1
|
Anderson-Crannage M, Ascensión AM, Ibanez-Solé O, Zhu H, Schaefer E, Ottomanelli D, Hochberg B, Pan J, Luo W, Tian M, Chu Y, Cairo MS, Izeta A, Liao Y. Inflammation-mediated fibroblast activation and immune dysregulation in collagen VII-deficient skin. Front Immunol 2023; 14:1211505. [PMID: 37809094 PMCID: PMC10557493 DOI: 10.3389/fimmu.2023.1211505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Inflammation is known to play a critical role in all stages of tumorigenesis; however, less is known about how it predisposes the tissue microenvironment preceding tumor formation. Recessive dystrophic epidermolysis bullosa (RDEB), a skin-blistering disease secondary to COL7A1 mutations and associated with chronic wounding, inflammation, fibrosis, and cutaneous squamous cell carcinoma (cSCC), models this dynamic. Here, we used single-cell RNA sequencing (scRNAseq) to analyze gene expression patterns in skin cells from a mouse model of RDEB. We uncovered a complex landscape within the RDEB dermal microenvironment that exhibited altered metabolism, enhanced angiogenesis, hyperproliferative keratinocytes, infiltration and activation of immune cell populations, and inflammatory fibroblast priming. We demonstrated the presence of activated neutrophil and Langerhans cell subpopulations and elevated expression of PD-1 and PD-L1 in T cells and antigen-presenting cells, respectively. Unsupervised clustering within the fibroblast population further revealed two differentiation pathways in RDEB fibroblasts, one toward myofibroblasts and the other toward a phenotype that shares the characteristics of inflammatory fibroblast subsets in other inflammatory diseases as well as the IL-1-induced inflammatory cancer-associated fibroblasts (iCAFs) reported in various cancer types. Quantitation of inflammatory cytokines indicated dynamic waves of IL-1α, TGF-β1, TNF, IL-6, and IFN-γ concentrations, along with dermal NF-κB activation preceding JAK/STAT signaling. We further demonstrated the divergent and overlapping roles of these cytokines in inducing inflammatory phenotypes in RDEB patients as well as RDEB mouse-derived fibroblasts together with their healthy controls. In summary, our data have suggested a potential role of inflammation, driven by the chronic release of inflammatory cytokines such as IL-1, in creating an immune-suppressed dermal microenvironment that underlies RDEB disease progression.
Collapse
Affiliation(s)
- Morgan Anderson-Crannage
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Alex M. Ascensión
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Olga Ibanez-Solé
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Hongwen Zhu
- Department of Research & Development, Guizhou Atlasus Technology Co., Ltd., Guiyang, China
| | - Edo Schaefer
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Darcy Ottomanelli
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Bruno Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Jian Pan
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
- Department of Biomedical Engineering and Science, School of Engineering, Tecnun University of Navarra, San Sebastian, Spain
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
2
|
Kubota S, Kawata K, Hattori T, Nishida T. Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration. Int J Mol Sci 2022; 23:ijms23115887. [PMID: 35682564 PMCID: PMC9180607 DOI: 10.3390/ijms23115887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin–yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin–yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described.
Collapse
|
3
|
Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 2020; 7:511-524. [PMID: 33358571 DOI: 10.1016/j.trecan.2020.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Despite the dramatic advances in cancer research over the decades, effective therapeutic strategies are still urgently needed. Increasing evidence indicates that connective tissue growth factor (CTGF), a multifunctional signaling modulator, promotes cancer initiation, progression, and metastasis by regulating cell proliferation, migration, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). CTGF is also involved in the tumor microenvironment in most of the nodes, including angiogenesis, inflammation, and cancer-associated fibroblast (CAF) activation. In this review, we comprehensively discuss the expression of CTGF and its regulation, oncogenic role, clinical relevance, targeting strategies, and therapeutic agents. Herein, we propose that CTGF is a promising cancer therapeutic target that could potentially improve the clinical outcomes of cancer patients.
