on numerous studies that the rational combination of administration and encapsulation of ATO have promising potentials in increasing drug efficacy and decreasing adverse drug effects. We reviewed the efficacy of ATO in the treatment of lung cancer in recent years to provide some views for further study.
Collapse
|
10
|
Park WH, Han BR, Park HK, Kim SZ. Arsenic trioxide induces growth inhibition and death in human pulmonary artery smooth muscle cells accompanied by mitochondrial O2•- increase and GSH depletion. ENVIRONMENTAL TOXICOLOGY 2018; 33:833-840. [PMID: 29708299 DOI: 10.1002/tox.22569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Arsenic trioxide (ATO; As2 O3 ) induces cell death in various cells via oxidative stress. Expose to chronic arsenic is involved in the development of vascular diseases. However, little is known about the cytotoxic effects of ATO on human normal vascular smooth muscle cells (VSMCs). Thus, in this study, we investigated the effects of ATO on cell growth and death in human pulmonary artery smooth muscle (HPASM) cells in relation to reactive oxygen species (ROS) and glutathione (GSH) levels. ATO treatment decreased the growth of HPASM cells with an IC50 of ∼30-50 μM at 24 h, and ATO induced HPASM cell death via apoptosis or necrosis dependent on the doses of it at this time. Treatment with 50 μM ATO did not increase ROS levels at the early time points, but it significantly increased mitochondrial O2•- levels at 24 h. ATO also induced GSH depletion in HPASM cells. N-acetyl cysteine (NAC; a well-known antioxidant) did not significantly affect apoptotic cell death, ROS levels, or GSH depletion in ATO-treated HPASM cells. However, l-buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) intensified mitochondrial O2•- levels in ATO-treated HPASM cells, and significantly increased cell death and GSH depletion in these cells as well. In summary, we provided the first evidence that ATO inhibited the growth of HPASM cells, and induced apoptotic and/or necrotic cell death in these cells, accompanied by increases in mitochondrial O2•- level and GSH depletion.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea
| | - Bo Ran Han
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea
| | - Hyun Kyung Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea
| |
Collapse
|
11
|
Khanehzar A, Fraire JC, Xi M, Feizpour A, Xu F, Wu L, Coronado EA, Reinhard BM. Nanoparticle-cell interactions induced apoptosis: a case study with nanoconjugated epidermal growth factor. NANOSCALE 2018; 10:6712-6723. [PMID: 29589623 PMCID: PMC6035871 DOI: 10.1039/c8nr01106k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In addition to the intrinsic toxicity associated with the chemical composition of nanoparticles (NP) and their ligands, biofunctionalized NP can perturb specific cellular processes through NP-cell interactions and induce programmed cell death (apoptosis). In the case of the epidermal growth factor (EGF), nanoconjugation has been shown to enhance the apoptotic efficacy of the ligand, but the critical aspects of the underlying mechanism and its dependence on the NP morphology remain unclear. In this manuscript we characterize the apoptotic efficacy of nanoconjugated EGF as a function of NP size (with sphere diameters in the range 20-80 nm), aspect ratio (A.R., in the range of 4.5 to 8.6), and EGF surface loading in EGFR overexpressing MDA-MB-468 cells. We demonstrate a significant size and morphology dependence in this relatively narrow parameter space with spherical NP with a diameter of approx. 80 nm being much more efficient in inducing apoptosis than smaller spherical NP or rod-shaped NP with comparable EGF loading. The nanoconjugated EGF is found to trigger an EGFR-dependent increase in cytoplasmic reactive oxygen species (ROS) levels but no indications of increased mitochondrial ROS levels or mitochondrial membrane damage are detected at early time points of the apoptosis induction. The increase in cytoplasmic ROS is accompanied by a perturbation of the intracellular glutathione homeostasis, which represents an important check-point for NP-EGF mediated apoptosis. Abrogation of the oxidative stress through the inhibition of EGFR signaling by the EGFR inhibitor AG1478 or addition of antioxidants N-acetyl cysteine (NAC) or tempol, but not trolox, successfully suppressed the apoptotic effect of nanoconjugated EGF. A model to account for the observed morphology dependence of EGF nanoconjugation enhanced apoptosis and the underlying NP-cell interactions is discussed.
