1
|
Chen Z, Lin B, Yao X, Weng J, Liu J, He Q, Song K, Zhou C, Zuo Z, Huang X, Liu Z, Huang Q, Xu Q, Guo X. Endothelial β-catenin upregulation and Y142 phosphorylation drive diabetic angiogenesis via upregulating KDR/HDAC9. Cell Commun Signal 2024; 22:182. [PMID: 38491522 PMCID: PMC10941375 DOI: 10.1186/s12964-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms. METHODS In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on. RESULTS Here, we found that AGEs activated Wnt/β-catenin signaling pathway and enhanced the β-catenin protein level by affecting the expression of β-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate β-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of β-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-β-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified. CONCLUSION Collectively, this study offers insight into the pathophysiological functions of β-catenin in diabetic angiogenesis.
Collapse
Affiliation(s)
- Zhenfeng Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingqi Lin
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodan Yao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Weng
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinlian Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi He
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke Song
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuyu Zhou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zirui Zuo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuanhua Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiulin Xu
- Department of Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohua Guo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Alvarez-Palomo B, Barrot-Feixat C, Sarret H, Requena J, Pau M, Vidal-Taboada JM, Oliva R, Ballesca JL, Edel MJ, Mezquita-Pla J. Two novel ligand-independent variants of the VEGFR-1 receptor are expressed in human testis and spermatozoa, one of them with the ability to activate SRC proto-oncogene tyrosine kinases. Oncotarget 2019; 10:5871-5887. [PMID: 31645906 PMCID: PMC6791376 DOI: 10.18632/oncotarget.27232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
The vascular endothelial growth factor receptor 1 (VEGFR-1) family of receptors is preferentially expressed in endothelial cells, with the full-length and mostly the soluble (sVEGFR-1) isoforms being the most expressed ones. Surprisingly, cancer cells (MDA-MB-231) express, instead, alternative intracellular VEGFR-1 variants. We wondered if these variants, that are no longer dependent on ligands for activation, were expressed in a physiological context, specifically in spermatogenic cells, and whether their expression was maintained in spermatozoa and required for human fertility. By interrogating a human library of mature testis cDNA, we characterized two new truncated intracellular variants different from the ones previously described in cancer cells. The new isoforms were transcribed from alternative transcription start sites (aTSS) located respectively in intron-19 (i19VEGFR-1) and intron-28 (i28VEGFR-1) of the VEGFR-1 gene (GenBank accession numbers JF509744 and JF509745) and expressed in mature testis and spermatozoa. In this paper, we describe the characterization of these isoforms by RT-PCR, northern blot, and western blot, their preferential expression in human mature testis and spermatozoa, and the elements that punctuate their proximal promoters and suggest cues for their expression in spermatogenic cells. Mechanistically, we show that i19VEGFR-1 has a strong ability to phosphorylate and activate SRC proto-oncogene non-receptor tyrosine kinases and a significant bias toward a decrease in expression in patients considered infertile by WHO criteria.
