1
|
Kashchenko NI, Olennikov DN, Chirikova NK. Metabolites of Geum aleppicum and Sibbaldianthe bifurca: Diversity and α-Glucosidase Inhibitory Potential. Metabolites 2023; 13:689. [PMID: 37367847 DOI: 10.3390/metabo13060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
α-Glucosidase inhibitors are essential in the treatment of diabetes mellitus. Plant-derived drugs are promising sources of new compounds with glucosidase-inhibiting ability. The Geum aleppicum Jacq. and Sibbaldianthe bifurca (L.) Kurtto & T.Erikss. herbs are used in many traditional medical systems to treat diabetes. In this study, metabolites of the G. aleppicum and S. bifurca herbs in active growth, flowering, and fruiting stages were investigated using high-performance liquid chromatography with photodiode array and electrospray ionization triple quadrupole mass spectrometric detection (HPLC-PDA-ESI-tQ-MS/MS). In total, 29 compounds in G. aleppicum and 41 components in S. bifurca were identified including carbohydrates, organic acids, benzoic and ellagic acid derivatives, ellagitannins, flavonoids, and triterpenoids. Gemin A, miquelianin, niga-ichigoside F1, and 3,4-dihydroxybenzoic acid 4-O-glucoside were the dominant compounds in the G. aleppicum herb, while guaiaverin, miquelianin, tellimagrandin II2, casuarictin, and glucose were prevailing compounds in the S. bifurca herb. On the basis of HPLC activity-based profiling of the G. aleppicum herb extract, the most pronounced inhibition of α-glucosidase was observed for gemin A and quercetin-3-O-glucuronide. The latter compound and quercetin-3-O-arabinoside demonstrated maximal inhibition of α-glucosidase in the S. bifurca herb extract. The obtained results confirm the prospects of using these plant compounds as possible sources of hypoglycemic nutraceuticals.
Collapse
Affiliation(s)
- Nina I Kashchenko
- Laboratory of Biomedical Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh'yanovoy Street, 670047 Ulan-Ude, Russia
| | - Daniil N Olennikov
- Laboratory of Biomedical Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh'yanovoy Street, 670047 Ulan-Ude, Russia
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia
| |
Collapse
|
2
|
Amin SN, Sakr HI, El Gazzar WB, Shaltout SA, Ghaith HS, Elberry DA. Combined saline and vildagliptin induced M2 macrophage polarization in hepatic injury induced by acute kidney injury. PeerJ 2023; 11:e14724. [PMID: 36815993 PMCID: PMC9933746 DOI: 10.7717/peerj.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Acute kidney injury (AKI) is a prevalent medical condition accompanied by mutual affection of other organs, including the liver resulting in complicated multiorgan malfunction. Macrophages play a vital role during tissue injury and healing; they are categorized into "classically activated macrophages" (M1) and "alternatively activated macrophages" (M2). The present study investigated and compared the conventional fluid therapy vs Dipeptidyl peptidase 4 inhibitor (DPP-4i) vildagliptin on the liver injury induced by AKI and evaluated the possible molecular mechanisms. Thirty rats comprised five groups (n = 6 rats/group): control, AKI, AKI+saline (received 1.5 mL of normal saline subcutaneous injection), AKI+vildagliptin (treated with oral vildagliptin 10 mg/kg), AKI+saline+vildagliptin. AKI was induced by intramuscular (i.m) injection of 50% glycerol (5 ml/kg). At the end of the work, we collected serum and liver samples for measurements of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrotic factor-α (TNF-α), and interleukin-10 (IL-10). Liver samples were processed for assessment of inducible nitric oxide synthase (iNOS) as a marker for M1, arginase 1 (Arg-1) as an M2 marker, c-fos, c-Jun, mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and high-mobility-group-box1 (HMGB1) protein. The difference was insignificant regarding the relative expression of AP-1, c-Jun, c-fos, MAPK, and HMGB between the AKI+saline group and the AKI+Vildagliptin group. The difference between the same two groups concerning the hepatic content of the M1 marker (iNOS) and the M2 marker Arg-1 was insignificant. However, combined therapy produced more pronounced changes in these markers, as the difference in their relative expression between the AKI+saline+Vildagliptin group and both the AKI+saline group and the AKI+Vildagliptin group was significant. Accordingly, we suggest that the combined saline and vildagliptin hepatoprotective effect involves the downregulation of the MAPK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Shaimaa N. Amin