Collapse
Affiliation(s)
- Ali Khanehzar
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chandel A, Das KK, Bachhawat AK. Glutathione depletion activates the yeast vacuolar transient receptor potential channel, Yvc1p, by reversible glutathionylation of specific cysteines. Mol Biol Cell 2016; 27:3913-3925. [PMID: 27708136 PMCID: PMC5170613 DOI: 10.1091/mbc.e16-05-0281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 11/12/2022] Open
Abstract
Glutathione depletion leads to calcium influx in yeast cells via plasma membrane Cch1p and the vacuolar Yvc1p channels. Yvc1p, a yeast vacuolar transient receptor potential channel, is activated by glutathionylation carried out by the glutathione S-transferase Gtt1p, and this mechanism is reversible with deglutathionylation being mediated by the thioredoxin Trx2p. Glutathione depletion and calcium influx into the cytoplasm are two hallmarks of apoptosis. We have been investigating how glutathione depletion leads to apoptosis in yeast. We show here that glutathione depletion in yeast leads to the activation of two cytoplasmically inward-facing channels: the plasma membrane, Cch1p, and the vacuolar calcium channel, Yvc1p. Deletion of these channels partially rescues cells from glutathione depletion–induced cell death. Subsequent investigations on the Yvc1p channel, a homologue of the mammalian TRP channels, revealed that the channel is activated by glutathionylation. Yvc1p has nine cysteine residues, of which eight are located in the cytoplasmic regions and one on the transmembrane domain. We show that three of these cysteines, Cys-17, Cys-79, and Cys-191, are specifically glutathionylated. Mutation of these cysteines to alanine leads to a loss in glutathionylation and a concomitant loss in calcium channel activity. We further investigated the mechanism of glutathionylation and demonstrate a role for the yeast glutathione S-transferase Gtt1p in glutathionylation. Yvc1p is also deglutathionylated, and this was found to be mediated by the yeast thioredoxin, Trx2p. A model for redox activation and deactivation of the yeast Yvc1p channel is presented.
Collapse
Affiliation(s)
- Avinash Chandel
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali 140306, Punjab, India
| | - Krishna K Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali 140306, Punjab, India
| | - Anand K Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali 140306, Punjab, India
| |
Collapse
|
13
|
Zheng CY, Lam SK, Li YY, Ho JCM. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int J Oncol 2015; 46:1067-78. [PMID: 25572414 DOI: 10.3892/ijo.2015.2826] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Arsenic trioxide (ATO) has demonstrated anticancer activity in different malignancies, especially acute promyelocytic leukemia, with a wide array of putative mechanisms. In this study, we aimed to elucidate the activity and mechanisms of ATO in small cell lung cancer (SCLC). A panel of SCLC cell lines (H841, DMS79, H526, H69 and H187) was employed to demonstrate the activity of ATO. Cell viability, apoptosis and mitochondrial membrane depolarization were assessed. Western blotting was performed to determine the alteration of pro-apoptotic and anti-apoptotic mediators. Reactive oxygen species (ROS) (hydrogen peroxide and superoxide) and intracellular glutathione (GSH) were measured. Antioxidants, N-acetyl-L-cysteine (NAC) and butylated hydroxyanisole (BHA), were applied to restore GSH content and reduce production of ROS. All SCLC cell lines were relatively sensitive to ATO with IC50 values below 10 µM. ATO induced cell death mainly through apoptosis in H841 cells in a dose-dependent manner. Hydrogen peroxide was the major ROS in SCLC cells induced by ATO. Along with GSH depletion and Bcl-2 downregulation, mitochondrial membrane permeabilization was enhanced, followed by release of AIF and SMAC from mitochondria to initiate different cell death pathways. NAC reversed cell death and molecular changes induced by ATO via restoring GSH and reducing ROS content. BHA inhibited hydrogen peroxide production completely and partially restored GSH content accounting for partial reversal of cell inhibition and mitochondrial dysfunction. Nonetheless, ATO reduced both reduced and oxidized form of thioredoxin 1 (Trx1) with no effect on Trx1 redox potential. ATO led to cell death in SCLC mainly through mitochondrial dysfunction, resulting from altered cellular redox homeostasis, namely, hydrogen peroxide generation, GSH depletion and Trx1 downregulation.
