1
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Soofia Khanahmadi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
| | - Ahmad Amiri
- Russell School of Chemical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| |
Collapse
|
2
|
El-Mahrouk SR, El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Arsenic Trioxide (ATO III) Induces NAD(P)H Quinone Oxidoreductase 1 (NQO1) Expression in Hepatic and Extrahepatic Tissues of C57BL/6 Mice. Chem Res Toxicol 2024; 37:2040-2051. [PMID: 39630573 DOI: 10.1021/acs.chemrestox.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arsenic trioxide (ATOIII) has emerged as a potent therapeutic agent for acute promyelocytic leukemia (APL), yet its clinical application is often limited by significant adverse effects. This study investigates the molecular mechanisms underlying ATOIII's impact on cellular detoxification pathways, focusing on the regulation of NAD(P)H/quinone oxidoreductase (NQO1), a crucial enzyme in maintaining cellular homeostasis and cancer prevention. We explored ATOIII's effects on NQO1 expression in C57BL/6 mice and Hepa-1c1c7 cells, both independently and in combination with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a known NQO1 inducer. Our findings revealed that ATOIII significantly increased NQO1 expression in hepatic and extrahepatic tissues, as well as in Hepa-1c1c7 cells, at mRNA, protein, and activity levels. This upregulation occurred both in the presence and absence of TCDD. Mechanistically, we demonstrated that ATOIII promotes the nuclear translocation of both nuclear factor erythroid 2-related factor-2 (NRF2) and aryl hydrocarbon receptor (AHR) transcription factors. Furthermore, ATOIII exposure increased antioxidant response element (ARE)-driven reporter gene activity, indicating a transcriptional mechanism of NQO1 induction. Notably, gene silencing experiments confirmed the critical roles of both NRF2 and AHR in mediating ATOIII-induced NQO1 expression. In conclusion, ATOIII exposure is found to upregulate the NQO1 enzyme through a transcriptional mechanism via AHR- and NRF2- dependent mechanisms, offering valuable insights into its therapeutic mechanisms.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Faculty of Pharmacy, Tanta University, Gharbia, Tanta 31111, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| |
Collapse
|
3
|
Sciaccotta R, Gangemi S, Penna G, Giordano L, Pioggia G, Allegra A. Potential New Therapies "ROS-Based" in CLL: An Innovative Paradigm in the Induction of Tumor Cell Apoptosis. Antioxidants (Basel) 2024; 13:475. [PMID: 38671922 PMCID: PMC11047475 DOI: 10.3390/antiox13040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic lymphocytic leukemia, in spite of recent advancements, is still an incurable disease; the majority of patients eventually acquire resistance to treatment through relapses. In all subtypes of chronic lymphocytic leukemia, the disruption of normal B-cell homeostasis is thought to be mostly caused by the absence of apoptosis. Consequently, apoptosis induction is crucial to the management of this illness. Damaged biological components can accumulate as a result of the oxidation of intracellular lipids, proteins, and DNA by reactive oxygen species. It is possible that cancer cells are more susceptible to apoptosis because of their increased production of reactive oxygen species. An excess of reactive oxygen species can lead to oxidative stress, which can harm biological elements like DNA and trigger apoptotic pathways that cause planned cell death. In order to upset the balance of oxidative stress in cells, recent therapeutic treatments in chronic lymphocytic leukemia have focused on either producing reactive oxygen species or inhibiting it. Examples include targets created in the field of nanomedicine, natural extracts and nutraceuticals, tailored therapy using biomarkers, and metabolic targets. Current developments in the complex connection between apoptosis, particularly ferroptosis and its involvement in epigenomics and alterations, have created a new paradigm.
Collapse
Affiliation(s)
- Raffaele Sciaccotta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Giuseppa Penna
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Laura Giordano
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| |
Collapse
|
4
|
Niemann D, Akinjobi Z, Jeon S, Rahman HH. Arsenic exposure and prevalence of human papillomavirus in the US male population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1263-1275. [PMID: 35915301 DOI: 10.1007/s11356-022-22306-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a known carcinogen and is naturally available in earth's crust. Inorganic arsenic is an environmental pollutant with immunosuppressive properties. Human papillomavirus (HPV) is considered one of the most common sexually transmitted diseases in the United States. HPV is linked to several types of cancers in males, including oral, anal, and penile cancer. However, limited information is available on the effect of arsenic on HPV in males. The purpose of this study was to examine the association of urinary arsenic species (speciated and total) and the prevalence of HPV infection in the male population. HPV prevalence in males was analyzed using the 2013-2014 and 2015-2016 National Health and Nutrition Examination Survey (NHANES) dataset. Logistic regression analysis was used to examine associations of seven types of urinary arsenic species (arsenous acid, arsenic acid, arsenobetaine, arsenocholine, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), total arsenic acid) with HPV risk for male participants aged 18-59 years (N = 1516). Demographic characteristics were included in the logistic regression model for each arsenic variable. All statistical analyses were conducted by using the software R (version 4.2.0). Increasing DMA was positively associated with the prevalence of low-risk HPV (odds ratio (OR): 1.075, 95% confidence interval (CI): 1.025, 1.128) in addition to the sum of total toxic arsenic species (TUA1) including arsenous acid, arsenic acid, DMA, and MMA (OR: 1.068, 95% CI: 1.022, 1.116). High-risk HPV strains were found to be positively associated with arsenic acid (OR: 1.806, 95% CI: 1.134, 2.876) and total arsenic minus the sum of the two organic arsenic species arsenobetaine and arsenocholine (TUA2) at quartile 3 (Q3) level (OR: 1.523, 95% CI: 1.102, 2.103). The logistic regression models also showed that race and marital status were significant factors related to high-risk HPV. Our study reported that DMA and TUA1 are associated with low-risk HPV and arsenic acid is associated with high-risk HPV infections in males. Future research is required to confirm or refute this finding.
