1
|
The potential protective effects of erythropoietin and estrogen on renal ischemia reperfusion injury in ovariectomized rats. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2015.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
2
|
Yamaguchi H, Mano N. Analysis of membrane transport mechanisms of endogenous substrates using chromatographic techniques. Biomed Chromatogr 2019; 33:e4495. [PMID: 30661254 DOI: 10.1002/bmc.4495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Membrane transporters are expressed in various bodily tissues and play essential roles in the homeostasis of endogenous substances and the absortion, distribution and/or excretion of xenobiotics. For transporter assays, radioisotope-labeled compounds have been mainly used. However, commercially available radioisotope-labeled compounds are limited in number and relatively expensive. Chromatographic analyses such as high-performance liquid chromatography with ultraviolet absorptiometry and liquid chromatography with tandem mass spectrometry have also been applied for transport assays. To elucidate the transport properties of endogenous substrates, although there is no difficulty in performing assays using radioisotope-labeled probes, the endogenous background and the metabolism of the compound after its translocation across cell membranes must be considered when the intact compound is assayed. In this review, the current state of knowledge about the transport of endogenous substrates via membrane transporters as determined by chromatographic techniques is summarized. Chromatographic techniques have contributed to our understanding of the transport of endogenous substances including amino acids, catecholamines, bile acids, prostanoids and uremic toxins via membrane transporters.
Collapse
Affiliation(s)
- Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
3
|
Del Pino J, Moyano P, Ruiz M, Anadón MJ, Díaz MJ, García JM, Labajo-González E, Frejo MT. Amitraz changes NE, DA and 5-HT biosynthesis and metabolism mediated by alterations in estradiol content in CNS of male rats. CHEMOSPHERE 2017; 181:518-529. [PMID: 28463726 DOI: 10.1016/j.chemosphere.2017.04.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 05/21/2023]
Abstract
Amitraz is a formamidine insecticide/acaricide that alters different neurotransmitters levels, among other neurotoxic effects. Oral amitraz exposure (20, 50 and 80 mg/kg bw, 5 days) has been reported to increase serotonin (5-HT), norepinephrine (NE) and dopamine (DA) content and to decrease their metabolites and turnover rates in the male rat brain, particularly in the striatum, prefrontal cortex, and hippocampus. However, the mechanisms by which these alterations are produced are not completely understood. One possibility is that amitraz monoamine oxidase (MAO) inhibition could mediate these effects. Alternatively, it alters serum concentrations of sex steroids that regulate the enzymes responsible for these neurotransmitters synthesis and metabolism. Thus, alterations in sex steroids in the brain could also mediate the observed effects. To test these hypothesis regarding possible mechanisms, we treated male rats with 20, 50 and 80 mg/kg bw for 5 days and then isolated tissue from striatum, prefrontal cortex, and hippocampus. We then measured tissue levels of expression and/or activity of MAO, catechol-O-metyltransferase (COMT), dopamine-β-hydroxylase (DBH), tyrosine hydroxylase (TH) and tryptophan hydroxylase (TRH) as well as estradiol levels in these regions. Our results show that amitraz did not inhibit MAO activity at these doses, but altered MAO, COMT, DBH, TH and TRH gene expression, as well as TH and TRH activity and estradiol levels. The alteration of these enzymes was partially mediated by dysregulation of estradiol levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of amitraz.
Collapse
Affiliation(s)
- Javier Del Pino
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Paula Moyano
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Matilde Ruiz
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María José Anadón
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Jesús Díaz
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Elena Labajo-González
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Teresa Frejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Renard GM, Sotomayor-Zarate R, Blanco EH, Gysling K. Withdrawal from chronic amphetamine reduces dopamine transmission in the rat lateral septum. J Neurosci Res 2014; 92:937-43. [PMID: 24753218 DOI: 10.1002/jnr.23369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 11/06/2022]
Abstract
The lateral septum (LS) is a brain nucleus implicated in the addictive process. This study investigated whether withdrawal from chronic amphetamine (AMPH) induces alterations in dopamine (DA) transmission within the LS. Male Sprague-Dawley rats were injected with AMPH (2.5 mg/kg i.p.) or saline during 14 days and thereafter subjected to 24 hr or 14 days of withdrawal. After these withdrawal periods, we measured DA extracellular levels by in vivo microdialysis, DA tissue levels, and tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT2) expression in the LS. Our results showed a significant decrease in K(+) -induced release of DA in the LS of AMPH-treated rats, 14 days after withdrawal compared with saline-treated rats. There were no significant differences in DA tissue content and TH expression. Interestingly, there was a decrease of LS VMAT2 expression in AMPH-treated rats, 14 days after withdrawal compared with saline-treated rats. This is the first neurochemical evidence showing that withdrawal from repeated AMPH administration decreases K(+) -induced DA release in the rat LS. Our results suggest that this decrease in DA releasability could be due to a decrease in DA vesicular uptake. The possibility that these neurochemical changes are associated with AMPH abstinence syndrome should be further explored.