Collapse
Affiliation(s)
- Chun-Yan Zheng
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Yuan-Yuan Li
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| |
Collapse
|
14
|
Jiang X, Chen C, Zhao W, Zhang Z. Sodium arsenite and arsenic trioxide differently affect the oxidative stress, genotoxicity and apoptosis in A549 cells: an implication for the paradoxical mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:891-902. [PMID: 24004876 DOI: 10.1016/j.etap.2013.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 05/12/2023]
Abstract
Although arsenic toxicity greatly depends on its chemical forms, few studies have taken into account the paradoxical phenomenon which is manifested by that sodium arsenite (NaAsO₂) acts as a potent carcinogen but arsenic trioxide (As₂O₃) serves as an effective therapeutic agent. In this study, we compared the in vitro effects of NaAsO₂ and As₂O₃ on cell viability, colony formation, cell cycle progression, apoptosis, genotoxicity and oxidative stress in human lung adenocarcinoma A549 cells. Our results demonstrated that both NaAsO₂ and As₂O₃ caused oxidative stress, genotoxicity, cytotoxicity, cell cycle arrest as well as apoptosis, while As₂O₃ induced higher production of reactive oxygen species (ROS) with a more remarkable decrease in superoxide dismutase (SOD) activities and intracellular levels of glutathione (GSH) than NaAsO₂. Moreover, the degree of DNA damage, chromosomal breakage, cell cycle arrest and apoptosis in As₂O₃-treated cells were more severe than those in NaAsO₂-treated cells. These findings suggest that differential effects and mechanisms of NaAsO₂ and As₂O₃ may responsible for the paradoxical effects of arsenic on the carcinogenesis and anticancer function.
Collapse
Affiliation(s)
- Xuejun Jiang
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu 610041, PR China
| | | | | | | |
Collapse
|
15
|
Abstract
SIGNIFICANCE Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). RECENT ADVANCES There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. CRITICAL ISSUES In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. FUTURE DIRECTIONS The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | |
Collapse
|
16
|
Fröhlich E, Meindl C, Höfler A, Leitinger G, Roblegg E. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes. Nanotoxicology 2012; 7:1211-24. [PMID: 22963691 DOI: 10.3109/17435390.2012.729274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of carbon nanotubes (CNTs) could improve medical diagnosis and treatment provided they show no adverse effects in the organism. In this study, short CNTs with different diameters with and without carboxyl surface functionalisation were assessed. After physicochemical characterisation, cytotoxicity in phagocytic and non-phagocytic cells was determined. The role of oxidative stress was evaluated according to the intracellular glutathione levels and protection by N-acetyl cysteine (NAC). In addition to this, the mode of cell death was also investigated. CNTs <8 nm acted more cytotoxic than CNTs ≥20 nm and carboxylated CNTs more than pristine CNTs. Protection by NAC was maximal for large diameter pristine CNTs and minimal for small diameter carboxylated CNTs. Thin (<8 nm) CNTs acted mainly by disruption of membrane integrity and CNTs with larger diameter induced mainly apoptotic changes. It is concluded that cytotoxicity of small carboxylated CNTs occurs by necrosis and cannot be prevented by antioxidants.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz , Graz , Austria
| | | | | | | | | |
Collapse
|
17
|
Zhang X, Jia S, Yang S, Yang Y, Yang T, Yang Y. Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression. J Cell Biochem 2012; 113:3528-35. [PMID: 22730174 DOI: 10.1002/jcb.24230] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Shuzhao Jia
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Shumeng Yang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yue Yang
- Cancer Research Institute, Harbin Medical University, Harbin 150081, China
| | - Tuoyun Yang
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Cancer Research Institute, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
18
|
Khan NM, Poduval TB. Bilirubin augments radiation injury and leads to increased infection and mortality in mice: molecular mechanisms. Free Radic Biol Med 2012; 53:1152-69. [PMID: 22819982 DOI: 10.1016/j.freeradbiomed.2012.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/08/2012] [Indexed: 01/15/2023]