Collapse
Affiliation(s)
- Danielle Niemann
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | - Zainab Akinjobi
- Department of Economics, Applied Statistics & International Business, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Soyoung Jeon
- Department of Economics, Applied Statistics & International Business, New Mexico State University, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
5
|
Huang J, El-Kersh K, Mann KK, James KA, Cai L. Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicol Appl Pharmacol 2022; 454:116247. [PMID: 36122736 PMCID: PMC9941893 DOI: 10.1016/j.taap.2022.116247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023]
Abstract
Environmental causes of cardiovascular diseases (CVDs) are global health issues. In particular, an association between metal exposure and CVDs has become evident but causal evidence still lacks. Therefore, this symposium at the Society of Toxicology 2022 annual meeting addressed epidemiological, clinical, pre-clinical animal model-derived and mechanism-based evidence by five presentations: 1) An epidemiologic study on potential CVD risks of individuals exposed occupationally and environmentally to heavy metals; 2) Both presentations of the second and third were clinical studies focusing on the potential link between heavy metals and pulmonary arterial hypertension (PAH), by presenting altered blood metal concentrations of both non-essential and essential metals in the patients with PAH and potential therapeutic approaches; 3) Arsenic-induced atherosclerosis via inflammatory cells in mouse model; 4) Pathogenic effects on the heart by adult chronic exposure to very low-dose cadmium via epigenetic mechanisms and whole life exposure to low dose cadmium via exacerbating high-fat-diet-lipotoxicity. This symposium has brought epidemiologists, therapeutic industry, physicians, and translational scientists together to discuss the health risks of occupational and environmental exposure to heavy metals through direct cardiotoxicity and indirect disruption of homeostatic mechanisms regulating essential metals, as well as lipid levels. The data summarized by the presenters infers a potential causal link between multiple metals and CVDs and defines differences and commonalities. Therefore, summary of these presentations may accelerate the development of efficient preventive and therapeutic strategies by facilitating collaborations among multidisciplinary investigators.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koren K Mann
- Departments of Pharmacology & Therapeutics and Oncology and Medicine, McGill University, Canada; Segal Cancer Center, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA,.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
6
|
Li CH, Tsai ML, Chiou HY(C, Lin YC, Liao WT, Hung CH. Role of Macrophages in Air Pollution Exposure Related Asthma. Int J Mol Sci 2022; 23:ijms232012337. [PMID: 36293195 PMCID: PMC9603963 DOI: 10.3390/ijms232012337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction, bronchial hyper-responsiveness, and airway inflammation. The chronic inflammation of the airway is mediated by many cell types, cytokines, chemokines, and inflammatory mediators. Research suggests that exposure to air pollution has a negative impact on asthma outcomes in adult and pediatric populations. Air pollution is one of the greatest environmental risks to health, and it impacts the lungs' innate and adaptive defense systems. A major pollutant in the air is particulate matter (PM), a complex component composed of elemental carbon and heavy metals. According to the WHO, 99% of people live in air pollution where air quality levels are lower than the WHO air quality guidelines. This suggests that the effect of air pollution exposure on asthma is a crucial health issue worldwide. Macrophages are essential in recognizing and processing any inhaled foreign material, such as PM. Alveolar macrophages are one of the predominant cell types that process and remove inhaled PM by secreting proinflammatory mediators from the lung. This review focuses on macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants in asthma.
Collapse
Affiliation(s)
- Chung-Hsiang Li
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying (Clair) Chiou
- Teaching and Research Center of Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Yi-Ching Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); or (C.-H.H.); Tel.: +886-7-312-1101 (ext. 2791) (W.-T.L.); +886-7-311-5140 (C.-H.H.); Fax: +886-7-312-5339 (W.-T.L.); +886-7-321-3931 (C.-H.H.)
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Correspondence: (W.-T.L.); or (C.-H.H.); Tel.: +886-7-312-1101 (ext. 2791) (W.-T.L.); +886-7-311-5140 (C.-H.H.); Fax: +886-7-312-5339 (W.-T.L.); +886-7-321-3931 (C.-H.H.)
| |
Collapse
|
7
|
Joannes A, Morzadec C, Duclos M, Gutierrez FL, Chiforeanu DC, Le Naoures C, De Latour B, Rouzé S, Wollin L, Jouneau S, Vernhet L. Arsenic trioxide inhibits the functions of lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Toxicol Appl Pharmacol 2022; 441:115972. [PMID: 35276128 DOI: 10.1016/j.taap.2022.115972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal interstitial lung disease. Currently, no treatment can block or reverse the development of lung fibrosis in patients suffering from IPF. Recent studies indicate that arsenic trioxide (ATO), a safe, effective anti-cancer pro-oxidant drug, prevents the differentiation of normal human lung fibroblasts (NHLFs) in vitro and reduces experimental pulmonary fibrosis in vivo. In this context, we investigated the anti-fibrotic effects of ATO on the main fibrosis functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and non-IPF (control) HLFs were incubated with 0.01-1 μM ATO and stimulated with pro-fibrotic factors (PDGF-BB or TGF-β1). We measured their rates of proliferation, migration and differentiation and the cell stress response triggered by ATO. ATO did not affect cell viability but strongly inhibited the proliferation and migration of PDGF-BB-stimulated IPF and control HLFs. ATO also prevented myofibroblastic differentiation, as assessed by the expression of α-smooth muscle actin (α-SMA) and collagen-1, and the phosphorylation of SMAD2/3 in TGF-β1-stimulated HLFs. These antifibrotic effects were associated with increased expression of the transcription factor NRF2 and its target genes NQO1 and HMOX1. Genetic silencing of NRF2 inhibited the ATO-induced cell stress response but did not prevent the ATO-dependent inhibition of α-SMA expression in TGF-β1-stimulated HLFs. The results demonstrate that ATO, at concentrations similar to exposure in blood plasma of ATO-treated cancer patients, counteracted pro-fibrotic activities of HLFs from IPF patients. We propose to consider ATO for clinical exploration to define the therapeutic potential in patients with IPF.
Collapse
Affiliation(s)
- Audrey Joannes
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| | - Claudie Morzadec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Maëla Duclos
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | | | | | - Cécile Le Naoures
- Department of Pathology and Cytology, Rennes University Hospital, 35033 Rennes, France
| | - Bertrand De Latour
- Department of Thoracic, Cardiac and Vascular Surgery, Rennes University Hospital, 35033 Rennes, France
| | - Simon Rouzé
- Department of Thoracic, Cardiac and Vascular Surgery, Rennes University Hospital, 35033 Rennes, France
| | - Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co, KG, Biberach an der Riss, Germany
| | - Stéphane Jouneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France; Department of Respiratory Diseases, Competence Center for Rare Pulmonary Disease, Rennes University Hospital, 35033, Rennes, France
| | - Laurent Vernhet
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
8
|
Pánico P, Velasco M, Salazar AM, Picones A, Ortiz-Huidobro RI, Guerrero-Palomo G, Salgado-Bernabé ME, Ostrosky-Wegman P, Hiriart M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front Endocrinol (Lausanne) 2022; 13:878280. [PMID: 35651975 PMCID: PMC9150370 DOI: 10.3389/fendo.2022.878280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Picones
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Guerrero-Palomo
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Eduardo Salgado-Bernabé
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
9
|
Buyang Huanwu Decoction Enhances Revascularization via Akt/GSK3 β/NRF2 Pathway in Diabetic Hindlimb Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1470829. [PMID: 34900083 PMCID: PMC8664534 DOI: 10.1155/2021/1470829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Abstract