Collapse
Affiliation(s)
- Georgina M Renard
- Millennium Science Nucleus in Stress and Addiction, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
5
|
Eddy MC, Rifken KM, Toufexis DJ, Green JT. Gonadal hormones and voluntary exercise interact to improve discrimination ability in a set-shift task. Behav Neurosci 2013; 127:744-54. [PMID: 23978149 DOI: 10.1037/a0033728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exercise has been demonstrated to improve multiple facets of health, including cognitive function. Rodent studies have suggested that exercise has robust effects on the hippocampus and on tasks that require the hippocampus. However, studies of the effects of exercise in humans often focus on the benefits to cognitive processes that engage areas outside of the hippocampus, such as executive function. Additionally, when exercise's cognitive benefits are examined, consideration of both males and females, and gonadal hormones, is rarely made. Here we looked at the interaction of gonadal hormones and exercise in terms of the ability of male and female rats to learn to discriminate rewarded from unrewarded arms in a T maze based on either brightness (white vs. black) or texture (rough vs. smooth) and then to set-shift (a measure of executive function), where this required discrimination is based on the opposite dimension. Gonadectomized or intact males and females had access to running wheels for 2 weeks before being tested. Intact males and females given access to unlocked running wheels performed better at the initial discrimination (Set 1) compared with intact males and females with locked running wheels but not at the set shift (Set 2). No advantage of exercise was observed in gonadectomized rats.
Collapse
|
6
|
Arad M, Weiner I. Abnormally rapid reversal learning and reduced response to antipsychotic drugs following ovariectomy in female rats. Psychoneuroendocrinology 2012; 37:200-12. [PMID: 21723667 DOI: 10.1016/j.psyneuen.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/18/2011] [Accepted: 06/02/2011] [Indexed: 12/24/2022]
Abstract
Epidemiological and clinical life cycle studies indicate that favorable illness course and better response to antipsychotic drugs (APDs) in women with schizophrenia are positively correlated with estrogen levels. Accordingly, the estrogen hypothesis of schizophrenia proposes a neuroprotective role of estrogen in women vulnerable to schizophrenia. Previously we demonstrated in the rat that low levels of estrogen induced by ovariectomy led to disruption of latent inhibition (LI) reflecting impairment of selective attention, a core deficit of schizophrenia. LI disruption was reversed by 17β-estradiol and the atypical APD clozapine, whereas the typical APD haloperidol was ineffective unless co-administered with 17β-estradiol. Here we aimed to extend these findings by testing ovariectomized rats in another selective attention task, discrimination reversal. Ovariectomy led to a loss of selective attention as manifested in abnormally rapid reversal. The latter was normalized by high dose of 17β-estradiol (150 μg/kg) and clozapine (2.5mg/kg), but not by haloperidol (0.1mg/kg) or lower doses of 17β-estradiol (10 and 50 μg/kg). However, co-administration of haloperidol with 17β-estradiol (50 μg/kg) was effective. In sham rats low 17β-estradiol (10 μg/kg) produced rapid reversal, while high 17β-estradiol (150 μg/kg), haloperidol alone, or haloperidol-17β-estradiol combination reduced reversal speed. Clozapine did not affect reversal speed in sham rats. These results strengthen our previous results in suggesting that schizophrenia-like attentional abnormalities as well as reduced response to APDs in female rats are associated with low level of gonadal hormones. In addition, they support the possibility that estrogen may have an antipsychotic-like action in animal models.
Collapse
Affiliation(s)
- Michal Arad
- Department of Psychology, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
7
|
Uban KA, Rummel J, Floresco SB, Galea LAM. Estradiol modulates effort-based decision making in female rats. Neuropsychopharmacology 2012; 37:390-401. [PMID: 21881567 PMCID: PMC3242300 DOI: 10.1038/npp.2011.176] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disorders of the dopamine system, such as schizophrenia or stimulant addiction, are associated with impairments in different forms of cost/benefit decision making. The neural circuitry (ie amygdala, prefrontal cortex, nucleus accumbens) underlying these functions receives dopamine input, which is thought to have a central role in mediating cost/benefit decisions. Estradiol modulates dopamine activity, and estrogen receptors (ERs) are found within this neurocircuitry, suggesting that decision making may be influenced by estradiol. The present study examined the contribution of estradiol and selective ERα and β agonists on cost/benefit decision making in adult female Long-Evans rats. An effort-discounting task was utilized, where rats could either emit a single response on a low-reward lever to receive two pellets, or make 2, 5, 10, or 20 responses on a high-reward lever to obtain four pellets. Ovariectomy increased the choice on the high-reward lever, whereas replacement with high (10 μg), but not low (0.3 μg), levels of estradiol benzoate reduced the choice on the high-reward lever. Interestingly, both an ERα agonist (propyl-pyrazole triol (PPT)) and an ERβ agonist (diarylpropionitrile (DPN)) increased choice on the high-reward lever when administered independently, but when these two agonists were combined, a decrease in choice for the high-reward lever was observed. The effects of estradiol, PPT, and DPN were more pronounced 24 h post-administration, suggesting that these effects may be genomic in nature. Together, these results demonstrate that estradiol modulates cost/benefit decision making in females, whereby concomitant activation of ERα and β receptors shifts the decision criteria and reduces preference for larger, yet more costly rewards.