Abstract
Our earlier results demonstrated that clinically relevant concentrations of unconjugated bilirubin (UCB) possessed immunotoxic effects. Whole-body irradiation (WBI) with 1 to 6 Gy leads to acute radiation syndrome, immunosuppression, and makes the host susceptible to infection. Since hyperbilirubinemia has been shown to be associated with several types of cancer, the present studies were undertaken to evaluate the radiomodifying effects of UCB in radiation-exposed mice having elevated levels of UCB. Pretreatment of splenic lymphocytes with UCB (1-50 μM at UCB/BSA ratio <1) augmented radiation-induced DNA strand breaks, MMP loss, calcium release, and apoptosis. Combination treatment of mice with UCB (50mg/kg bw) followed by WBI (2 Gy) 0.5h later, resulted in significantly increased splenic atrophy, bone marrow aplasia, decreased counts of peritoneal exudate cells, and different splenocyte subsets such as CD3+ T, CD4+ T, CD8+ T, CD19+ B, and CD14+ macrophages as compared to either UCB or WBI treatment. Hematological studies showed that WBI-induced lymphopenia, thrombocytopenia, and neutropenia were further aggravated in the combination treatment group. UCB pretreatment of mice potentiated WBI-induced apoptosis and decreased WBI-induced loss of functional response of various immune cells leading to augmentation of immunosuppression and infection susceptibility caused by WBI. In an acute bacterial peritonitis model, UCB pretreatment of mice significantly increased WBI-induced proinflammatory cytokines, nitric oxide, and peritoneal bacterial load resulting in increased infection and death. Studies using the pharmacological inhibitor of p38MAPK demonstrated the involvement of p38MAPK activation in the inflammatory cascade of peritonitis. These findings should prove useful in understanding the potential risk to hyperbilirubinemic patients during radiotherapy and victims of acute radiation exposure in the course of radiation accidents.
Collapse
Affiliation(s)
- Nazir M Khan
- Immunology and Hyperthermia Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | |
Collapse
|
19
|
Fang Y, Hu XH, Jia ZG, Xu MH, Guo ZY, Gao FH. Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas J Dermatol 2012; 53:172-80. [PMID: 22734867 DOI: 10.1111/j.1440-0960.2012.00912.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVES Free radicals and reactive oxygen species (ROS), which are generated by UV irradiation, may induce an irreversible growth arrest similar to senescence. Tiron, 4,5-dihydroxy-1,3-benzene disulfonic acid, is a widely used antioxidant to rescue ROS-evoked cell death. The aim of the article was to explore the effects of tiron on skin photoaging and associated mechanisms. METHODS The effects of tiron on cell proliferation were determined using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide. Senescent cells were determined by morphology and senescence-associated β-galactosidase activity analysis. Intracellular hydrogen peroxide, superoxide anion and glutathione concentration were analysed by a fluorescent probe. The concomitant changes of protein expression were analysed with Western blot. RESULTS Human dermal fibroblasts were induced to premature senescence by sub-cytotoxic doses of irradiated UVB. Strong senescence-associated β-galactosidase activity and increased intracellular superoxide anion were observed in human dermal fibroblasts irradiated by UVB. Tiron blocks UVB-induced glutathione depletion and increase of superoxide anion and protects against UVB-induced senescence-like characteristics in human dermal fibroblasts. Compared with normal fibroblasts, UVB-irradiated human dermal fibroblasts showed a higher ratio of active (hypophosphorylated) to inactive (phosphorylated) forms of Rb and p38, upregulation of p53 or p16 and c-Myc and insulin-like growth factor 1 (IGF-1) downregulation. After treatment with tiron, p53, p16 c-Myc and IGF-1 as well as phosphorylation Rb and p38 could partially recover. CONCLUSION These results indicate that tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts via the inhibition of production of superoxide anion and glutathione depletion, and modulation of related senescence proteins.