Background Peripheral arterial disease (PAD) is a typical disease of atherosclerosis, most commonly influencing the lower extremities. In patients with PAD, revascularization remains a preferred treatment strategy. Buyang Huanwu decoction (BHD) is a popular Chinese herbal prescription which has showed effects of cardiovascular protection through conducting antioxidant, antiapoptotic, and anti-inflammatory effects. Here, we intend to study the effect of BHD on promoting revascularization via the Akt/GSK3β/NRF2 pathway in diabetic hindlimb ischemia (HLI) model of mice. Materials and Methods All db/db mice (n = 60) were randomly divided into 6 groups by table of random number. (1) Sham group (N = 10): 7-0 suture thread passed through the underneath of the femoral artery and vein without occlusion. The remaining 5 groups were treated differently on the basis of the HLI (the femoral artery and vein from the inguinal ligament to the knee joint were transected and the vascular stump was ligated with 7-0 silk sutures) model: (2) HLI+NS group (N = 15): 0.2 ml NS was gavaged daily for 3 days before modeling and 14 days after occlusion; (3) HLI+BHD group (N = 15): 0.2 ml BHD (20 g/kg/day) was gavaged daily for 3 days before modeling and 14 days after occlusion; (4) HLI+BHD+sh-NC group (N = 8): local injection of adenovirus vector carrying the nonsense shRNA (Ad-GFP) in the hindlimbs of mice before treatment; (5) HLI+BHD+sh-NRF2 group (N = 8): knockdown of NRF2 in the hindlimbs of mice by local intramuscular injection of adenovirus vector carrying NRF2 shRNA (Ad-NRF2-shRNA) before treatment; and (6) HLI+BHD+LY294002 group (N = 4): intravenous injection of LY294002 (1.5 mg/kg) once a day for 14 days on the basis of the HLI+BHD group. Laser Doppler examination, vascular cast, and immunofluorescence staining were applied to detect the revascularization of lower limbs in mice. Western blot analysis was used to detect the expression of vascular endothelial growth factor (VEGF), interleukin-1beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor- (TNF-) α, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone-1 (NQO-1), catalase (CAT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphorylated protein kinase B (p-AKT), and phosphorylated glycogen synthase kinase-3 beta (p-GSK3β). HE staining was used to assess the level of muscle tissue damage and inflammation in the lower extremities. Local multipoint injection of Ad-NRF2-shRNA was used to knock down NRF2, and qPCR was applied to detect the mRNA level of NRF2. The blood glucose, triglyceride, cholesterol, MDA, and SOD levels of mice were tested using corresponding kits. The SPSS 20.0 software and GraphPad Prism 6.05 were used to do all statistics. Values of P < 0.05 were considered as statistically significant. Results and Conclusions. BHD could enhance the revascularization of lower limbs in HLI mice, while BHD has no effect on blood glucose and lipid level in db/db mice (P > 0.05). BHD could elevate the protein expression of VEGF, HO-1, NQO-1, and CAT (P < 0.05) and decrease the expression of IL-1β, IL-6, and TNF-α (P < 0.05) in HLI mice. Meanwhile, BHD could activate NRF2 and promote the phosphorylation of AKT/GSK3β during revascularization (P < 0.05). In contrast, knockdown of NRF2 impaired the protective effects of BHD on HLI (P < 0.05). LY294002 inhibited the upregulation of NRF2 activated by BHD through inhibiting the phosphorylation of the AKT/GSK3β pathway (P < 0.05). The present study demonstrated that BHD could promote revascularization on db/db mice with HLI through targeting antioxidation, anti-inflammation, and angiogenesis via the AKT/GSK3β/NRF2 pathway.
Collapse
|
10
|
Bahrami A, Sathyapalan T, Moallem SA, Sahebkar A. Counteracting arsenic toxicity: Curcumin to the rescue? JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123160. [PMID: 32574880 DOI: 10.1016/j.jhazmat.2020.123160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenicosis leads to various irreversible damages in several organs and is considered to be a carcinogen. The effects of chronic arsenic poisoning are a result of an imbalance between pro- and antioxidant homeostasis, oxidative stress, as well as DNA and protein damage. Curcumin, the polyphenolic pigment extracted from the rhizome of Curcuma longa, is well-known for its pleiotropic medicinal effects. Curcumin has been shown to have ameliorative effects in arsenic-induced genotoxicity, nephrotoxicity, hepatotoxicity, angiogenesis, skin diseases, reproductive toxicity, neurotoxicity, and immunotoxicity. This review aims to summarize the scientific evidence on arsenic toxicity in various organs and the ameliorative effects of curcumin on the arsenic toxicity.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
A Systematic Review of the Various Effect of Arsenic on Glutathione Synthesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9414196. [PMID: 32802886 PMCID: PMC7411465 DOI: 10.1155/2020/9414196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Background Arsenic is a toxic metalloid widely present in nature, and arsenic poisoning in drinking water is a serious global public problem. Glutathione is an important reducing agent that inhibits arsenic-induced oxidative stress and participates in arsenic methylation metabolism. Therefore, glutathione plays an important role in regulating arsenic toxicity. In recent years, a large number of studies have shown that arsenic can regulate glutathione synthesis in many ways, but there are many contradictions in the research results. At present, the mechanism of the effect of arsenic on glutathione synthesis has not been elucidated. Objective We will conduct a meta-analysis to illustrate the effects of arsenic on GSH synthesis precursors Glu, Cys, Gly, and rate-limiting enzyme γ-GCS in mammalian models, as well as the regulation of p38/Nrf2 of γ-GCS subunit GCLC, and further explore the molecular mechanism of arsenic affecting glutathione synthesis. Results This meta-analysis included 30 studies in vivo and 58 studies in vitro, among which in vivo studies showed that arsenic exposure could reduce the contents of GSH (SMD = -2.86, 95% CI (-4.45, -1.27)), Glu (SMD = -1.11, 95% CI (-2.20,-0.02)), and Cys (SMD = -1.48, 95% CI (-2.63, -0.33)), with no statistically significant difference in p38/Nrf2, GCLC, and GCLM. In vitro studies showed that arsenic exposure increased intracellular GSH content (SMD = 1.87, 95% CI (0.18, 3.56)) and promoted the expression of p-p38 (SMD = 4.19, 95% CI (2.34, 6.05)), Nrf2 (SMD = 4.60, 95% CI (2.34, 6.86)), and GCLC (SMD = 1.32, 95% CI (0.23, 2.41)); the p38 inhibitor inhibited the expression of Nrf2 (SMD = -1.27, 95% CI (-2.46, -0.09)) and GCLC (SMD = -5.37, 95% CI (-5.37, -2.20)); siNrf2 inhibited the expression of GCLC, and BSO inhibited the synthesis of GSH. There is a dose-dependent relationship between the effects of exposure on GSH in vitro. Conclusions. These indicate the difference between in vivo and in vitro studies of the effect of arsenic on glutathione synthesis. In vivo studies have shown that arsenic exposure can reduce glutamate and cysteine levels and inhibit glutathione synthesis, while in vitro studies have shown that chronic low-dose arsenic exposure can activate the p38/Nrf2 pathway, upregulate GCLC expression, and promote glutathione synthesis.
Collapse
|
12
|
Prasad P, Sarkar N, Sinha D. Effect of low- and high-level groundwater arsenic on peripheral blood and lung function of exposed rural women. Regul Toxicol Pharmacol 2020; 115:104684. [PMID: 32454235 DOI: 10.1016/j.yrtph.2020.104684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
The World Health Organization (WHO) recommended maximum contaminant level (MCL) of arsenic (As) in drinking water at 10 μg/L. Many Asian countries still have their MCL for As at 50 μg/L. The current cross sectional study was conducted on asymptomatic females (without As related skin lesions) selected from rural areas of West Bengal, Baruipur and Dhamakhali [low As 11-50 μg/L; N,93]; Kamardanga & Sibhati [high As>50 μg/L; N,70] and Boria [Control; As<10 μg/L N,118] of West Bengal, India. The study was designed to compare the status of peripheral blood and lung function due to prolonged As exposure. The lung function parameters were considered according to Miller's prediction quadrant - FVC less than 80% indicated restrictive lung, FEV1/FVC less than 70% showed obstructive lung and both FVC and FEV1/FVC less than predicted percentage exhibited combined lung function decrement. The study showed that groundwater As concentration [22.5 ± 19.2 (low), 67.8 ± 26.9 (high) and 1.02 ± 2.3 μg/L (control)] was correlated with nail As content of the enrolled women. Linear regression depicted that nail As content influenced reduction of haemoglobin (β: 0.43; 95%CI: 0.02 to -0.006; p = 0.0001) and CD56+ NK cells (β: 0.53; 95%CI: 0.07 to -0.03; p = 0.0001) per 1 μg/g increase in As in nails. Multivariate logistic regression exhibited that nail As content was associated with reduction of lung function parameters [FEV1 (Exp B:1.04; 95%CI: 1.022 to 1.055; p = 0.0001) and FVC (Exp B:1.05; 95%CI: 1.03 to 1.07; p = 0.0001) per 1 μg/g increase in As in nails. Hence the study may be indicative of the fact that even in asymptomatic women, increase in chronic As exposure may weaken immune surveillance and provoke respiratory ailments.
