1
|
Moya-García AA, Pino-Ángeles A, Sánchez-Jiménez F, Urdiales JL, Medina MÁ. Histamine, Metabolic Remodelling and Angiogenesis: A Systems Level Approach. Biomolecules 2021; 11:415. [PMID: 33799732 PMCID: PMC8000605 DOI: 10.3390/biom11030415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Histamine is a highly pleiotropic biogenic amine involved in key physiological processes including neurotransmission, immune response, nutrition, and cell growth and differentiation. Its effects, sometimes contradictory, are mediated by at least four different G-protein coupled receptors, which expression and signalling pathways are tissue-specific. Histamine metabolism conforms a very complex network that connect many metabolic processes important for homeostasis, including nitrogen and energy metabolism. This review brings together and analyses the current information on the relationships of the "histamine system" with other important metabolic modules in human physiology, aiming to bridge current information gaps. In this regard, the molecular characterization of the role of histamine in the modulation of angiogenesis-mediated processes, such as cancer, makes a promising research field for future biomedical advances.
Collapse
Affiliation(s)
- Aurelio A. Moya-García
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - Almudena Pino-Ángeles
- Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Francisca Sánchez-Jiménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| |
Collapse
|
2
|
KLF4 is required for suppression of histamine synthesis by polyamines during bone marrow-derived mast cell differentiation. PLoS One 2020; 15:e0229744. [PMID: 32101568 PMCID: PMC7043748 DOI: 10.1371/journal.pone.0229744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
Mast cells have secretory granules containing chemical mediators such as histamine and play important roles in the immune system. Polyamines are essential factors for cellular processes such as gene expression and translation. It has been reported that secretory granules contain both histamine and polyamines, which have similar chemical structures and are produced from the metabolism of cationic amino acids. We investigated the effect of polyamine depletion on mast cells using bone marrow-derived mast cells (BMMCs). Polyamine depletion was induced using α-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. DFMO treatment resulted in a significant reduction of cell number and abnormal secretory granules in BMMCs. Moreover, the cells showed a 2.3-fold increase in intracellular histamine and up-regulation of histidine decarboxylase (HDC) at the transcriptional level during BMMC differentiation. Levels of the transcription factor kruppel-like factor 4 (KLF4) greatly decreased upon DFMO treatment; however, Klf4 mRNA was expressed at levels similar to controls. We determined the translational regulation of KLF4 using reporter genes encoding Klf4-luc2 fusion mRNA, for transfecting NIH3T3 cells, and performed in vitro translation. We found that the efficiency of KLF4 synthesis in response to DFMO treatment was enhanced by the existence of a GC-rich 5'-untranslated region (5'-UTR) on Klf4 mRNA, regardless of the recognition of the initiation codon. Taken together, these results indicate that the enhancement of histamine synthesis by DFMO depends on the up-regulation of Hdc expression, achieved by removal of transcriptional suppression of KLF4, during differentiation.
Collapse
|
3
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
4
|
Takeuchi T, Harada Y, Moriyama S, Furuta K, Tanaka S, Miyaji T, Omote H, Moriyama Y, Hiasa M. Vesicular Polyamine Transporter Mediates Vesicular Storage and Release of Polyamine from Mast Cells. J Biol Chem 2017; 292:3909-3918. [PMID: 28082679 DOI: 10.1074/jbc.m116.756197] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
Mast cells are secretory cells that play an important role in host defense by discharging various intragranular contents, such as histamine and serotonin, upon stimulation of Fc receptors. The granules also contain spermine and spermidine, which can act as modulators of mast cell function, although the mechanism underlying vesicular storage remains unknown. Vesicular polyamine transporter (VPAT), the fourth member of the SLC18 transporter family, is an active transporter responsible for vesicular storage of spermine and spermidine in neurons. In the present study, we investigated whether VPAT functions in mast cells. RT-PCR and Western blotting indicated VPAT expression in murine bone marrow-derived mast cells (BMMCs). Immunohistochemical analysis indicated that VPAT is colocalized with VAMP3 but not with histamine, serotonin, cathepsin D, VAMP2, or VAMP7. Membrane vesicles from BMMCs accumulated spermidine upon the addition of ATP in a reserpine- and bafilomycin A1-sensitive manner. BMMCs secreted spermine and spermidine upon the addition of either antigen or A23187 in the presence of Ca2+, and the antigen-mediated release, which was shown to be temperature-dependent and sensitive to bafilomycin A1 and tetanus toxin, was significantly suppressed by VPAT gene RNA interference. Under these conditions, expression of vesicular monoamine transporter 2 was unaffected, but antigen-dependent histamine release was significantly suppressed, which was recovered by the addition of 1 mm spermine. These results strongly suggest that VPAT is expressed and is responsible for vesicular storage of spermine and spermidine in novel secretory granules that differ from histamine- and serotonin-containing granules and is involved in vesicular release of these polyamines from mast cells.