Collapse
Affiliation(s)
- Yong Fang
- No.3 People's Hospital/Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1767-77. [PMID: 22732297 DOI: 10.1016/j.bbamcr.2012.06.019] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/24/2012] [Accepted: 06/13/2012] [Indexed: 01/01/2023]
Abstract
Apoptosis is a highly organized form of cell death that is important for tissue homeostasis, organ development and senescence. To date, the extrinsic (death receptor mediated) and intrinsic (mitochondria derived) apoptotic pathways have been characterized in mammalian cells. Reduced glutathione, is the most prevalent cellular thiol that plays an essential role in preserving a reduced intracellular environment. glutathione protection of cellular macromolecules like deoxyribose nucleic acid proteins and lipids against oxidizing, environmental and cytotoxic agents, underscores its central anti-apoptotic function. Reactive oxygen and nitrogen species can oxidize cellular glutathione or induce its extracellular export leading to the loss of intracellular redox homeostasis and activation of the apoptotic signaling cascade. Recent evidence uncovered a novel role for glutathione involvement in apoptotic signaling pathways wherein post-translational S-glutathiolation of protein redox active cysteines is implicated in the potentiation of apoptosis. In the present review we focus on the key aspects of glutathione redox mechanisms associated with apoptotic signaling that includes: (a) changes in cellular glutathione redox homeostasis through glutathione oxidation or GSH transport in relation to the initiation or propagation of the apoptotic cascade, and (b) evidence for S-glutathiolation in protein modulation and apoptotic initiation.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
21
|
YOU BORA, PARK WOOHYUN. Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol Rep 2012; 28:749-57. [DOI: 10.3892/or.2012.1852] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/18/2012] [Indexed: 11/05/2022] Open
|
22
|
Sertel S, Tome M, Briehl MM, Bauer J, Hock K, Plinkert PK, Efferth T. Factors determining sensitivity and resistance of tumor cells to arsenic trioxide. PLoS One 2012; 7:e35584. [PMID: 22590507 PMCID: PMC3349672 DOI: 10.1371/journal.pone.0035584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022] Open
Abstract
Previously, arsenic trioxide showed impressive regression rates of acute promyelocytic leukemia. Here, we investigated molecular determinants of sensitivity and resistance of cell lines of different tumor types towards arsenic trioxide. Arsenic trioxide was the most cytotoxic compound among 8 arsenicals investigated in the NCI cell line panel. We correlated transcriptome-wide microarray-based mRNA expression to the IC(50) values for arsenic trioxide by bioinformatic approaches (COMPARE and hierarchical cluster analyses, Ingenuity signaling pathway analysis). Among the identified pathways were signaling routes for p53, integrin-linked kinase, and actin cytoskeleton. Genes from these pathways significantly predicted cellular response to arsenic trioxide. Then, we analyzed whether classical drug resistance factors may also play a role for arsenic trioxide. Cell lines transfected with cDNAs for catalase, thioredoxin, or the anti-apoptotic bcl-2 gene were more resistant to arsenic trioxide than mock vector transfected cells. Multidrug-resistant cells overexpressing the MDR1, MRP1 or BCRP genes were not cross-resistant to arsenic trioxide. Our approach revealed that response of tumor cells towards arsenic trioxide is multi-factorial.
Collapse
Affiliation(s)
- Serkan Sertel
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
- Pharmaceutical Biology (C015), German Cancer Research Center, Heidelberg, Germany
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Biology, University of Mainz, Mainz, Germany
| | - Margaret Tome
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America
| | - Margaret M. Briehl
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America
| | - Judith Bauer
- Pharmaceutical Biology (C015), German Cancer Research Center, Heidelberg, Germany
| | - Kai Hock
- Pharmaceutical Biology (C015), German Cancer Research Center, Heidelberg, Germany
| | - Peter K. Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Efferth