Collapse
Affiliation(s)
- Priyanka Prasad
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - Nivedita Sarkar
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
13
|
Ye Y, Gaugler B, Mohty M, Malard F. Old dog, new trick: Trivalent arsenic as an immunomodulatory drug. Br J Pharmacol 2020; 177:2199-2214. [PMID: 32022256 DOI: 10.1111/bph.15011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Trivalent arsenic (As(III)) is recently found to be an immunomodulatory agent. As(III) has therapeutic potential in several autoimmune and inflammatory diseases in vivo. In vitro, it selectively induces apoptosis of immune cells due to different sensitivity. At a non-toxic level, As(III) shows its multifaceted nature by inducing either pro- or anti-inflammatory functions of immune subsets. These effects are exerted by either As(III)-protein interactions or as a consequence of As(III)-induced homeostasis imbalance. The immunomodulatory properties also show synergistic effects of As(III) with cancer immunotherapy. In this review, we summarize the immunomodulatory effects of As(III), focusing on the effects of As(III) on immune subsets in vitro, on mouse models of immune-related diseases, and the role of As(III) in cancer immunotherapy. Updates of the mechanisms of action, the pioneer clinical trials, dosing, and adverse events of therapeutic As(III) are also provided.
Collapse
Affiliation(s)
- Yishan Ye
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| |
Collapse
|
14
|
Wong CP, Dashner-Titus EJ, Alvarez SC, Chase TT, Hudson LG, Ho E. Zinc Deficiency and Arsenic Exposure Can Act Both Independently or Cooperatively to Affect Zinc Status, Oxidative Stress, and Inflammatory Response. Biol Trace Elem Res 2019; 191:370-381. [PMID: 30635848 PMCID: PMC6625954 DOI: 10.1007/s12011-019-1631-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022]
Abstract
The negative health impact of zinc deficiency overlaps significantly with arsenic exposure, and is associated with increased risk for chronic diseases. Arsenic contamination in the groundwater often co-exists in regions of the world that are prone to zinc deficiency. Notably, low zinc status shares many hallmarks of arsenic exposure, including increased oxidative stress and inflammation. Despite their common targets and frequent co-distribution in the population, little is known regarding the interaction between zinc deficiency and arsenic exposure. In this study, we tested the effect of arsenic exposure at environmentally relevant doses in combination with a physiologically relevant level of zinc deficiency (marginal zinc deficiency) on zinc status, oxidative damage, and inflammation. In cell culture, zinc-deficient THP-1 monocytes co-exposed with arsenic resulted in further reduction in intracellular zinc, as well as further increase in oxidative stress and inflammatory markers. In an animal study, zinc-deficient mice had further decrease in zinc status when co-exposed to arsenic. Zinc deficiency, but not arsenic exposure, resulted in an increase in baseline transcript abundance of inflammatory markers in the liver. Upon lipopolysaccharide challenge to elicit an acute inflammatory response, arsenic exposure, but not zinc deficiency, resulted in an increase in proinflammatory response. In summary, zinc deficiency and arsenic exposure can function independently or cooperatively to affect zinc status, oxidant stress, and proinflammatory response. The results highlight the need to consider both nutritional status and arsenic exposures together when considering their impact on health outcomes in susceptible populations.
Collapse
Affiliation(s)
- Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Sandra C Alvarez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tyler T Chase
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
- Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
15
|
Heidari F, Bahari A, Amarlou A, Fakheri BA. Fumaric acids as a novel antagonist of TLR-4 pathway mitigates arsenic-exposed inflammation in human monocyte-derived dendritic cells. Immunopharmacol Immunotoxicol 2019; 41:513-520. [PMID: 31397191 DOI: 10.1080/08923973.2019.1645166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exposure to environmentally relevant doses of arsenic has several harmful effects on the human immune system. In traditional Eastern medicines, nettle has been used as an anti-inflammatory agent to treat rheumatism and osteoarthritis. Fumaric acid (FA) as a major effective compound in nettle was chosen based on very accurate virtual screening to find antagonist for TLR4/MD structure. In this study, the in vitro therapeutic effects of FA on arsenic-exposed monocytes-derived dendritic cells (MDDCs) were evaluated. All the canonical functions of dendritic cells in bridging innate and adaptive immune system including phagocytosis and antigen-presenting capacity, and also cytokines secretion, were evaluated after exposure to arsenic/FA. FA profoundly over-expressed antigen-presenting capacity of MDDCs after exposure to arsenic through the upregulation of MHCιι. However, phagocytosis capacity of arsenic-exposed MDDCs is not compensated for, by treatment with FA. Arsenic up-regulates pro-inflammatory cytokines independents of TLR4 pathway. FA surprisingly mitigates the up-regulation of IL-1β and TNF-α but not TLR4 and NF-kB. Moreover, FA increases the viability of MDDCs even at a high dose of arsenic. Totally, FA reduced inflammatory factors induced by arsenic. This finding confirmed that nettle and other medicinal plants containing similar structures with FA could be further analyzed as valuable candidates for the reduction of drastic effects of arsenic in human immune systems.
Collapse
Affiliation(s)
- Forouzan Heidari
- Faculty of Agriculture, Department of Plant Breeding and Biotechnology, University of Zabol , Zabol , Iran
| | - Abbas Bahari
- Research Institute of Modern Biological Techniques, University of Zanjan , Zanjan , Iran
| | - Ali Amarlou
- Research Institute of Modern Biological Techniques, University of Zanjan , Zanjan , Iran
| | - Barat Ali Fakheri
- Faculty of Agriculture, Department of Plant Breeding and Biotechnology, University of Zabol , Zabol , Iran
| |
Collapse
|
16
|
|
17
|
Rojo AI, Pajares M, García-Yagüe AJ, Buendia I, Van Leuven F, Yamamoto M, López MG, Cuadrado A. Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy. Redox Biol 2018; 18:173-180. [PMID: 30029164 PMCID: PMC6052199 DOI: 10.1016/j.redox.2018.07.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023] Open
Abstract
Chronic neuroinflammation is a hallmark of the onset and progression of brain proteinopathies such as Alzheimer disease (AD) and it is suspected to participate in the neurodegenerative process. Transcription factor NRF2, a master regulator of redox homeostasis, controls acute inflammation but its relevance in low-grade chronic inflammation of AD is inconclusive due to lack of good mouse models. We have addressed this question in a transgenic mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO). AT-NRF2-WT mice died prematurely, at around 14 months of age, due to motor deficits and a terminal spinal deformity but AT-NRF2-KO mice died roughly 2 months earlier. NRF2-deficiency correlated with exacerbated astrogliosis and microgliosis, as determined by an increase in GFAP, IBA1 and CD11b levels. The immunomodulatory molecule dimethyl fumarate (DMF), a drug already used for the treatment of multiple sclerosis whose main target is accepted to be NRF2, was tested in this preclinical model. Daily oral gavage of DMF during six weeks reduced glial and inflammatory markers and improved cognition and motor complications in the AT-NRF2-WT mice compared with the vehicle-treated animals. This study demonstrates the relevance of the inflammatory response in experimental AD, tightly regulated by NRF2 activity, and provides a new strategy to fight AD.