Collapse
Affiliation(s)
- Belen Alvarez-Palomo
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Institute of Neurosciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Carme Barrot-Feixat
- Forensic Genetics Laboratory, Medicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Helena Sarret
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Institute of Neurosciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Requena
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Institute of Neurosciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Montserrat Pau
- Molecular Genetics Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Jose-Manuel Vidal-Taboada
- Peripheral Nervous System, Neuroscience Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Laboratory, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Department of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain.,Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Centre, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Josep-Lluis Ballesca
- Clinic Institute of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Michael J Edel
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Institute of Neurosciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain.,International Research Fellow, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.,Senior Research Fellow, University of Western Australia, School of Medicine and Pharmacology, Harry Perkins Research Institute Centre for Cell Therapy and Regenerative Medicine (CCTRM), Perth, Western Australia, Australia
| | - Jovita Mezquita-Pla
- Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Institute of Neurosciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Negri GL, Grande BM, Delaidelli A, El-Naggar A, Cochrane D, Lau CC, Triche TJ, Moore RA, Jones SJ, Montpetit A, Marra MA, Malkin D, Morin RD, Sorensen PH. Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. J Pathol 2019; 249:319-331. [PMID: 31236944 DOI: 10.1002/path.5319] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Abstract
Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gian Luca Negri
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Amal El-Naggar
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Dawn Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Ching C Lau
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Timothy J Triche
- Department of Pathology and Laboratory Medicine, Childrens Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pathology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Alexandre Montpetit
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - David Malkin
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
All-trans-retinoic acid activates the pro-invasive Src-YAP-Interleukin 6 axis in triple-negative MDA-MB-231 breast cancer cells while cerivastatin reverses this action. Sci Rep 2018; 8:7047. [PMID: 29728589 PMCID: PMC5935706 DOI: 10.1038/s41598-018-25526-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
All-trans-retinoic acid (RA), the active metabolite of vitamin A, can reduce the malignant phenotype in some types of cancer and paradoxically also can promote cancer growth and invasion in others. For instance, it has been reported that RA induces tumor suppression in tumor xenografts of MDA-MB-468 breast cancer cells while increasing tumor growth and metastases in xenografts of MDA-MB-231 breast cancer cells. The signaling pathways involved in the pro-invasive action of retinoic acid remain mostly unknown. We show here that RA activates the pro-invasive axis Src-YAP-Interleukin 6 (Src-YAP-IL6) in triple negative MDA-MB-231 breast cancer cells, yielding to increased invasion of these cells. On the contrary, RA inhibits the Src-YAP-IL6 axis of triple-negative MDA-MB-468 cells, which results in decreased invasion phenotype. In both types of cells, inhibition of the Src-YAP-IL6 axis by the Src inhibitor PP2 drastically reduces migration and invasion. Src inhibition also downregulates the expression of a pro-invasive isoform of VEGFR1 in MDA-MB-231 breast cancer cells. Furthermore, interference of YAP nuclear translocation using the statin cerivastatin reverses the upregulation of Interleukin 6 (IL-6) and the pro-invasive effect of RA on MDA-MB-231 breast cancer cells and also decreases invasion and viability of MDA-MB-468 breast cancer cells. These results altogether suggest that RA induces pro-invasive or anti-invasive actions in two triple-negative breast cancer cell lines due to its ability to activate or inhibit the Src-YAP-IL6 axis in different cancer cells. The pro-invasive effect of RA can be reversed by the statin cerivastatin.
Collapse
|
5
|
Weddell JC, Imoukhuede PI. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr Biol (Camb) 2018; 9:464-484. [PMID: 28436498 DOI: 10.1039/c7ib00011a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.
Collapse
Affiliation(s)
- Jared C Weddell
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Ave., 3233 Digital Computer Laboratory, Urbana, IL 61801, USA.
| | | |
Collapse
|
6
|
Lebok P, Huber J, Burandt EC, Lebeau A, Marx AH, Terracciano L, Heilenkötter U, Jänicke F, Müller V, Paluchowski P, Geist S, Wilke C, Simon R, Sauter G, Quaas A. Loss of membranous VEGFR1 expression is associated with an adverse phenotype and shortened survival in breast cancer. Mol Med Rep 2016; 14:1443-50. [PMID: 27357606 PMCID: PMC4940099 DOI: 10.3892/mmr.2016.5430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/15/2016] [Indexed: 01/28/2023] Open
Abstract
Angiogenesis is a key process in tumor growth and progression, which is controlled by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). In order to better understand the prevalence and prognostic value of VEGFR1 expression in breast cancer, a tissue microarray containing >2,100 breast cancer specimens, with clinical follow‑up data, was analyzed by immunohistochemistry using an antibody directed against the membrane‑bound full‑length receptor protein. The results demonstrated that membranous VEGFR1 staining was detected in all (5 of 5) normal breast specimens. In carcinoma specimens, membranous staining was negative in 3.1%, weak in 6.3%, moderate in 10.9%, and strong in 79.7% of the 1,630 interpretable tissues. Strong staining was significantly associated with estrogen receptor and progesterone receptor expression, but was inversely associated with advanced tumor stage (P=0.0431), high Bloom-Richardson-Ellis Score for Breast Cancer grade and low Ki67 labeling index (both P<0.0001). Cancers with moderate to strong (high) VEGFR1 expression were associated with significantly improved overall survival, as compared with tumors exhibiting negative or weak (low) expression (P=0.0015). This association was also detected in the subset of nodal‑positive cancers (P=0.0018), and in the subset of 185 patients who had received tamoxifen as the sole therapy (P=0.001). In conclusion, these data indicated that membrane‑bound VEGFR1 is frequently expressed in normal and cancerous breast epithelium. In addition, reduced or lost VEGFR1 expression may serve as a marker for poor prognosis in patients with breast cancer, who might not optimally benefit from endocrine therapy.