- Pharmaceutical Biology (C015), German Cancer Research Center, Heidelberg, Germany
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Biology, University of Mainz, Mainz, Germany
| |
Collapse
|
23
|
Zou X, Feng Z, Li Y, Wang Y, Wertz K, Weber P, Fu Y, Liu J. Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: activation of Nrf2 and JNK-p62/SQSTM1 pathways. J Nutr Biochem 2011; 23:994-1006. [PMID: 21937211 DOI: 10.1016/j.jnutbio.2011.05.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 05/15/2011] [Accepted: 05/16/2011] [Indexed: 12/30/2022]
Abstract
The Nrf2-Keap1 pathway is believed to be a critical regulator of the phase II defense system against oxidative stress. By activation of Nrf2, cytoprotective genes such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase (NQO-1) and γ-glutamyl-cysteine ligase (GCL) are induced. GCL-induced glutathione (GSH) production is believed to affect redox signaling, cell proliferation and death. We here report that tert-butyl hydroperoxide (t-BHP)-induced GSH reduction led to mitochondrial membrane potential loss and apoptosis in cultured human retinal pigment epithelial cells from the ARPE-19 cell line. Hydroxytyrosol (HT), a natural phytochemical from olive leaves and oil, was found to induce phase II enzymes and GSH, thus protect t-BHP-induced mitochondrial dysfunction and apoptosis. Depletion of GSH by buthionine-[S,R]-sulfoximine enhanced t-BHP toxicity and abolished HT protection. Overexpression of Nrf2 increased GSH content and efficiently protected t-BHP-induced mitochondrial membrane potential loss. Meanwhile, HT-induced GSH enhancement and induction of Nrf2 target gene (GCLc, GCLm, HO-1, NQO-1) messenger RNA (mRNA) were inhibited by Nrf2 knockdown, suggesting that HT increases GSH through Nrf2 activation. In addition, we found that HT was able to activate the PI3/Akt and mTOR/p70S6-kinase pathways, both of which contribute to survival signaling in stressed cells. However, the effect of HT was not inhibited by the PI3K inhibitor LY294002. Rather, c-Jun N-terminal kinase (JNK) activation was found to induce p62/SQSTM1 expression, which is involved in Nrf2 activation. Our study demonstrates that Nrf2 activation induced by the JNK pathway plays an essential role in the mechanism behind HT's strengthening of the antiapoptotic actions of the endogenous antioxidant system.
Collapse
Affiliation(s)
- Xuan Zou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Khan NM, Poduval TB. Immunomodulatory and immunotoxic effects of bilirubin: molecular mechanisms. J Leukoc Biol 2011; 90:997-1015. [PMID: 21807743 DOI: 10.1189/jlb.0211070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The immunomodulatory and immunotoxic effects of purified UCB have not been evaluated previously at clinically relevant UCB concentrations and UCB:BSA ratios. To delineate the molecular mechanism of UCB-induced immunomodulation, immune cells were exposed to clinically relevant concentrations of UCB. It inhibited LPS-induced B cell proliferation and cytokine production from splenic macrophages. UCB (≥25 μM) was toxic to unfractionated splenocytes, splenic T cells, B cells, macrophages, LPS-stimulated CD19(+) B cells, human PBMCs, and RBCs. Purified UCB also was found to be toxic to splenocytes and human PBMCs. UCB induced necrosis and apoptosis in splenocytes. UCB activated the extrinsic and intrinsic pathways of apoptosis, as reflected by the markers, such as CD95, caspase-8, Bax, MMP, cytoplasmic Ca(+2), caspase-3, and DNA fragmentation. UCB depleted GSH and activated p38MAPK. NAC, caspase inhibitors, and p38MAPK inhibitor attenuated the UCB-induced apoptosis. In vivo administration of ≥25 mg/kbw UCB induced atrophy of spleen, depletion of bone marrow cells, and leukopenia and decreased lymphocyte count and the T and B cell response to mitogens. UCB administration to mice led to induction of oxidative stress, activation of p38MAPK, and cell death in splenocytes. These parameters were attenuated by the injection of NAC and the p38MAPK inhibitor. Our results demonstrate for the first time that clinically relevant concentrations of UCB induce apoptosis and necrosis in immune cells by depleting cellular GSH. These findings should prove useful in understanding the immunosuppression associated with hyperbilirubinemia.