Collapse
|
4
|
McArthur L, Riddell A, Chilton L, Smith GL, Nicklin SA. Regulation of connexin 43 by interleukin 1β in adult rat cardiac fibroblasts and effects in an adult rat cardiac myocyte: fibroblast co-culture model. Heliyon 2019; 6:e03031. [PMID: 31909243 PMCID: PMC6940628 DOI: 10.1016/j.heliyon.2019.e03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Connexin 43 expression (Cx43) is increased in cardiac fibroblasts (CFs) following myocardial infarction. Here, potential mediators responsible for increasing Cx43 expression and effects of differential CF phenotype on cardiac myocyte (CM) function were investigated. Stimulating adult rat CFs with proinflammatory mediators revealed that interleukin 1β (IL-1β) significantly enhanced Cx43 levels through the IL-1β pathway. Additionally, IL-1β reduced mRNA levels of the myofibroblast (MF) markers: (i) connective tissue growth factor (CTGF) and (ii) α smooth muscle actin (αSMA), compared to control CFs. A co-culture adult rat CM:CF model was utilised to examine cell-to-cell interactions. Transfer of calcein from CMs to underlying CFs suggested functional gap junction formation. Functional analysis revealed contraction duration (CD) of CMs was shortened in co-culture with CFs, while treatment of CFs with IL-1β reduced this mechanical effect of co-culture. No effect on action potential rise time or duration of CMs cultured with control or IL-1β-treated CFs was observed. These data demonstrate that stimulating CFs with IL-1β increases Cx43 and reduces MF marker expression, suggesting altered cell phenotype. These changes may underlie the reduced mechanical effects of IL-1β treated CFs on CD of co-cultured CMs and therefore have an implication for our understanding of heterocellular interactions in cardiac disease.
Collapse
Affiliation(s)
- Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Alexandra Riddell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Lisa Chilton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
5
|
Morita W, Snelling SJB, Wheway K, Watkins B, Appleton L, Carr AJ, Dakin SG. ERK1/2 drives IL-1β-induced expression of TGF-β1 and BMP-2 in torn tendons. Sci Rep 2019; 9:19005. [PMID: 31831776 PMCID: PMC6908634 DOI: 10.1038/s41598-019-55387-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Diseased and injured tendons develop fibrosis, driven by factors including TGF-β, BMPs and CTGF. IL-1β and its signal transducer Erk1/2 are known to regulate TGF-β expression in animal tendons. We utilised tissues and cells isolated from patients with shoulder tendon tears and tendons of healthy volunteers to advance understanding of how inflammation induces fibrosis in diseased human tendons. ERK1/2 expression was reduced in torn (diseased) compared to healthy patient tendon tissues. We next investigated the fibrotic responses of tendon-derived cells isolated from healthy and diseased human tendon tissues in an inflammatory milieu. IL-1β treatment induced profound ERK1/2 signalling, TGFB1 and BMP2 mRNA expression in diseased compared to healthy tendon-derived cells. In the diseased cells, the ERK1/2 inhibitor (PD98059) completely blocked the IL-1β-induced TGFB1 and partially reduced BMP2 mRNA expression. Conversely, the same treatment of healthy cells did not modulate IL-1β-induced TGFB1 or BMP2 mRNA expression. ERK1/2 inhibition did not attenuate IL-1β-induced CTGF mRNA expression in healthy or diseased tendon cells. These findings highlight differences between ERK1/2 signalling pathway activation and expression of TGF-β1 and BMP-2 between healthy and diseased tendon tissues and cells, advancing understanding of inflammation induced fibrosis during the development of human tendon disease and subsequent repair.