Collapse
Affiliation(s)
- Patrick Lebok
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Julia Huber
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Eike-Christian Burandt
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Annette Lebeau
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Andreas Holger Marx
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, 4056 Basel, Switzerland
| | - Uwe Heilenkötter
- Department of Gynaecology, Hospital Itzehoe, D-25524 Itzehoe, Germany
| | - Fritz Jänicke
- Department of Gynaecology, Hospital Pinneberg, D-25421 Pinneberg, Germany
| | - Volkmar Müller
- Department of Gynaecology, Hospital Pinneberg, D-25421 Pinneberg, Germany
| | - Peter Paluchowski
- Department of Gynaecology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Stefan Geist
- Department of Gynaecology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Christian Wilke
- Department of Gynaecology, Hospital Elmshorn, D-25337 Elmshorn, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Alexander Quaas
- Institute for Pathology, University of Cologne, D‑50937 Cologne, Germany
| |
Collapse
|
7
|
Luan X, Guan YY, Lovell JF, Zhao M, Lu Q, Liu YR, Liu HJ, Gao YG, Dong X, Yang SC, Zheng L, Sun P, Fang C, Chen HZ. Tumor priming using metronomic chemotherapy with neovasculature-targeted, nanoparticulate paclitaxel. Biomaterials 2016; 95:60-73. [PMID: 27130953 DOI: 10.1016/j.biomaterials.2016.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 02/06/2023]
Abstract
Normalization of the tumor microenvironment is a promising approach to render conventional chemotherapy more effective. Although passively targeted drug nanocarriers have been investigated to this end, actively targeted tumor priming remains to be explored. In this work, we demonstrate an effective tumor priming strategy using metronomic application of nanoparticles actively targeted to tumor neovasculature. F56 peptide-conjugated paclitaxel-loaded nanoparticles (F56-PTX-NP) were formulated from PEGylated polylactide using an oil in water emulsion approach. Metronomic F56-PTX-NP specifically targeted tumor vascular endothelial cells (ECs), pruned vessels with strong antiangiogenic activity and induced thrombospondin-1 (TSP-1) secretion from ECs. The treatment induced tumor vasculature normalization as evidenced by significantly increased coverage of basement membrane and pericytes. The tumor microenvironment was altered with enhanced pO2, lower interstitial fluid pressure, and enhanced vascular perfusion and doxorubicin delivery. A "normalization window" of at least 9 days was induced, which was longer than other approaches using antiangiogenic agents. Together, these results show that metronomic, actively-targeted nanomedicine can induce tumor vascular normalization and modulate the tumor microenvironment, opening a window of opportunity for effective combination chemotherapies.