Collapse
Affiliation(s)
- Ana I Rojo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain.
| | - Marta Pajares
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain
| | - Angel J García-Yagüe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029. Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28029. Madrid, Spain
| | - Fred Van Leuven
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Manuela G López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029. Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28029. Madrid, Spain
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain; Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| |
Collapse
|
18
|
Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018; 70:348-383. [DOI: 10.1124/pr.117.014753] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Amigo-Jiménez I, Bailón E, Aguilera-Montilla N, García-Marco JA, García-Pardo A. Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget 2018; 7:83359-83377. [PMID: 27829220 PMCID: PMC5347775 DOI: 10.18632/oncotarget.13091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
CLL remains an incurable disease in spite of the many new compounds being tested. Arsenic trioxide (ATO) induces apoptosis in all CLL cell types and could constitute an efficient therapy. To further explore this, we have studied the gene expression profile induced by ATO in CLL cells. ATO modulated many genes, largely involved in oxidative stress, being HMOX1 the most upregulated gene, also induced at the protein level. ATO also increased MMP-9, as we previously observed, both at the mRNA and protein level. Using specific inhibitors, qPCR analyses, and gene silencing approaches we demonstrate that upregulation of MMP-9 by ATO involved activation of the p38 MAPK/AP-1 signaling pathway. Moreover, gene silencing HMOX1 or inhibiting HMOX1 activity enhanced p38 MAPK phosphorylation and c-jun expression/activation, resulting in transcriptional upregulation of MMP-9. Overexpression of HMOX1 or enhancement of its activity, had the opposite effect. Cell viability analyses upon modulation of HMOX1 expression or activity demonstrated that HMOX1 had a pro-apoptotic role and enhanced the cytotoxic effect of ATO in CLL cells. We have therefore identified a new mechanism in which HMOX1 plays a central role in the response of CLL cells to ATO and in the regulation of the anti-apoptotic protein MMP-9. Thus, HMOX1 arises as a new therapeutic target in CLL and the combination of HMOX1 modulators with ATO may constitute an efficient therapeutic strategy in CLL.
Collapse
Affiliation(s)
- Irene Amigo-Jiménez
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elvira Bailón
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Aguilera-Montilla
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José A García-Marco
- Molecular Cytogenetics Unit, Hematology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Angeles García-Pardo
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
20
|
Negro Silva LF, Lemaire M, Lemarié CA, Plourde D, Bolt AM, Chiavatti C, Bohle DS, Slavkovich V, Graziano JH, Lehoux S, Mann KK. Effects of Inorganic Arsenic, Methylated Arsenicals, and Arsenobetaine on Atherosclerosis in the Mouse Model and the Role of As3mt-Mediated Methylation. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:077001. [PMID: 28728140 PMCID: PMC5744679 DOI: 10.1289/ehp806] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. OBJECTIVES Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. METHODS We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. RESULTS We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. CONCLUSION Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806.
Collapse
Affiliation(s)
| | - Maryse Lemaire
- Lady Davis Institute for Medical Research
- Department of Oncology
| | | | | | - Alicia M Bolt
- Lady Davis Institute for Medical Research
- Department of Oncology
| | | | - D Scott Bohle
- Department of Chemistry, McGill University, Montréal, Québec, Canada
| | - Vesna Slavkovich
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Joseph H Graziano
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Stéphanie Lehoux
- Lady Davis Institute for Medical Research
- Division of Experimental Medicine
- Department of Medicine, and
| | - Koren K Mann
- Lady Davis Institute for Medical Research
- Division of Experimental Medicine
- Department of Oncology
| |
Collapse
|
21
|
Bahari A, Salmani V. Environmentally relevant dose of arsenic interferes in functions of human monocytes derived dendritic cells. Toxicol Lett 2017; 275:118-122. [DOI: 10.1016/j.toxlet.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 11/30/2022]
|
22
|
Mohammadi-Bardbori A, Vikström Bergander L, Rannug U, Rannug A. NADPH Oxidase-Dependent Mechanism Explains How Arsenic and Other Oxidants Can Activate Aryl Hydrocarbon Receptor Signaling. Chem Res Toxicol 2015; 28:2278-86. [PMID: 26535918 DOI: 10.1021/acs.chemrestox.5b00415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms explaining arsenic toxicity are not well understood, but physiological consequences of stimulated aryl hydrocarbon receptor (AHR) signaling both directly and through cross-talk with other pathways have been indicated. The aim of this study was to establish how arsenic interacts with AHR-mediated transcription. The human hepatoma cell line (HepG2-XRE-Luc) carrying a luciferase reporter under the control of two AHR response elements (AHREs) and immortalized human keratinocytes (HaCaT) were exposed to sodium arsenite (NaAsO2; As(3+)), alone or in combination with the endogenous high affinity AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ). Luciferase activity, cytochrome P4501A1 (CYP1A1) activity, oxidative stress-related responses, metabolic clearance of FICZ, and NADPH oxidase (NOX) activity as well as nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent gene expression were measured. Arsenic inhibited CYP1A1 enzyme activity and reduced the metabolic clearance of FICZ. Arsenic also led to activated CYP1A1 transcription but only in cells grown in medium containing trace amounts of the endogenous ligand FICZ, pointing to an indirect mechanism of activation. Initially, arsenic caused dose-dependent inhibition of FICZ-activated AHR signaling, disturbed intracellular GSH status, and increased expression of oxidative stress-related genes. Silencing of NOX4, addition of N-acetylcystein, or pretreatment with arsenic itself attenuated the initial dose-dependent inhibition of AHR signaling. Arsenic pretreatment led to elevated GSH levels and sensitized the cells to ligand-dependent AHR signaling, while silencing of Nrf2 significantly reduced arsenic-mediated activation of the AHR. In addition, influence of NOX on AHR activation was also observed in cells treated with the SH-reactive metals cadmium, mercury, and nickel. Together, the results suggest that SH-reactive agents via a new and possibly general NOX/H2O2-dependent mechanism can interfere with the endogenous regulation of the AHR.