Collapse
Affiliation(s)
- Nazir M Khan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
25
|
Liu SY, Wen CY, Lee YJ, Lee TC. XPC silencing sensitizes glioma cells to arsenic trioxide via increased oxidative damage. Toxicol Sci 2010; 116:183-93. [PMID: 20403967 DOI: 10.1093/toxsci/kfq113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arsenic exerts its cytotoxicity via the generation of reactive oxygen species and inhibition of DNA repair. How arsenic disturbs oxidative DNA damage repair is, however, unclear. We found that arsenic trioxide (ATO), like ultraviolet (UV) irradiation, induced the expression of xeroderma pigmentosum group C (XPC) but not of xeroderma pigmentosum A in a human glioma cell line, U87. To explore the role of XPC in the toxic effects of ATO, small interfering RNA was used to silence XPC (siXPC) in U87 cells. siXPC cells were more susceptible to UV irradiation and ATO-induced cell death than control cells. Increased siXPC cell death induced by ATO was accompanied by increased senescence and autophagy. Because increased DNA strand breaks in siXPC cells were observed only when cells were concomitantly treated with ATO and DNA repair inhibitors, XPC silencing apparently did not interfere with repair of ATO-induced DNA damage. Although intracellular ROS levels were not significantly enhanced in siXPC cells, ATO treatment did result in increased 8-hydroxy-2'-deoxyguanosine and hyperoxidized peroxiredoxin. Enhanced superoxide production and autophagy by ATO in siXPC cells were suppressed by co-incubation with N-acetylcysteine (NAC). Furthermore, XPC silencing caused decreased glutathione levels and increased catalase and Mn-superoxide dismutase activities. Increased catalase activity in siXPC cells was suppressed by ATO treatment. XPC silencing also enhanced reporter activity of activator protein-1, whereas enhanced activity was suppressed by NAC. Taken together, our results indicate that XPC silencing causes increased ATO susceptibility by disturbing redox homeostasis rather than reducing DNA repair.
Collapse
Affiliation(s)
- Shin-Yi Liu
- Department of Biomedical Image and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
26
|
Abstract
Apoptosis is a conserved homeostatic process critical for organ and tissue morphogenesis, development, and senescence. This form of programmed cell death also participates in the etiology of several human diseases including cancer, neurodegenerative, and autoimmune disorders. Although the signaling pathways leading to the progression of apoptosis have been extensively characterized, recent studies highlight the regulatory role of changes in the intracellular milieu (permissive apoptotic environment) in the efficient activation of the cell death machinery. In particular, glutathione (GSH) depletion is a common feature of apoptotic cell death triggered by a wide variety of stimuli including activation of death receptors, stress, environmental agents, and cytotoxic drugs. Although initial studies suggested that GSH depletion was only a byproduct of oxidative stress generated during cell death, recent discoveries suggest that GSH depletion and post-translational modifications of proteins through glutathionylation are critical regulators of apoptosis. Here, we reformulate these emerging paradigms into our current understanding of cell death mechanisms.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | |
Collapse
|
27
|
Jo WJ, Loguinov A, Wintz H, Chang M, Smith AH, Kalman D, Zhang L, Smith MT, Vulpe CD. Comparative functional genomic analysis identifies distinct and overlapping sets of genes required for resistance to monomethylarsonous acid (MMAIII) and arsenite (AsIII) in yeast. Toxicol Sci 2009; 111:424-36. [PMID: 19635755 DOI: 10.1093/toxsci/kfp162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arsenic is a human toxin and carcinogen commonly found as a contaminant in drinking water. Arsenite (As(III)) is the most toxic inorganic form, but recent evidence indicates that the metabolite monomethylarsonous acid (MMA(III)) is even more toxic. We have used a chemical genomics approach to identify the genes that modulate the cellular toxicity of MMA(III) and As(III) in the yeast Saccharomyces cerevisiae. Functional profiling using homozygous deletion mutants provided evidence of the requirement of highly conserved biological processes in the response against both arsenicals including tubulin folding, DNA double-strand break repair, and chromatin modification. At the equitoxic doses of 150 microM MMA(III) and 300 microM As(III), genes related to glutathione metabolism were essential only for resistance to the former, suggesting a higher potency of MMA(III) to disrupt glutathione metabolism than As(III). Treatments with MMA(III) induced a significant increase in glutathione levels in the wild-type strain, which correlated to the requirement of genes from the sulfur and methionine metabolic pathways and was consistent with the induction of oxidative stress. Based on the relative sensitivity of deletion strains deficient in GSH metabolism and tubulin folding processes, oxidative stress appeared to be the primary mechanism of MMA(III) toxicity whereas secondary to tubulin disruption in the case of As(III). Many of the identified yeast genes have orthologs in humans that could potentially modulate arsenic toxicity in a similar manner as their yeast counterparts.