Collapse
Affiliation(s)
- Xin Luan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Ying-Yun Guan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China; Department of Pharmacy, Ruijin Hospital, SJTU-SM, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Mei Zhao
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Ya-Rong Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Hai-Jun Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Yun-Ge Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao Dong
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Lin Zheng
- Pathology Center, Shanghai First People's Hospital, SJTU-SM, 280 South Chongqing Road, Shanghai 200025, China
| | - Peng Sun
- Department of General Surgery, Shanghai Tongren Hospital, SJTU-SM, 1111 Xianxia Road, Shanghai 200336, China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
8
|
Blanco VM, Chu Z, Vallabhapurapu SD, Sulaiman MK, Kendler A, Rixe O, Warnick RE, Franco RS, Qi X. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors. Oncotarget 2015; 5:7105-18. [PMID: 25051370 PMCID: PMC4196187 DOI: 10.18632/oncotarget.2214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS nanovesicles have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Víctor M Blanco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Zhengtao Chu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Subrahmanya D Vallabhapurapu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mahaboob K Sulaiman
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Olivier Rixe
- Division of Hematology/Oncology, Georgia Regents University, GRU Cancer Center, Augusta, Georgia
| | - Ronald E Warnick
- Department of Neurosurgery, University of Cincinnati Brain Tumor Center, and Mayfield Clinic, Cincinnati, Ohio
| | - Robert S Franco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xiaoyang Qi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
9
|
Mezquita B, Pineda E, Mezquita J, Mezquita P, Pau M, Codony-Servat J, Martínez-Balibrea E, Mora C, Maurel J, Mezquita C. LoVo colon cancer cells resistant to oxaliplatin overexpress c-MET and VEGFR-1 and respond to VEGF with dephosphorylation of c-MET. Mol Carcinog 2015; 55:411-9. [DOI: 10.1002/mc.22289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/05/2014] [Accepted: 12/18/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Belén Mezquita
- Departament de Ciències Fisiològiques I. Laboratori de Genètica Molecular, IDIBAPS, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
- Departament de Ciències Bàsiques; Universitat Internacional de Catalunya; Barcelona Spain
| | - Estela Pineda
- Medical Oncology Department; Hospital Clínic; University of Barcelona; Barcelona Spain
| | - Jovita Mezquita
- Departament de Ciències Fisiològiques I. Laboratori de Genètica Molecular, IDIBAPS, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
| | - Pau Mezquita
- Departament de Ciències Bàsiques; Universitat Internacional de Catalunya; Barcelona Spain
| | - Montserrat Pau
- Departament de Ciències Fisiològiques I. Laboratori de Genètica Molecular, IDIBAPS, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
| | - Jordi Codony-Servat
- Medical Oncology Department; Hospital Clínic; University of Barcelona; Barcelona Spain
| | - Eva Martínez-Balibrea
- Medical Oncology Service; Institut Català d'Oncologia-Hospital Germans Trias i Pujol; Badalona Spain
| | - Conchi Mora
- Departament de Medicina Experimental; Universitat de Lleida, Alcalde Rovira Roure; Lleida Spain
| | - Joan Maurel
- Medical Oncology Department; Hospital Clínic; University of Barcelona; Barcelona Spain
| | - Cristóbal Mezquita
- Departament de Ciències Fisiològiques I. Laboratori de Genètica Molecular, IDIBAPS, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
10
|
Spreafico A, Chi KN, Sridhar SS, Smith DC, Carducci MA, Kavsak P, Wong TS, Wang L, Ivy SP, Mukherjee SD, Kollmannsberger CK, Sukhai MA, Takebe N, Kamel-Reid S, Siu LL, Hotte SJ. A randomized phase II study of cediranib alone versus cediranib in combination with dasatinib in docetaxel resistant, castration resistant prostate cancer patients. Invest New Drugs 2014; 32:1005-16. [PMID: 24788563 PMCID: PMC4281773 DOI: 10.1007/s10637-014-0106-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activation of the vascular endothelial growth factor receptor (VEGFR) and the oncogenic Src pathway has been implicated in the development of castration-resistant prostate cancer (CRPC) in preclinical models. Cediranib and dasatinib are multi-kinase inhibitors targeting VEGFR and Src respectively. Phase II studies of cediranib and dasatinib in CRPC have shown single agent activity. METHODS Docetaxel-pretreated CRPC patients were randomized to arm A: cediranib alone (20 mg/day) versus arm B: cediranib (20 mg/day) plus dasatinib (100 mg/day) given orally on 4-week cycles. Primary endpoint was 12-week progression-free survival (PFS) as per the Prostate Cancer Clinical Trials Working Group (PCWG2). Patient reported outcomes were evaluated using Functional Assessment of Cancer Therapy-Prostate (FACT-P) and Present Pain Intensity (PPI) scales. Correlative studies of bone turnover markers (BTM), including bone alkaline phosphate (BAP) and serum beta-C telopeptide (B-CTx) were serially assayed. Results A total of 22 patients, 11 per arm, were enrolled. Baseline demographics were similar in both arms. Median number of cycles =4 in arm A (range 1-12) and 2 in arm B (range 1-9). Twelve-week PFS was 73 % in arm A versus 18 % in arm B (p = 0.03). Median PFS in months (arm A versus B) was: 5.2 versus 2.6 (95 % CI: 1.9-6.5 versus 1.4-not reached). Most common grade 3 toxicities were hypertension, anemia and thrombocytopenia in arm A and hypertension, diarrhea and fatigue in arm B. One treatment-related death (retroperitoneal hemorrhage) was seen in arm A. FACT-P and PPI scores did not significantly change in either arm. No correlation between BTM and PFS was seen in either arm. CONCLUSIONS Although limited by small numbers, this randomized study showed that the combination of VEGFR and Src targeted therapy did not result in improved efficacy and may be associated with a worse outcome than VEGFR targeted therapy alone in patients with CRPC. ClinicalTrials.gov number: NCT01260688.