Collapse
Affiliation(s)
- Wataru Morita
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK. .,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| | - Sarah J B Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Kim Wheway
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Bridget Watkins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Louise Appleton
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Andrew J Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Stephanie G Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Windmill Road, Oxford, UK. .,NIHR Oxford Biomedical Research Centre, Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
6
|
Gao W, Wang YS, Hwang E, Lin P, Bae J, Seo SA, Yan Z, Yi TH. Rubus idaeus L. (red raspberry) blocks UVB-induced MMP production and promotes type I procollagen synthesis via inhibition of MAPK/AP-1, NF-κβ and stimulation of TGF-β/Smad, Nrf2 in normal human dermal fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:241-253. [PMID: 29966991 DOI: 10.1016/j.jphotobiol.2018.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/24/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Chronic exposure to ultraviolet (UV) radiation causes photo-oxidation, which in turn results in the upregulation of matrix metalloproteinases (MMPs) and loss of collagen. Rubus idaeus L. (RI), also called red raspberry, is an important cash crop that contains abundant antioxidant compounds. Sanguiin H-6 and lambertianin C are the major ingredients presented in the extracts. Here, we studied the protective effect of RI on UVB-induced photoaging in normal human dermal fibroblasts (NHDFs). We found that RI notably reduced UVB-induced MMPs secretion and pro-inflammatory mediators production, and significantly suppressed UVB-induced activation of mitogen-activated protein kinase (MAPK), nuclear factor-κβ, as well as activator protein 1. Additionally, treatment of NHDFs with the ERK inhibitor (PD98059) and JNK inhibitor (SP600125) resulted in the reduction of UVB-induced MMP-1 and IL-6 expressions, which demonstrated that the inhibition of MMP-1 and IL-6 by RI is associated with the MAPK pathway. Furthermore, we also found that RI accelerated procollagen type I synthesis by activating the transforming growth factor-β/Smad pathway and enhanced the expression of cytoprotective antioxidants such as heme oxygenase-1 and NHD(P)H quinone oxidoreductase 1 by promoting nuclear factor E2-related factor 2 nuclear transfer. Overall, these findings demonstrated that RI was potentially effective in preventing UVB induced skin photoaging.
Collapse
Affiliation(s)
- Wei Gao
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Yu-Shuai Wang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eunson Hwang
- SD Biotechnologies Co. Ltd. #301 Seoul, Hightech Venture Center, 29, Gonghang-daero 61-gil, Ganseo-gu, Seoul 07563, Republic of Korea
| | - Pei Lin
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jahyun Bae
- SD Biotechnologies Co. Ltd. #301 Seoul, Hightech Venture Center, 29, Gonghang-daero 61-gil, Ganseo-gu, Seoul 07563, Republic of Korea
| | - Seul A Seo
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Zhengfei Yan
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
7
|
Koskela von Sydow A, Janbaz C, Kardeby C, Repsilber D, Ivarsson M. IL-1α Counteract TGF-β Regulated Genes and Pathways in Human Fibroblasts. J Cell Biochem 2015; 117:1622-32. [DOI: 10.1002/jcb.25455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Anita Koskela von Sydow
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
- Department of Clinical Research Laboratory; University Hospital; Örebro Sweden
| | - Chris Janbaz
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
- Department of Plastic and Reconstructive Surgery; University Hospital; Örebro Sweden
| | - Caroline Kardeby
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
| | - Mikael Ivarsson
- Faculty of Medicine and Health; Örebro University; Örebro Sweden
| |
Collapse
|
8
|
Tarassishin L, Lim J, Weatherly DB, Angeletti RH, Lee SC. Interleukin-1-induced changes in the glioblastoma secretome suggest its role in tumor progression. J Proteomics 2014; 99:152-168. [PMID: 24503185 DOI: 10.1016/j.jprot.2014.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/02/2014] [Accepted: 01/23/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED The tumor microenvironment including glial cells and their inflammatory products regulates brain tumor development and progression. We have previously established that human glioma cells are exquisitely sensitive to IL-1 stimulation leading us to undertake a comparative analysis of the secretome of unstimulated and cytokine (IL-1)-stimulated glioblastoma cells. We performed label-free quantitative proteomic analysis and detected 190 proteins which included cytokines, chemokines, growth factors, proteases, cell adhesion molecules, extracellular matrix (ECM) and related proteins. Measuring area under the curve (AUC) of peptides for quantitation, the IL-1-induced secretome contained 13 upregulated and 5 downregulated extracellular proteins (p<0.05) compared to controls. Of these, IL-8, CCL2, TNC, Gal-1 and PTX3 were validated as upregulated and SERPINE1, STC2, CTGF and COL4A2 were validated as downregulated factors by immunochemical methods. A major representation of the ECM and related proteins in the glioblastoma secretome and their modulation by IL-1 suggested that IL-1 induces its effect in part by altering TGFβ expression, activity and signaling. These findings enhance our understanding of IL-1-induced modulation of glioma microenvironment, with implications for increased tumor invasion, migration and angiogenesis. They further provide novel targets for the glioblastoma intervention. BIOLOGICAL SIGNIFICANCE Present study is on an unbiased screening of the glioblastoma secretome stimulated by IL-1 which triggers neuroinflammatory cascades in the central nervous system. Network of secreted proteins were shown to be regulated revealing their possible contribution to glioma progression. Label free quantitative proteomics has provided unique novel targets for potential glioblastoma intervention.