Collapse
Affiliation(s)
- Kristina A Uban
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Julia Rummel
- International Graduate Program Medical Neurosciences, Charité Universitätsmedizin Berlin, Berlin, Germany,Department of Psychiatry and Psychotherapy, Technical University Dresden, Dresden, Germany
| | - Stan B Floresco
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada,Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, Canada, BC V6T 1Z4, Tel: +1 604 822 6536, Fax: +1 604 822 6923, E-mail:
| |
Collapse
|
8
|
Staffend NA, Meisel RL. DiOlistic Labeling of Neurons in Tissue Slices: A Qualitative and Quantitative Analysis of Methodological Variations. Front Neuroanat 2011; 5:14. [PMID: 21427781 PMCID: PMC3049322 DOI: 10.3389/fnana.2011.00014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/18/2011] [Indexed: 12/04/2022] Open
Abstract
Fine neuronal morphology, such as dendritic spines, classically has been studied using the Golgi technique; however, Golgi staining is difficult to combine with other histological techniques. With the increasing popularity of fluorescent imaging, a number of fluorescent dyes have been developed that enable the coupling of multiple fluorescent labels in a single preparation. These fluorescent dyes include the lipophilic dialkylcarbocyanine, DiI; traditionally used for anterograde and retrograde neuronal tracing. More recently, DiI labeling has been used in combination with the Gene Gun for “DiOlistic” labeling of neurons in slice preparations. DiI sequesters itself within and diffuses laterally along the neuronal membrane, however once the cell is permeabilized, the DiI begins to leak from the cell membrane. A DiI derivative, Cell Tracker™ CM-DiI, increases dye stability and labeling half-life in permeabilized tissue, however at much greater expense. Here, the DiI and CM-DiI DiOlistic labeling techniques were tested in side-by-side experiments evaluating dye stability within dendritic architecture in medium spiny neurons of the dorsal stratum in both non-permeabilized and permeabilized tissue sections. In tissue sections that were not permeabilized, spine density in DiI labeled sections was higher than in CM-DiI labeling. In contrast, tissue sections that were permeabilized had higher spine densities in CM-DiI labeled neurons. These results suggest that for experiments involving non-permeabilized tissue, traditional DiI will suffice, however for experiments involving permeabilized tissue CM-DiI provides more consistent data. These experiments provide the first quantitative analyses of the impact of methodological permutations on neuronal labeling with DiI.
Collapse
Affiliation(s)
- Nancy A Staffend
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | | |
Collapse
|
9
|
Sex-dependent antipsychotic capacity of 17β-estradiol in the latent inhibition model: a typical antipsychotic drug in both sexes, atypical antipsychotic drug in males. Neuropsychopharmacology 2010; 35:2179-92. [PMID: 20613719 PMCID: PMC3055319 DOI: 10.1038/npp.2010.89] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The estrogen hypothesis of schizophrenia suggests that estrogen is a natural neuroprotector in women and that exogenous estrogen may have antipsychotic potential, but results of clinical studies have been inconsistent. We have recently shown using the latent inhibition (LI) model of schizophrenia that 17β-estradiol exerts antipsychotic activity in ovariectomized (OVX) rats. The present study sought to extend the characterization of the antipsychotic action of 17β-estradiol (10, 50 and 150 μg/kg) by testing its capacity to reverse amphetamine- and MK-801-induced LI aberrations in gonadally intact female and male rats. No-drug controls of both sexes showed LI, ie, reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, if conditioned with two but not five tone-shock pairings. In both sexes, amphetamine (1 mg/kg) and MK-801 (50 μg/kg) produced disruption (under weak conditioning) and persistence (under strong conditioning) of LI, modeling positive and negative/cognitive symptoms, respectively. 17β-estradiol at 50 and 150 μg/kg potentiated LI under strong conditioning and reversed amphetamine-induced LI disruption in both males and females, mimicking the action of typical and atypical antipsychotic drugs (APDs) in the LI model. 17β-estradiol also reversed MK-induced persistent LI, an effect mimicking atypical APDs and NMDA receptor enhancers, but this effect was observed in males and OVX females but not in intact females. These findings indicate that in the LI model, 17β-estradiol exerts a clear-cut antipsychotic activity in both sexes and, remarkably, is more efficacious in males and OVX females where it also exerts activity considered predictive of anti-negative/cognitive symptoms.
Collapse
|