Collapse
Affiliation(s)
| | - Kim N. Chi
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | - Michael A. Carducci
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Peter Kavsak
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, Canada
| | - Tracy S. Wong
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Lisa Wang
- Princess Margaret Cancer Center, Toronto, ON, Canada
| | - S. Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, USA
| | | | | | | | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute NIH, Bethesda, USA
| | | | | | | |
Collapse
|
11
|
Kanthou C, Dachs GU, Lefley DV, Steele AJ, Coralli-Foxon C, Harris S, Greco O, Dos Santos SA, Reyes-Aldasoro CC, English WR, Tozer GM. Tumour cells expressing single VEGF isoforms display distinct growth, survival and migration characteristics. PLoS One 2014; 9:e104015. [PMID: 25119572 PMCID: PMC4131915 DOI: 10.1371/journal.pone.0104015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/09/2014] [Indexed: 01/15/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF) is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120) on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188) or wild type controls (fswt) were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively) were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine kinase receptor activation. VEGF isoforms are emerging as potential biomarkers for anti-VEGF therapies. Our results reveal novel roles of individual isoforms associated with cancer growth and metastasis and highlight the importance of understanding their diverse actions.
Collapse
Affiliation(s)
- Chryso Kanthou
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
- * E-mail:
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Diane V. Lefley
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | - Andrew J. Steele
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Claudia Coralli-Foxon
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | - Sheila Harris
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | - Olga Greco
- University of Sheffield, Sheffield, United Kingdom
| | - Sofia A. Dos Santos
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | | | - William R. English
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | - Gillian M. Tozer
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| |
Collapse
|
12
|
Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity. Cells 2014; 3:92-111. [PMID: 24709904 PMCID: PMC3980740 DOI: 10.3390/cells3010092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT) and a truncated isoform of VEGFR-1 (i21-VEGFR-1), which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.
Collapse
|
13
|
Mezquita B, Mezquita J, Barrot C, Carvajal S, Pau M, Mezquita P, Mezquita C. A Truncated-Flt1 Isoform of Breast Cancer Cells Is Upregulated by Notch and Downregulated by Retinoic Acid. J Cell Biochem 2013; 115:52-61. [DOI: 10.1002/jcb.24632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Belén Mezquita
- Laboratori de Genètica Molecular, Departament de Ciències Fisiològiques I, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Facultat de Medicina, Universitat de Barcelona; Barcelona Spain
| | - Jovita Mezquita
- Laboratori de Genètica Molecular, Departament de Ciències Fisiològiques I, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Facultat de Medicina, Universitat de Barcelona; Barcelona Spain
| | - Carme Barrot
- Departament de Salut Pública; Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
| | - Silvia Carvajal
- Department de Ciències Bàsiques; Facultat de Medicina i Ciències de la Salut; Universitat Internacional de Catalunya; Sant Cugat del Vallès Spain
| | - Montserrat Pau
- Laboratori de Genètica Molecular, Departament de Ciències Fisiològiques I, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Facultat de Medicina, Universitat de Barcelona; Barcelona Spain
| | - Pau Mezquita
- Department de Ciències Bàsiques; Facultat de Medicina i Ciències de la Salut; Universitat Internacional de Catalunya; Sant Cugat del Vallès Spain
| | - Cristóbal Mezquita