Collapse
Affiliation(s)
- Afshin Mohammadi-Bardbori
- Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm, Sweden.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences , Shiraz, Fars 71345-1583, Iran
| | | | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| |
Collapse
|
23
|
Macoch M, Morzadec C, Génard R, Pallardy M, Kerdine-Römer S, Fardel O, Vernhet L. Nrf2-dependent repression of interleukin-12 expression in human dendritic cells exposed to inorganic arsenic. Free Radic Biol Med 2015; 88:381-390. [PMID: 25680285 DOI: 10.1016/j.freeradbiomed.2015.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 12/31/2022]
Abstract
Inorganic arsenic, a well-known Nrf2 inducer, exerts immunosuppressive properties. In this context, we recently reported that the differentiation of human blood monocytes into immature dendritic cells (DCs), in the presence of low and noncytotoxic concentrations of arsenic, represses the ability of DCs to release key cytokines in response to different stimulating agents. Particularly, arsenic inhibits the expression of human interleukin-12 (IL-12, also named IL-12p70), a major proinflammatory cytokine that controls the differentiation of Th1 lymphocytes. In the present study, we determined if Nrf2 could contribute to these arsenic immunotoxic effects. To this goal, human monocyte-derived DCs were first differentiated in the absence of metalloid and then pretreated with arsenic just before DC stimulation with lipopolysaccharide (LPS). Under these experimental conditions, arsenic rapidly and stably activates Nrf2 and increases the expression of Nrf2 target genes. It also significantly inhibits IL-12 expression in activated DCs, at both mRNA and protein levels. Particularly, arsenic reduces mRNA levels of IL12A and IL12B genes which encodes the p35 and p40 subunits of IL-12p70, respectively. tert-Butylhydroquinone (tBHQ), a reference Nrf2 inducer, mimics arsenic effects and potently inhibits IL-12 expression. Genetic inhibition of Nrf2 expression markedly prevents the repression of both IL12 mRNA and IL-12 protein levels triggered by arsenic and tBHQ in human LPS-stimulated DCs. In addition, arsenic significantly reduces IL-12 mRNA levels in LPS-activated bone marrow-derived DCs from Nrf2+/+ mice but not in DCs from Nrf2-/- mice. Finally, we show that, besides IL-12, arsenic significantly reduces the expression of IL-23, another heterodimer containing the p40 subunit. In conclusion, our study demonstrated that arsenic represses IL-12 expression in human-activated DCs by specifically stimulating Nrf2 activity.
Collapse
Affiliation(s)
- Mélinda Macoch
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, Rennes, France
| | - Claudie Morzadec
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, Rennes, France
| | - Romain Génard
- INSERM, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France; UniverSud, INSERM, UMR-996 "Cytokines, chemokines and immunopathology", Châtenay-Malabry, France
| | - Marc Pallardy
- INSERM, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France; UniverSud, INSERM, UMR-996 "Cytokines, chemokines and immunopathology", Châtenay-Malabry, France
| | - Saadia Kerdine-Römer
- INSERM, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France; UniverSud, INSERM, UMR-996 "Cytokines, chemokines and immunopathology", Châtenay-Malabry, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Laurent Vernhet
- UMR INSERM U1085, Institut de Recherche sur la Santé, l'Environnement et le Travail (IRSET), Université de Rennes 1, Rennes, France.
| |
Collapse
|
24
|
Jaguin M, Fardel O, Lecureur V. Exposure to diesel exhaust particle extracts (DEPe) impairs some polarization markers and functions of human macrophages through activation of AhR and Nrf2. PLoS One 2015; 10:e0116560. [PMID: 25710172 PMCID: PMC4339390 DOI: 10.1371/journal.pone.0116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP.
Collapse
Affiliation(s)
- Marie Jaguin
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Valérie Lecureur
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- * E-mail:
| |
Collapse
|
25
|
Calatayud M, Gimeno-Alcañiz JV, Vélez D, Devesa V. Trivalent arsenic species induce changes in expression and levels of proinflammatory cytokines in intestinal epithelial cells. Toxicol Lett 2013; 224:40-6. [PMID: 24140498 DOI: 10.1016/j.toxlet.2013.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022]
Abstract
Chronic arsenic (As) toxicity in humans has been documented in many countries where exposure mostly occurs through drinking water. The As immunotoxic effects have been demonstrated in animal models as well as in humans. The studies of the immunotoxicity of As have centered on organs related to immune response or target organs, with few data being available at intestinal level. The present study has evaluated the changes in the expression and release of cytokines in Caco-2 cells, widely used as an intestinal epithelial model. Differentiated cells were exposed to 1 μM of As(III), 0.1 μM of monomethylarsonous acid [MMA(III)] and 1 μM of dimethylarsinous acid [DMA(III)] during 2, 4, 6 and 24 h. Additionally, the effect of As coexposure with lipopolysaccharide (LPS, 10 ng/mL) has been evaluated. The results show trivalent species to induce increases in the expression and release of the proinflammatory cytokines tumor necrosis factor alpha (TNFα), IL6, IL8 - the magnitude and time of response being different for each As species. The response of greatest magnitude corresponds to DMA(III), followed by As(III), while MMA(III) generates a limited response. Furthermore, the presence of LPS in the co-exposed cells could affect the expression and secretion of cytokines compared with individual exposure to arsenicals, especially for As(III)/LPS and DMA(III)/LPS.
Collapse
Affiliation(s)
- M Calatayud
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna (Valencia), Spain
| | | | | | | |
Collapse
|
26
|
Dangleben NL, Skibola CF, Smith MT. Arsenic immunotoxicity: a review. Environ Health 2013; 12:73. [PMID: 24004508 PMCID: PMC3848751 DOI: 10.1186/1476-069x-12-73] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/24/2013] [Indexed: 05/06/2023]
Abstract
Exposure to arsenic (As) is a global public health problem because of its association with various cancers and numerous other pathological effects, and millions of people worldwide are exposed to As on a regular basis. Increasing lines of evidence indicate that As may adversely affect the immune system, but its specific effects on immune function are poorly understood. Therefore, we conducted a literature search of non-cancer immune-related effects associated with As exposure and summarized the known immunotoxicological effects of As in humans, animals and in vitro models. Overall, the data show that chronic exposure to As has the potential to impair vital immune responses which could lead to increased risk of infections and chronic diseases, including various cancers. Although animal and in vitro models provide some insight into potential mechanisms of the As-related immunotoxicity observed in human populations, further investigation, particularly in humans, is needed to better understand the relationship between As exposure and the development of disease.
Collapse
Affiliation(s)
- Nygerma L Dangleben
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Christine F Skibola
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL 35294, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Ma QL, Zhang GG, Peng J. Vascular peroxidase 1: A novel enzyme in promoting oxidative stress in cardiovascular system. Trends Cardiovasc Med 2013; 23:179-83. [DOI: 10.1016/j.tcm.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/30/2022]
|
28
|
Wang Q, Wu L, Wang J. Reciprocal regulation of cyclooxygenase 2 and heme oxygenase 1 upon arsenic trioxide exposure in normal human lung fibroblast. J Biochem Mol Toxicol 2013; 27:323-9. [PMID: 23649692 DOI: 10.1002/jbt.21491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/29/2013] [Accepted: 04/14/2013] [Indexed: 12/21/2022]
Abstract
Detoxification enzyme heme oxygenase 1 (HO-1) and proinflammation enzyme cyclooxygenase 2 (Cox-2) are key response proteins that function to promote the survival of cells exposed to arsenic trioxide (ATO). However, whether there is a cross-regulation between them in ATO-treated cells remains poorly investigated. In this study, concomitant upregulation of Cox-2 and HO-1 induced by ATO was observed in normal human lung fibroblasts. Cox-2 inhibitor NS398 suppressed the upregulation of HO-1, whereas HO-1 inhibitor protoporphyrin IX zinc (II) stimulated the expression of Cox-2. Both proteins were regulated by p38, and the feedback regulation of HO-1 on Cox-2 was mediated through p38. Our results confirmed the reciprocal regulations between Cox-2 and HO-1 in ATO-treated normal cells and shed light on the understanding of protecting cells from injury caused by ATO while simultaneously decreasing the inflammation responses, which may be related to the carcinogenicity of ATO.