Collapse
Affiliation(s)
- William J Jo
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Arsenic trioxide inhibits hepatitis C virus RNA replication through modulation of the glutathione redox system and oxidative stress. J Virol 2008; 83:2338-48. [PMID: 19109388 DOI: 10.1128/jvi.01840-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arsenic trioxide (ATO), a therapeutic reagent used for the treatment of acute promyelocytic leukemia, has recently been reported to increase human immunodeficiency virus type 1 infectivity. However, in this study, we have demonstrated that replication of genome-length hepatitis C virus (HCV) RNA (O strain of genotype 1b) was notably inhibited by ATO at submicromolar concentrations without cell toxicity. RNA replication of HCV-JFH1 (genotype 2a) and the release of core protein into the culture supernatants were also inhibited by ATO after the HCV infection. To clarify the mechanism of the anti-HCV activity of ATO, we examined whether or not PML is associated with this anti-HCV activity, since PML is known to be a target of ATO. Interestingly, we observed the cytoplasmic translocation of PML after treatment with ATO. However, ATO still inhibited the HCV RNA replication even in the PML knockdown cells, suggesting that PML is dispensable for the anti-HCV activity of ATO. In contrast, we found that N-acetyl-cysteine, an antioxidant and glutathione precursor, completely and partially eliminated the anti-HCV activity of ATO after 24 h and 72 h of treatment, respectively. In this context, it is worth noting that we found an elevation of intracellular superoxide anion radical, but not hydrogen peroxide, and the depletion of intracellular glutathione in the ATO-treated cells. Taken together, these findings suggest that ATO inhibits the HCV RNA replication through modulation of the glutathione redox system and oxidative stress.
Collapse
|
29
|
Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat Res 2008; 674:3-22. [PMID: 19114126 DOI: 10.1016/j.mrgentox.2008.11.012] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 12/21/2022]
Abstract
Apoptosis is an evolutionary conserved homeostatic process involved in distinct physiological processes including organ and tissue morphogenesis, development and senescence. Its deregulation is also known to participate in the etiology of several human diseases including cancer, neurodegenerative and autoimmune disorders. Environmental stressors (cytotoxic agents, pollutants or toxicants) are well known to induce apoptotic cell death and to contribute to a variety of pathological conditions. Oxidative stress seems to be the central element in the regulation of the apoptotic pathways triggered by environmental stressors. In this work, we review the established mechanisms by which oxidative stress and environmental stressors regulate the apoptotic machinery with the aim to underscore the relevance of apoptosis as a component in environmental toxicity and human disease progression.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, P. O. Box 12233, 111. T.W. Alexander Drive, Research Triangle Park, NC 27709, United States.
| | | | | | | |
Collapse
|
30
|
De Vizcaya-Ruiz A, Barbier O, Ruiz-Ramos R, Cebrian ME. Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mutat Res 2008; 674:85-92. [PMID: 18984063 DOI: 10.1016/j.mrgentox.2008.09.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
Arsenic (As) is an ubiquitous element in the environment for which the main route of human exposure is through consumption of drinking water. Reactive oxygen species generation (ROS) associated with As exposure is known to play a fundamental role in the induction of adverse health effects and disease (cancer, diabetes, hypertension, and cardiovascular and neurological diseases). However, the precise mechanisms of oxidative stress and damage from As exposure are not fully understood and moreover the use of non-invasive methods of measuring ROS generation and oxidative damage footprints in humans is no easy task. Although As induces adverse health effects not all exposed individuals develop degenerative chronic diseases or even manifest adverse effects or symptoms, suggesting that genetic susceptibility is an important factor involved in the human response to As exposure. This mini-review summarizes the literature describing the molecular mechanisms affected by As, as well as the most used biomarkers of oxidative stress and damage in human populations. The most reported biomarkers of oxidative DNA damage are the urinary excretion of 8-OHdG and the comet assay in lymphocytes, and more recently DNA repair mechanism markers from the base and nuclear excision repair pathways (BER and NER). Genetic heterogeneity in the oxidative stress pathways involved in As metabolism are important causative factors of disease. Thus further refinement of human exposure assessment is needed to reinforce study design to evaluate exposure-response relationships and study gene-environment interactions. The use of microarray-based gene expression analysis can provide better insights of the underlying mechanisms involved in As-induced diseases and could help to identify target genes that can be modulated to prevent disease.
Collapse
Affiliation(s)
- Andrea De Vizcaya-Ruiz
- Sección Externa de Toxicología, Centro de Investigación y Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional 2508, México, D.F., 07360 Mexico
| | | | | | | |
Collapse
|