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt,Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Walaa B. El Gazzar
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sherif A. Shaltout
- Department of Pharmacology, Public health, and Clinical Skills, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Dalia A. Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
4
|
Zhang P, Wu C, Huang XH, Shen CL, Li L, Zhang W, Yao CZ. Aspirin suppresses TNF-α-induced MMP-9 expression via NF-κB and MAPK signaling pathways in RAW264.7 cells. Exp Ther Med 2017; 14:5597-5604. [PMID: 29285098 DOI: 10.3892/etm.2017.5252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Numerous studies have indicated that the expression of matrix metalloproteinase-9 (MMP-9) contributes to the atherosclerotic plaque hemorrhage and rupture. Aspirin, a non-steroidal anti-inflammation drug, has been known for its anti-platelet effect in the prevention of the vascular complications of atherosclerosis. The present study aimed to investigate the pharmacological effects of aspirin on tumor necrosis factor-α (TNF-α)-induced MMP-9 expression and the underlying molecular mechanisms in murine macrophage RAW264.7 cells. Western blot analysis indicated that the protein level of MMP-9 was reduced by aspirin in a dose-dependent manner. In addition, downregulation of MMP-9 mRNA and activity were detected in aspirin-treated cells using quantitative polymerase chain reaction and a gelatin zymography assay separately. It was also observed that aspirin has a suppressive effect on the activation of nuclear factor (NF)-κB and inhibits the phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases 1/2, p38 and c-Jun N-terminal kinase. Furthermore, subsequent to inhibition of the MAPK pathway by specific inhibitors (PD98059, SB203580 and SP600125), the expression of MMP-9 was reduced, indicating that the inhibitory effect of aspirin on MMP-9 in TNF-α-treated RAW264.7 cells may be, at least in part, through suppression of NF-κB activation and the MAPK pathway. These findings support the notion that aspirin has therapeutic potential application in the prevention and treatment of atherosclerosis disease.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Pharmacy, Chenjian Hospital of Hefei City, Hefei, Anhui 230041, P.R. China
| | - Chao Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiao-Hui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chen-Lin Shen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lin Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cheng-Zeng Yao
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| |
Collapse
|
5
|
Pimaric acid from Aralia cordata has an inhibitory effect on TNF-α-induced MMP-9 production and HASMC migration via down-regulated NF-κB and AP-1. Chem Biol Interact 2012; 199:112-9. [PMID: 22705379 DOI: 10.1016/j.cbi.2012.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/14/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022]
Abstract
Many studies have indicated that activation of matrix metalloproteinase (MMP)-9 and smooth muscle cell (SMC) migration are involved in neointimal formation and atherosclerosis. In this study, we revealed that pimaric acid (PiMA) purified from Aralia cordata had an inhibitory effect on MMP-9 production and migration of human aortic smooth muscle cells (HASMCs) induced by tumor necrosis factor (TNF)-α. Down-regulated MMP-9 mRNA transcription was detected in PiMA-treated cells using RT-PCR and the luciferase-tagged MMP-9 promoter assay. Results of an electrophoretic mobility shift assay indicated that PiMA-treated HASMCs showed decreased binding activity of nuclear factor (NF)-κB and activator protein-1 transcription factors. A Western-blot analysis using nuclear extract demonstrated that PiMA reduced the levels of NF-κB p65, c-Fos, p-c-Jun, Jun-D, and p-ATF2 proteins in the nucleus. In addition, TNF-α stimulated mitogen activated protein kinase (MAPK) containing extracellular signal regulated kinase 1 and 2, p38, and c-Jun N-terminal kinase was inhibited by PiMA. Using the Transwell system, we found that PiMA inhibited TNF-α stimulated HASMC migration/invasion in a dose-dependent manner. To confirm whether MAPK mediated MMP-9 expression, we used MAPK inhibitors including U0126, SB253580, and SP600125 and found that those inhibitors reduced MMP-9 expression and HASMC migration/invasion. These results suggest that PiMA has potent anti-atherosclerotic activity with inhibitory action on MMP-9 production and cell migration in TNF-α-induced HASMCs.