Collapse
Affiliation(s)
- Qisen Wang
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Science, Hefei, 230031, People's Republic of China
| | | | | |
Collapse
|
29
|
Bhattacharjee P, Chatterjee D, Singh KK, Giri AK. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 2013; 216:574-86. [PMID: 23340121 DOI: 10.1016/j.ijheh.2012.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
Long term exposure to arsenic, either through groundwater, food stuff or occupational sources, results in a plethora of dermatological and non-dermatological health effects including multi-organ cancer and early mortality. Several epidemiological studies, across the globe have reported arsenic-induced health effects and cancerous outcomes; but the prevalence of such diseases varies depending on environmental factors (geographical location, exposure level), and genetic makeup (and variants thereof); which is further modulated by several other factors like ethnicity, age-sex, smoking status, diet, etc. It is also interesting to note that, chronic arsenic exposure to a similar extent, even among the same family members, result in wide inter-individual variations. To understand the adverse effect of this toxic metabolite on biological system (cellular targets), and to unravel the underlying molecular basis (at the level of transcript, proteome, or metabolite), a holistic, systems biology approach was taken. Due to the paradoxical nature and unavailability of any suitable animal model system; the literature review is primarily based on cell line and population based studies. Thus, here we present a comprehensive review on the systems biology approaches to explore the underlying mechanism of arsenic-induced carcinogenicity, along with our own observations and an overview of mitigation strategies and their effectiveness till date.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
30
|
Morzadec C, Bouezzedine F, Macoch M, Fardel O, Vernhet L. Inorganic arsenic impairs proliferation and cytokine expression in human primary T lymphocytes. Toxicology 2012; 300:46-56. [DOI: 10.1016/j.tox.2012.05.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 11/26/2022]
|
31
|
Lee CH, Hong CH, Yu CL, Wang LF, Clausen BE, Liao WT, Huang SK, Chen GS, Yu HS. Arsenic mobilizes Langerhans cell migration and induces Th1 response in epicutaneous protein sensitization via CCL21: A plausible cause of decreased Langerhans cells in arsenic-induced intraepithelial carcinoma. Biochem Pharmacol 2012; 83:1290-9. [DOI: 10.1016/j.bcp.2012.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 12/29/2022]
|
32
|
Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways. Arch Toxicol 2012; 86:879-96. [DOI: 10.1007/s00204-012-0845-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
|
33
|
Abstract
Using hyperbaric oxygen (HBO) therapy as an in vivo oxidation model, we investigated the effect of a diet enriched in ascorbic acid (AA) on HBO-induced oxidative stress. Volunteers (n 46) were allocated to the AA-rich diet group or the control group. Blood samples were collected at the basal time, after the 1-week diet before and immediately after the HBO treatment, and 1 week after the HBO treatment. AA level, total antioxidant status (TAS), hydroperoxides (HP), lymphocyte DNA oxidation and DNA repair capacity were assessed. The expression of genes involved in oxidative stress was evaluated in lymphocytes and the protein activity of the modulated genes was determined in the plasma. The AA level and the antioxidant status of plasma were increased by AA-rich food consumption. HBO exposure did not affect the AA levels or TAS, but induced HP formation in the control group. The lymphocytes isolated from dietary-supplemented subjects were resistant to ex vivo DNA oxidation, showing an increased DNA repair capacity compared with controls. A difference in gene expression pattern was observed between the groups. AA-rich foods provide dual protection against oxidative stress, enhancing plasma antioxidant levels and stimulating genes involved in cell detoxification.
Collapse
|
34
|
Wang L, Weng CY, Wang YJ, Wu MJ. Lipoic acid ameliorates arsenic trioxide-induced HO-1 expression and oxidative stress in THP-1 monocytes and macrophages. Chem Biol Interact 2011; 190:129-38. [PMID: 21315065 DOI: 10.1016/j.cbi.2011.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 11/30/2022]
Abstract
Inorganic arsenic is a common environmental contaminant; chronic exposure to arsenic can alter the physiology of various key immune cells, particularly macrophages. The aim of this research is to elucidate the key parameters associated with arsenic-induced toxicity and investigate the potential and mechanism of α-lipoic acid (LA), a potent thioreducant, for reducing the toxicity in human promonocytic THP-1 cells. We found that a non-lethal concentration of arsenic trioxide (1 μM) significantly induced the expression of heme oxygenase-1 (HO-1), a response biomarker to arsenic, without stimulating measurable superoxide production. Co-treatment of cells with the HO-1 competitive inhibitor zinc protoporphyrin (Znpp) potentiated arsenic-induced cytotoxicity, indicating that HO-1 confers a cytoprotective effect against arsenic toxicity. In addition, low concentrations of arsenic trioxide (1 and 2.5 μM) markedly inhibited monocyte-to-macrophage differentiation and expression of macrophage markers. Treatment of cells with LA attenuated arsenic trioxide-induced cytotoxicity and HO-1 over-expression and restored the redox state. In addition, LA neutralized arsenic trioxide-inhibition of monocyte maturation into macrophages and reversed the expression and activity of scavenger receptors. In conclusion, the cytotoxicity of arsenic trioxide is associated with an imbalance of the cellular redox state, and LA can protect cells from arsenic-induced malfunctions either through its reducing activity, direct interacting with arsenic or stimulating other unidentified signaling pathways.
Collapse
Affiliation(s)
- Lisu Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
35
|
Martin-Chouly C, Morzadec C, Bonvalet M, Galibert MD, Fardel O, Vernhet L. Inorganic arsenic alters expression of immune and stress response genes in activated primary human T lymphocytes. Mol Immunol 2011; 48:956-65. [PMID: 21281968 DOI: 10.1016/j.molimm.2011.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 11/25/2022]
Abstract
Inorganic arsenic, a carcinogenic environmental contaminant, exerts immunosuppressive effects on human T lymphocytes. In particular, interleukin-2 (IL2) secretion and T cell proliferation are reduced when peripheral blood mononuclear cells (PBMC) from individuals chronically exposed to arsenic are stimulated ex vivo with lectins such as phytohemaglutinin (PHA). However, it is not clear whether the metalloid directly acts on T cells or blocks monocyte-dependent accessory signals activated by PHA. We report that in vitro pre-treatment of PBMC with sodium arsenite (NaAs) reduces IL2 secretion and T cell proliferation induced by PHA, but does not prevent expression of monocyte-derived cytokines (IL1, IL6, TNFα) functioning as lymphocyte-activating factors. In addition, we found that NaAs delays induction of IL2 and IL2 receptor α chain (IL2RA) mRNA levels in human primary isolated T cells activated by PHA. Kinetic analysis showed that NaAs pre-treatment first inhibits, but thereafter markedly increases, induction of IL2 and IL2RA mRNA when T cells are stimulated with PHA for 8 h and 72 h, respectively. We conducted whole genome microarray-based analysis of gene expression in primary T cell cultures derived from independent donors. NaAs systematically and significantly up-regulated a set of 35 genes, including several immune and stress genes, such as IL13, granulocyte-macrophage colony stimulating factor, lymphotoxin α and heme oxygenase-1 (HO-1). Up-regulation of HO-1, a stress and immunosuppressive protein, was rapidly detectable, both in T cells and in PBMC treated with NaAs. Inhibition of the immunosuppressive activity of HO-1 in PBMC however failed to prevent NaAs-dependent inhibition of T cell proliferation induced by PHA. Our findings demonstrate that, at least in vitro, inorganic arsenic acts directly on human T cells and impairs their activity, probably independently of HO-1 expression and monocyte-related accessory signals.
