Mukherjee S, Manna S, Pal D, Mukherjee P, Panda CK. Sequential loss of cell cycle checkpoint control contributes to malignant transformation of murine embryonic fibroblasts induced by 20-methylcholanthrene.
J Cell Physiol 2010;
224:49-58. [PMID:
20232303 DOI:
10.1002/jcp.22089]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Definitive information about the number and nature of discrete steps of tumorigenesis is enigmatic. To understand the multistep nature of carcinogenesis, an in vitro model of 20-Methylcholanthrene-treated primary fibroblast cells CNCI-PM-20, from 20-day old Swiss mouse embryo was used. Visible neoplastic changes with distinct morphological variations along with specific chromosomal aberrations like Robertsonian metacentrics, double and single-minute chromosomes and aneuploidy were observed from Passage-20 onwards. The cell cycle profile showed gradual increase in G(2)/M population till P-32, followed by evasion of block from P-36 onwards. Gradual increase in expression of C-myc, CyclinD1 and a decrease in expression of P21 was observed from P-20 onwards. CDC25A expression was significantly increased at P-27 and remained more or less constant in subsequent passages. Additionally, an increased P16 and P53 expression were seen at P-20 followed by their significant down-regulation at P-32. An increased level of phosphorylated retinoblastoma (ppRb) was observed from P-27, probably responsible for a compromised G(1)/S checkpoint. The inactivation of p21 and p16 might be due to their promoter hyper-methylation as suggested through de-methylation experiment by 5-aza-deoxycytidine at P-42. G(2)/M checkpoint abrogation was marked by gradual increase in expression of CyclinB1 and Cdc20, and a significant increase of Mad2 at P-20. Interestingly, increased expression of phospho-ATM, ATR and phospho-Chk1 were also seen at P-20 followed by their down-regulation at subsequent passages, indicating a perturbation of DNA damage response pathway at early passages. Our findings therefore dramatize the multiple genetic events that can cooperate to promote tumorigenesis.
Collapse