Collapse
|
6
|
Lu Y, Suh SJ, Kwak CH, Kwon KM, Seo CS, Li Y, Jin Y, Li X, Hwang SL, Kwon O, Chang YC, Park YG, Park SS, Son JK, Kim CH, Chang HW. Saucerneol F, a new lignan, inhibits iNOS expression via MAPKs, NF-κB and AP-1 inactivation in LPS-induced RAW264.7 cells. Int Immunopharmacol 2012; 12:175-81. [DOI: 10.1016/j.intimp.2011.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
|
7
|
Suh SJ, Kwak CH, Song KH, Kwon KM, Chung TW, Cho SH, Kim YK, Yoon HD, Lee YC, Kim DS, Park SJ, Na MK, Son JK, Chang HW, Kim CH. Triple Inhibitory Activity of Cliona celata Against TNF-α-Induced Matrix Metalloproteinase-9 Production Via Downregulated NF-κB and AP-1, Enzyme Activity, and Migration Potential. Inflammation 2011; 35:736-45. [DOI: 10.1007/s10753-011-9369-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Suh SJ, Ko HK, Song KH, Kim JR, Kwon KM, Chang YC, Lee YC, Kim DS, Park SJ, Yang JH, Son JK, Na MK, Chang HW, Kim CH. Ethylacetate fraction from Korean seaside starfish, Asterias amurensis, has an inhibitory effect on MMP-9 activity and expression and on migration behavior of TNF-α induced human aortic smooth muscle cells. Toxicol In Vitro 2011; 25:767-73. [DOI: 10.1016/j.tiv.2011.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 12/22/2010] [Accepted: 01/20/2011] [Indexed: 11/26/2022]
|
9
|
Yue P, Gao ZH, Xue X, Cui SX, Zhao CR, Yuan Y, Yin Z, Inagaki Y, Kokudo N, Tang W, Qu XJ. Des-γ-carboxyl prothrombin induces matrix metalloproteinase activity in hepatocellular carcinoma cells by involving the ERK1/2 MAPK signalling pathway. Eur J Cancer 2011; 47:1115-24. [PMID: 21349701 DOI: 10.1016/j.ejca.2011.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/18/2011] [Accepted: 01/26/2011] [Indexed: 12/22/2022]
Abstract
Des-γ-carboxy prothrombin (DCP), an aberrant prothrombin produced by hepatocellular carcinoma (HCC) cells, has been shown to be associated with the biological malignant potential of HCC. The aim of this study was to evaluate the effect of DCP on HCC cell growth and metastasis, and to explore the underlying molecular mechanisms. DCP significantly stimulated HCC cell growth, as measured by cell counting kit-8 assay. Transwell chamber assay showed that DCP increased HCC cell migration through reconstituted extracellular matrix (Matrigel). Gelatin zymography assay and Western blot analysis demonstrated that DCP increased the secretion and expression of matrix metalloproteinase (MMP)-2 and MMP-9 in the supernatant of cultured HCC cells and on tumour cell membranes. DCP was found to bind to the cell surface receptor Met, resulting in Met phosphorylation and subsequent activation of the epidermal growth factor receptor (EGFR). Western blot analysis demonstrated that DCP stimulated a sequential kinase phosphorylation cascade including ERK1/2, MEK1/2 and c-Raf, indicating activation of the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK1/2 MAPK) signalling pathway. Furthermore, blocking ERK1/2 MAPK activation with ERK1/2 inhibitor PD98059 essentially abolished the DCP-induced MMP-2 and MMP-9 activity, confirming the signalling pathway of DCP stimulation. Taken together, these results suggested that DCP stimulates HCC growth and promotes HCC metastasis by increasing the activity of MMP-2 and MMP-9 through activation of the ERK1/2 MAPK signalling pathway.
Collapse
Affiliation(s)
- Pan Yue
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Deoxypodophyllotoxin, flavolignan, from Anthriscus sylvestris Hoffm. inhibits migration and MMP-9 via MAPK pathways in TNF-α-induced HASMC. Vascul Pharmacol 2009; 51:13-20. [DOI: 10.1016/j.vph.2008.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 09/30/2008] [Accepted: 10/15/2008] [Indexed: 11/23/2022]
|