- Laboratori de Genètica Molecular, Departament de Ciències Fisiològiques I, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Facultat de Medicina, Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
14
|
Regulation of the Ras-MAPK and PI3K-mTOR Signalling Pathways by Alternative Splicing in Cancer. Int J Cell Biol 2013; 2013:568931. [PMID: 24078813 PMCID: PMC3775402 DOI: 10.1155/2013/568931] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 01/21/2023] Open
Abstract
Alternative splicing is a fundamental step in regulation of gene expression of many tumor suppressors and oncogenes in cancer. Signalling through the Ras-MAPK and PI3K-mTOR pathways is misregulated and hyperactivated in most types of cancer. However, the regulation of the Ras-MAPK and PI3K-mTOR signalling pathways by alternative splicing is less well established. Recent studies have shown the contribution of alternative splicing regulation of these signalling pathways which can lead to cellular transformation, cancer development, and tumor maintenance. This review will discuss findings in the literature which describe new modes of regulation of components of the Ras-MAPK and PI3K-mTOR signalling pathways by alternative splicing. We will also describe the mechanisms by which signals from extracellular stimuli can be communicated to the splicing machinery and to specific RNA-binding proteins that ultimately control exon definition events.
Collapse
|
15
|
Raikwar NS, Liu KZ, Thomas CP. Protein kinase C regulates FLT1 abundance and stimulates its cleavage in vascular endothelial cells with the release of a soluble PlGF/VEGF antagonist. Exp Cell Res 2013; 319:2578-87. [PMID: 23911939 DOI: 10.1016/j.yexcr.2013.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 01/18/2023]
Abstract
FLT1 and its soluble form (sFLT1) arise as alternate transcripts from the same gene and sFLT1 can antagonize the effect of vascular endothelial growth factor (VEGF) on its cognate receptors. We investigated the effect of VEGF and protein kinase C (PKC) activation on sFLT1 abundance. We demonstrated that VEGF stimulates sFLT1 and FLT1 mRNA and protein levels in vascular endothelial cells via VEGFR2 and PKC. Using an FLT1 expression vector with N and C-terminal epitope tags, we show that PKC activation increases the cleavage of FLT1 into an N-terminal extracellular fragment and a C-terminal intracellular fragment with the cleavage occurring adjacent to the transmembrane domain. The trafficking and glycosylation inhibitors brefeldin, monensin and tunicamycin substantially reduced cleavage and release of the N-terminal ectodomain of FLT1 and inhibited secretion of the isoforms of sFLT1. The shed FLT1 ectodomain can bind VEGF and PlGF and inhibit VEGF-induced vascular tube formation thus confirming that it is functionally equivalent to the alternately spliced and secreted sFLT1 isoforms.
Collapse
Affiliation(s)
- Nandita S Raikwar
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
16
|
The use of nanoparticulate delivery systems in metronomic chemotherapy. Biomaterials 2013; 34:3925-3937. [DOI: 10.1016/j.biomaterials.2013.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
|
17
|
Kurisetty V, Bryan BA. Aberrations in Angiogenic Signaling and MYC Amplifications are Distinguishing Features of Angiosarcoma. ACTA ACUST UNITED AC 2013; 1. [PMID: 25374893 PMCID: PMC4217701 DOI: 10.4172/2329-9495.1000102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Angiosarcomas are very aggressive, rare malignant tumors that originate from vascular or lymphatic vessels and primarily occur following chemical exposure or radiation therapy. Tumor response to either chemotherapy, radiation, or novel anti-angiogenic therapeutics is very low, and because little is known regarding the aberrant signaling that controls these tumors, personalized treatment options for many of these patients are lacking. In this review, we summarize several recent findings regarding the genomics of angiosarcomas, including new discoveries regarding aberrant angiogenic signaling and Myc amplification as key features of this tumor type.