Collapse
Affiliation(s)
- Leonid Tarassishin
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461
| | - Jihyeon Lim
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461.,Laboratory for Macromolecular Analysis & Proteomics, Albert Einstein College of Medicine, Bronx NY 10461
| | - D Brent Weatherly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Ruth H Angeletti
- Laboratory for Macromolecular Analysis & Proteomics, Albert Einstein College of Medicine, Bronx NY 10461.,Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx NY 10461
| | - Sunhee C Lee
- Department of Pathology, Albert Einstein College of Medicine, Bronx NY 10461
| |
Collapse
|
9
|
Kiwanuka E, Andersson L, Caterson EJ, Junker JPE, Gerdin B, Eriksson E. CCN2 promotes keratinocyte adhesion and migration via integrin α5β1. Exp Cell Res 2013; 319:2938-46. [DOI: 10.1016/j.yexcr.2013.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
10
|
Maqbool A, Hemmings KE, O'Regan DJ, Ball SG, Porter KE, Turner NA. Interleukin-1 has opposing effects on connective tissue growth factor and tenascin-C expression in human cardiac fibroblasts. Matrix Biol 2013; 32:208-14. [PMID: 23454256 DOI: 10.1016/j.matbio.2013.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/22/2022]
Abstract
Cardiac fibroblasts (CF) play a central role in the repair and remodeling of the heart following injury and are important regulators of inflammation and extracellular matrix (ECM) turnover. ECM-regulatory matricellular proteins are synthesized by several myocardial cell types including CF. We investigated the effects of pro-inflammatory cytokines on matricellular protein expression in cultured human CF. cDNA array analysis of matricellular proteins revealed that interleukin-1α (IL-1α, 10ng/ml, 6h) down-regulated connective tissue growth factor (CTGF/CCN2) mRNA by 80% and up-regulated tenascin-C (TNC) mRNA levels by 10-fold in human CF, without affecting expression of thrombospondins 1-3, osteonectin or osteopontin. Western blotting confirmed these changes at the protein level. In contrast, tumor necrosis factor α (TNFα) did not modulate CCN2 expression and had only a modest stimulatory effect on TNC levels. Signaling pathway inhibitor studies suggested an important role for the p38 MAPK pathway in suppressing CCN2 expression in response to IL-1α. In contrast, multiple signaling pathways (p38, JNK, PI3K/Akt and NFκB) contributed to IL-1α-induced TNC expression. In conclusion, IL-1α reduced CCN2 expression and increased TNC expression in human CF. These observations are of potential value for understanding how inflammation and ECM regulation are linked at the level of the CF.