Collapse
Affiliation(s)
- Corinne Martin-Chouly
- Institut de Recherche en Santé Environnement Travail, EA-4427 Signalisation et Réponses aux Agents Infectieux et Chimiques, Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | | | | | | | | | |
Collapse
|
36
|
Singh KP, Kumari R, Treas J, DuMond JW. Chronic Exposure to Arsenic Causes Increased Cell Survival, DNA Damage, and Increased Expression of Mitochondrial Transcription Factor A (mtTFA) in Human Prostate Epithelial Cells. Chem Res Toxicol 2011; 24:340-9. [DOI: 10.1021/tx1003112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas 79409, United States
| | - Ragini Kumari
- Department of Environmental Science and Technology, Texas Southern University, Houston, Texas 77004, United States
| | - Justin Treas
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas 79409, United States
| | - James W. DuMond
- Department of Environmental Science and Technology, Texas Southern University, Houston, Texas 77004, United States
| |
Collapse
|
37
|
Krance SM, Keng PC, Palis J, Ballatori N. Transient glutathione depletion determines terminal differentiation in HL-60 cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:53-60. [PMID: 20716928 PMCID: PMC2835889 DOI: 10.4161/oxim.3.1.10405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To better define the role of glutathione (GSH) in cell differentiation, the present study measured GSH concentrations during terminal HL-60 cell differentiation, in the presence and absence of differentiation-inducing agents, and in the presence and absence of GSH altering agents. Interestingly, there was a small transient increase in intracellular GSH levels during dimethyl sulfoxide (DMSO) or 1α,25-dihydroxyvitamin D3 (VD3) induced differentiation. This increase coincided with an increase in nitroblue tetrazolium (NBT) reduction capacity, a measure of superoxide anion production, but there was no apparent change in the GSH/glutathione disulfide (GSSG) ratio. Surprisingly, treatment of cells with low doses of 1-chloro-2,4-dinitrobenzene (CDNB; 5 µM) or diethylmaleate (DEM; 0.5 mM), which transiently deplete GSH levels to about 40% of control levels, resulted in enhanced differentiation of HL-60 cells exposed to VD3 or all-trans-retinoic acid (ATRA), as well as under un-induced conditions (i.e., spontaneous differentiation). Enhanced differentiation occurred when cells were treated with the GSH-depleting agents 4 hours after treatment with differentiation inducers. These findings indicate that intracellular GSH levels are regulated in a complex fashion during HL-60 cell differentiation, and that transient GSH depletion using low doses of CDNB and DEM enhances the differentiation process.
Collapse
Affiliation(s)
- Suzanne M Krance
- University of Rochester School of Medicine, Rochester, New York, USA
| | | | | | | |
Collapse
|
38
|
Luna AL, Acosta-Saavedra LC, Lopez-Carrillo L, Conde P, Vera E, De Vizcaya-Ruiz A, Bastida M, Cebrian ME, Calderon-Aranda ES. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children. Toxicol Appl Pharmacol 2010; 245:244-51. [PMID: 20226805 DOI: 10.1016/j.taap.2010.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Arsenic (As) exposure has been associated with alterations in the immune system, studies in experimental models and adults have shown that these effects involve macrophage function; however, limited information is available on what type of effects could be induced in children. The aim of this study was to evaluate effects of As exposure, through the association of inorganic As (iAs) and its metabolites [monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] with basal levels of nitric oxide (NO(-)) and superoxide anion (O(2)(-)), in peripheral blood mononuclear cells (PBMC) and monocytes, and NO(-) and O(2)(-) produced by activated monocytes. Hence, a cross-sectional study was conducted in 87 children (6-10 years old) who had been environmentally exposed to As through drinking water. Levels of urinary As species (iAs, MMA and DMA) were determined by hydride generation atomic absorption spectrometry, total As (tAs) represents the sum of iAs and its species; tAs urine levels ranged from 12.3 to 1411 microg/g creatinine. Using multiple linear regression models, iAs presented a positive and statistical association with basal NO(-) in PBMC (beta=0.0048, p=0.049) and monocytes (beta=0.0044, p=0.044), while basal O(2)(-) had a significant positive association with DMA (beta=0.0025, p=0.046). In activated monocytes, O(2)(-) showed a statistical and positive association with iAs (beta=0.0108, p=0.023), MMA (beta=0.0066, p=0.022), DMA (beta=0.0018, p=0.015), and tAs (beta=0.0013, p=0.015). We conclude that As exposure in the studied children was positively associated with basal levels of NO(-) and O(2)(-) in PBMC and monocytes, suggesting that As induces oxidative stress in circulating blood cells. Additionally, this study showed a positive association of O(2)(-) production with iAs and its metabolites in stimulated monocytes, supporting previous data that suggests that these cells, and particularly the O(2)(-) activation pathway, are relevant targets for As toxicity.
Collapse
Affiliation(s)
- Ana L Luna
- Toxicologia, Cinvestav, PO Box: 14-740, Mexico, D.F., 07360, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Meng D, Wang X, Chang Q, Hitron A, Zhang Z, Xu M, Chen G, Luo J, Jiang B, Fang J, Shi X. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism. Toxicol Appl Pharmacol 2010; 244:291-9. [PMID: 20083128 DOI: 10.1016/j.taap.2010.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/08/2010] [Indexed: 12/21/2022]
Abstract
Angiogenesis and vessel remodeling are fundamental to the pathogenesis of a number of diseases caused by environmental arsenic exposure, including tumorigenesis and cardiovascular diseases. Arsenic (AsIII) has been shown to stimulate angiogenesis and vascular remodeling in vivo. However, the exact molecular mechanisms accounting for arsenic-induced angiogenesis are not clear. The present study investigates the role of heme oxygenase-1 (HO-1) in sodium arsenite-mediated angiogenesis in vitro. Transwell assay, three-dimensional Matrigel assay, RT-PCR, ELISA and immunoblotting were used to determine cell migration, vascular tube formation, mRNA and protein expression. Chromatin immunoprecipitation and luciferase assay were applied to examine the DNA binding with protein and HO-1 transcriptional activity. Here, we report that low concentrations of arsenite (0.1-1 muM) stimulated cell migration and vascular tube formation in human microvascular endothelial cells (HMVEC). Arsenite induced HO-1 mRNA and protein expression. Knock down of HO-1 expression decreased arsenite-induced VEGF expression, cell migration, and tube formation. We showed that arsenite promoted dissociation of Bach1 (a transcriptional repressor) from the HO-1 enhancers and increased Nrf2 binding to these elements. Site directed mutagenesis assay identified that Bach1 cysteine residues 557 and 574 were essential for the induction of HO-1 gene in response to arsenite. These findings demonstrate a role for HO-1 in arsenite-mediated angiogenesis in vitro.
Collapse
Affiliation(s)
- Dan Meng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai, 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|