Collapse
Affiliation(s)
- Vittal Kurisetty
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
18
|
Artacho-Cordón A, Artacho-Cordón F, Ríos-Arrabal S, Calvente I, Núñez MI. Tumor microenvironment and breast cancer progression: a complex scenario. Cancer Biol Ther 2012; 13:14-24. [PMID: 22336584 DOI: 10.4161/cbt.13.1.18869] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is now widely accepted that the development and progression of a tumor toward the malignant phenotype is highly dependent on interactions between tumor cells and the tumor microenvironment. Different components of the tumor microenvironment may have stimulatory or inhibitory effects on tumor progression by regulating the gene expression repertoire in tumor cells and stromal cells. This review analyzes novel research findings on breast cancer progression, discussing acquisition of the metastatic phenotype in breast disease in relation to different aspects of cross-talk among components of the tumor microenvironment. Knowledge of the interaction of all of these factors would contribute to elucidating the mechanisms that disrupt regulatory/signaling cascades and downstream effects in breast cancer.
Collapse
|
19
|
Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release 2012; 164:265-75. [PMID: 22800576 DOI: 10.1016/j.jconrel.2012.07.013] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/29/2012] [Accepted: 07/08/2012] [Indexed: 12/26/2022]
Abstract
Anticancer nanomedicine was coined to describe anticancer delivery systems such as polymer conjugates, liposomes, micelles, and metal nanoparticles. These anticancer delivery platforms have been developed with the enhanced permeability and retention (EPR) effect as a central mechanism for tumor targeting. EPR based nanomedicine has demonstrated, beyond doubt, to selectively target tumor tissues in animal models. However, over the last two decades, only nine anticancer agents utilizing this targeting strategy have been approved for clinical use. In this review, we systematically analyze various aspects that explain the limited clinical progress yet achieved. The influence of nanomedicine physicochemical characteristics, animal tumor models, and variations in tumor biology, on EPR based tumor targeting is closely examined. Furthermore, we reviewed results from over one hundred publications to construct patterns of factors that can influence the transition of EPR based anticancer nanomedicine to the clinic.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Pharmacology & Toxicology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
20
|
Abstract
VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.
Collapse
|
21
|
New pyrazolo[3,4-d]pyrimidine SRC inhibitors induce apoptosis in mesothelioma cell lines through p27 nuclear stabilization. Oncogene 2011; 31:929-38. [PMID: 21785466 DOI: 10.1038/onc.2011.286] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Malignant mesothelioma (MM) is a highly aggressive tumor of the serous membranes for which there is currently no effective curative modality. Recent data suggest that hyperactivation of the tyrosine kinase SRC has a key role in MM development and therefore this kinase represents an important molecular target for MM therapy. We tested new pyrazolo[3,4-d]pyrimidine SRC inhibitors on a panel of MM cell lines expressing the active form of SRC. These SRC inhibitors exerted a significant proapoptotic effect on MM cells without affecting the normal mesothelial cell line MET-5A, supporting a possible use of these SRC inhibitors for a safe treatment of MM. We also showed that SRC inhibitor-induced apoptosis occurred concomitantly with an increase in the nuclear stability of the cyclin-dependent kinase inhibitor p27. This finding is remarkable considering that loss of nuclear p27 expression is a well-established adverse prognostic factor in MM, and p27 nuclear localization is crucial for its tumor-suppressive function. Consistently, SRC inhibition seems to promote the increase in p27 nuclear level also by inactivating the AKT kinase and downregulating cyclin D1, which would otherwise delay p27 nuclear import and provoke its cytoplasmic accumulation. To determine whether p27 stabilization has a direct role in apoptosis induced by SRC inhibition, we stably silenced the CDKN1B gene, encoding p27, in MSTO-211H and REN mesothelioma cells by transduction with lentiviral vectors expressing short hairpin RNAs against the CDKN1B transcript. Strikingly, p27 silencing was able to suppress the apoptosis induced by these SRC inhibitors in both MM cell lines, suggesting that p27 has a crucial proapoptotic role in MM cells treated with SRC inhibitors. Our findings reveal a new mechanism, dependent on p27 nuclear stabilization, by which SRC inhibition can induce apoptosis in MM cells and provide a new rationale for the use of SRC inhibitors in MM therapy.
Collapse
|