Collapse
Affiliation(s)
- Azhar Maqbool
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
11
|
Hakelius M, Koskela A, Reyhani V, Ivarsson M, Grenman R, Rubin K, Gerdin B, Nowinski D. Interleukin-1-mediated effects of normal oral keratinocytes and head and neck squamous carcinoma cells on extracellular matrix related gene expression in fibroblasts. Oral Oncol 2012; 48:1236-41. [DOI: 10.1016/j.oraloncology.2012.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 06/08/2012] [Accepted: 06/17/2012] [Indexed: 11/16/2022]
|
12
|
Inhibitory effects of sea buckthorn (Hippophae rhamnoides L.) seed on UVB-induced Photoaging in human dermal fibroblasts. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0548-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Vedrenne N, Coulomb B, Danigo A, Bonté F, Desmoulière A. The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. ACTA ACUST UNITED AC 2012; 60:20-7. [DOI: 10.1016/j.patbio.2011.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/16/2011] [Indexed: 01/31/2023]
|
14
|
Ohyama Y, Tanaka T, Shimizu T, Matsui H, Sato H, Koitabashi N, Doi H, Iso T, Arai M, Kurabayashi M. Runx2/Smad3 complex negatively regulates TGF-β-induced connective tissue growth factor gene expression in vascular smooth muscle cells. J Atheroscler Thromb 2011; 19:23-35. [PMID: 21986102 DOI: 10.5551/jat.9753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Connective tissue growth factor (CTGF), a direct target gene of transforming growth factor-β (TGF-β) signaling, plays an important role in the development of atherosclerosis. We previously showed that Runx2, a key transcription factor in osteoblast differentiation, regulates osteogenic conversion and dedifferentiation of vascular smooth muscle cells (VSMCs). In this study, we investigated the hypothesis that Runx2 modulates CTGF gene expression via the regulation of TGF-β signaling. METHODS AND RESULTS Expression of the Runx2 gene was decreased, and CTGF mRNA levels were reciprocally increased by TGF-β in a time-dependent manner in cultured human aortic smooth muscle cells (HASMCs) and C3H10T1/2 cells. Forced expression of Runx2 decreased and the reduction of Runx2 expression by small interfering RNA enhanced both basal and TGF-β-stimulated CTGF gene expression in HASMCs. Site-directed mutation analysis of the CTGF promoter indicated that transcriptional repression by Runx2 was mediated by the Smad-binding element (SBE) under basal and TGF-β-stimulated conditions. Data obtained from immunoblots of Runx2-, Smad3- or Smad4-transfected cells and chromatin immunoprecipitation analysis indicated that Runx2 interacts with Smad3 at the SBE. Immunohistochemistry revealed that the expression of Runx2 and CTGF was distinct and almost mutually exclusive in human atherosclerotic plaque. CONCLUSIONS These results for the first time demonstrate that Runx2/Smad3 complex negatively regulates endogenous and TGF-β-induced CTGF gene expression in VSMCs. Thus, the induction of Runx2 expression contributes to the phenotypic modulation of VSMCs, in which the TGF-β/Smad pathway plays a major role.
Collapse
Affiliation(s)
- Yoshiaki Ohyama
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gambichler T, Skrygan M, Czempiel V, Tigges C, Kobus S, Meier JJ, Köhler CU, Scola N, Stücker M, Altmeyer P, Kreuter A. Differential expression of connective tissue growth factor and extracellular matrix proteins in lichen sclerosus. J Eur Acad Dermatol Venereol 2011; 26:207-12. [PMID: 22280508 DOI: 10.1111/j.1468-3083.2011.04037.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The histopathology of lichen sclerosus (LS) suggests abnormalities in extracellular matrix (ECM) composition. OBJECTIVES We aimed to investigate the expression pattern of ECM proteins and related growths factors and Smad signal transducers in LS as compared with healthy skin. METHODS To assess the expression of decorin, biglycan, versican, perlecan, fibronectin, dermatopontin, extracellular matrix protein 1 (ECM-1), matrix metalloproteinase 1, tissue inhibitor of metalloproteinase 1, connective tissue growth factor (CTGF), transforming growth factor β1, and Smad-3 protein, real-time RT-PCR and immunohistochemistry were performed on skin specimens obtained from the genital region of healthy subjects (n = 10) as well as LS patients (n = 26). RESULTS Median mRNA as well as mean protein expression of biglycan, versican, fibronectin, and ECM-1 was significantly higher in LS when compared with healthy controls. Both mRNA and protein CTGF expression observed in LS was significantly higher than in controls. CTGF mRNA expression significantly correlated with mRNA expression of biglycan, versican and fibronectin. CONCLUSIONS Expression of ECM proteins (e.g. proteoglycans, ECM-1) and CTGF is altered in LS. TGF-ß/Smad-3 independent up-regulation of CTGF may induce accumulation of ECM proteins and maintain fibrosis in chronic LS.
Collapse
Affiliation(s)
- T Gambichler
- Department of Dermatology Department of Medicine I, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|