Collapse
Affiliation(s)
- Tomoya Takeuchi
- From the Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530
| | - Yuika Harada
- From the Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530
| | - Satomi Moriyama
- From the Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530
| | - Kazuyuki Furuta
- the Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8530, and
| | - Satoshi Tanaka
- the Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8530, and
| | - Takaaki Miyaji
- the Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Omote
- From the Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530
| | - Yoshinori Moriyama
- From the Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530,
| | - Miki Hiasa
- From the Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530,
| |
Collapse
|
5
|
Sanchez-Jiménez F, Pino-Ángeles A, Rodríguez-López R, Morales M, Urdiales JL. Structural and functional analogies and differences between histidine decarboxylase and aromatic l-amino acid decarboxylase molecular networks: Biomedical implications. Pharmacol Res 2016; 114:90-102. [DOI: 10.1016/j.phrs.2016.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 01/24/2023]
|
6
|
A novel role for antizyme inhibitor 2 as a regulator of serotonin and histamine biosynthesis and content in mouse mast cells. Amino Acids 2016; 48:2411-21. [PMID: 27084713 DOI: 10.1007/s00726-016-2230-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
Abstract
Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase and polyamine uptake. Our previous studies indicated a metabolic interplay among polyamines, histamine and serotonin in mast cells, and demonstrated that polyamines are present in mast cell secretory granules, being important for histamine storage and serotonin levels. Recently, the novel antizyme inhibitor-2 (AZIN2) was proposed as a local regulator of polyamine biosynthesis in association with mast cell serotonin-containing granules. To gain insight into the role of AZIN2 in the biosynthesis and storage of serotonin and histamine, we have generated bone marrow derived mast cells (BMMCs) from both wild-type and transgenic Azin2 hypomorphic mice, and have analyzed polyamines, serotonin and histamine contents, and some elements of their metabolisms. Azin2 hypomorphic BMMCs did not show major mast cell phenotypic alterations as judged by morphology and specific mast cell proteases. However, compared to wild-type controls, these cells showed reduced spermidine and spermine levels, and diminished growth rate. Serotonin levels were also reduced, whereas histamine levels tended to increase. Accordingly, tryptophan hydroxylase-1 (TPH1; the key enzyme for serotonin biosynthesis) mRNA expression and protein levels were reduced, whereas histidine decarboxylase (the enzyme responsible for histamine biosynthesis) enzymatic activity was increased. Furthermore, microphtalmia-associated transcription factor, an element involved in the regulation of Tph1 expression, was reduced. Taken together, our results show, for the first time, an element of polyamine metabolism -AZIN2-, so far described as exclusively devoted to the control of polyamine concentrations, involved in regulating the biosynthesis and content of other amines like serotonin and histamine.
Collapse
|
7
|
Activated mast cells promote differentiation of B cells into effector cells. Sci Rep 2016; 6:20531. [PMID: 26847186 PMCID: PMC4742803 DOI: 10.1038/srep20531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells.
Collapse
|
8
|
Nascent histamine induces α-synuclein and caspase-3 on human cells. Biochem Biophys Res Commun 2014; 451:580-6. [PMID: 25124665 DOI: 10.1016/j.bbrc.2014.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 11/20/2022]
Abstract
Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein-protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.
Collapse
|
9
|
Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br J Pharmacol 2013; 170:4-16. [PMID: 23347064 PMCID: PMC3764843 DOI: 10.1111/bph.12109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 12/14/2022] Open
Abstract
Histamine, serotonin and dopamine are biogenic amines involved in intercellular communication with multiple effects on human pathophysiology. They are products of two highly homologous enzymes, histidine decarboxylase and l-aromatic amino acid decarboxylase, and transmit their signals through different receptors and signal transduction mechanisms. Polyamines derived from ornithine (putrescine, spermidine and spermine) are mainly involved in intracellular effects related to cell proliferation and death mechanisms. This review summarizes structural and functional evidence for interactions between components of all these amine metabolic and signalling networks (decarboxylases, transporters, oxidases, receptors etc.) at cellular and tissue levels, distinct from nervous and neuroendocrine systems, where the crosstalk among these amine-related components can also have important pathophysiological consequences. The discussion highlights aspects that could help to predict and discuss the effects of intervention strategies.
Collapse
Affiliation(s)
- F Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Spain.
| | | | | | | |
Collapse
|
10
|
Tao Y, Liu XJ. Deficiency of ovarian ornithine decarboxylase contributes to aging-related egg aneuploidy in mice. Aging Cell 2013; 12:42-9. [PMID: 23061827 DOI: 10.1111/acel.12016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 01/15/2023] Open
Abstract
It has been known for more than four decades that during mammalian estrous cycles, luteinizing hormone stimulates a transitory rise in the ovaries of ornithine decarboxylase (ODC) activity and its enzymatic product putrescine, concurrent with oocyte maturation in vivo. Inhibition of this transitory ODC/putrescine rise, however, does not appear to affect oocyte maturation or ovulation. Using several mouse models and combining in vitro and in vivo approaches, we demonstrated that deficiency of ODC during oocyte maturation is correlated with increased levels of egg aneuploidies. These results suggest that the transitory ovarian ODC rise in late proestrus is important for ensuring proper chromosome segregation during oocyte maturation. Older mice (8 months of age) exhibited about 1/3 that of young mice in LH-stimulated ovarian ODC activity and a corresponding increase in egg aneuploidies. Moreover, a combination of putrescine supplementation in mouse drinking water leading up to oocyte retrieval and in oocyte maturation medium reduced egg aneuploidies of the older mice from 12.7% to 5.3%. Therefore, ovarian ODC deficiency might be an important etiology of maternal aging-related aneuploidies, and peri-ovulatory putrescine supplementation might reduce the risk of aneuploid conceptions in older women.
Collapse
Affiliation(s)
- Yong Tao
- Ottawa Hospital Research Institute, Ottawa Hospital-General Campus, Ottawa, ON, Canada
| | | |
Collapse
|
11
|
Correa-Fiz F, Reyes-Palomares A, Fajardo I, Melgarejo E, Gutiérrez A, García-Ranea JA, Medina MA, Sánchez-Jiménez F. Regulatory cross-talk of mouse liver polyamine and methionine metabolic pathways: a systemic approach to its physiopathological consequences. Amino Acids 2011; 42:577-95. [PMID: 21818563 DOI: 10.1007/s00726-011-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Both polyamines and methionine derivatives are nitrogen compounds directly related to the regulation of gene expression. In silico predictions and experimental evidence suggest a cross-talk between polyamine and methionine metabolism in mammalian tissues. Since liver is the major organ that controls nitrogen metabolism of the whole organism, it is the best tissue to further test this hypothesis in vivo. In this work, we studied the effects of the chronic administration of a methionine-supplemented diet (0.5% Met in drinking water for 5 months) on the liver of mice (designated as MET-mice). Metabolic and proteomic approaches were performed and the data obtained were subjected to biocomputational analysis. Results showed that a supplemental methionine intake can indeed regulate biogenic amine metabolism in an in vivo model by multiple mechanisms including metabolic regulation and specific gene demethylation. Furthermore, putative systemic effects were investigated by molecular and cellular biology methods. Among other results, altered expression levels of multiple inflammation and cell proliferation/death balance markers were found and macrophage activation was observed. Overall, the results presented here will be of interest across a variety of biomedical disciplines, including nutrition, orphan diseases, immunology and oncology.
Collapse
Affiliation(s)
- F Correa-Fiz
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS One 2010; 5:e15071. [PMID: 21151498 PMCID: PMC2994821 DOI: 10.1371/journal.pone.0015071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/19/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules. METHODOLOGY/PRINCIPAL FINDINGS Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system. CONCLUSIONS/SIGNIFICANCE Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.
Collapse
|
13
|
Abrighach H, Fajardo I, Sánchez-Jiménez F, Urdiales JL. Exploring polyamine regulation by nascent histamine in a human-transfected cell model. Amino Acids 2009; 38:561-73. [PMID: 19997758 DOI: 10.1007/s00726-009-0417-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/14/2009] [Indexed: 01/04/2023]
Abstract
There are multiple lines of evidence suggesting interplay between histamine and polyamines in several mammalian cell types. However, the complex metabolic context makes it difficult to elucidate the mechanisms involved. Histamine's effects can be elicited after its binding to any of the four subtypes of G-protein coupled histamine membrane receptors. In addition, intracellular histamine can also interfere with polyamine metabolism, since there are several metabolic connections between the synthesis and degradation pathways of both types of amines. In order to dissect the metabolic effects of intracellular histamine on polyamine metabolism, we chose a well-known cell culture line, i.e., the human embryonic kidney 293 cells (HEK-293 cells). Initially, we show that HEK-293 cells lack a polyamine metabolic response to extracellular histamine, even over a wide range of histamine concentrations. HEK-293 cells were transfected with active and inactive versions of human histidine decarboxylase, and changes in many of the overlapping metabolic factors and limiting steps were tested. Overall, the results indicate a regulatory effect of histamine on the post-transcriptional expression of ornithine decarboxylase and suggest that this effect is primarily responsible for the decrease in polyamine synthesis and partial blockade of cell-cycle progression, which should affect cell proliferation rate.
Collapse
Affiliation(s)
- H Abrighach
- Procel Lab, Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, 29071, Málaga, Spain
| | | | | | | |
Collapse
|
14
|
Melgarejo E, Urdiales JL, Sánchez-Jiménez F, Medina MÁ. Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate. Amino Acids 2009; 38:519-23. [DOI: 10.1007/s00726-009-0411-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/06/2009] [Indexed: 12/27/2022]
|