1
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
2
|
Rad A, Altunoglu U, Miller R, Maroofian R, James KN, Çağlayan AO, Najafi M, Stanley V, Boustany RM, Yeşil G, Sahebzamani A, Ercan-Sencicek G, Saeidi K, Wu K, Bauer P, Bakey Z, Gleeson JG, Hauser N, Gunel M, Kayserili H, Schmidts M. MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, cranio facial and genital features (COFG syndrome). J Med Genet 2018; 56:332-339. [PMID: 30487245 PMCID: PMC6581149 DOI: 10.1136/jmedgenet-2018-105623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abolfazl Rad
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Umut Altunoglu
- Medical Genetics Department, İstanbul Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Rebecca Miller
- Inova Cardiovascular Genomics Clinic, Inova Translational Medicine Institute, Falls Church, Virginia, USA
| | - Reza Maroofian
- Genetics and Molecular Cell Sciences Research Centre, St George's, University of London, London, UK
| | - Kiely N James
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children's Institute for Genomic Medicine, University of California, San Diego, California, USA
| | - Ahmet Okay Çağlayan
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Medical Genetics Department, Bilim University School of Medicine, İstanbul, Turkey
| | - Maryam Najafi
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children's Institute for Genomic Medicine, University of California, San Diego, California, USA
| | - Rose-Mary Boustany
- Department of Pediatrics and Adolescent Medicine, Neurogenetics Program and Division of Pediatric Neurology, American University of Beirut Medical Center Special Kids Clinic, Beirut, Lebanon.,Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Gözde Yeşil
- Medical Genetics Department, Bezmi Alem University School of Medicine, Istanbul, Turkey
| | - Afsaneh Sahebzamani
- Paediatric and Genetic Counselling Center, Kerman Welfare Organization, Kerman, Iran
| | - Gülhan Ercan-Sencicek
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Kolsoum Saeidi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Genetics, Kerman University of Medical Sciences, Kerman, Iran
| | - Kaman Wu
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Zeineb Bakey
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands.,Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children's Institute for Genomic Medicine, University of California, San Diego, California, USA
| | - Natalie Hauser
- Inova Cardiovascular Genomics Clinic, Inova Translational Medicine Institute, Falls Church, Virginia, USA
| | - Murat Gunel
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Hulya Kayserili
- Medical Genetics Department, İstanbul Medical Faculty, İstanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine (KUSoM), İstanbul, Turkey
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands.,Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, Freiburg, Germany
| |
Collapse
|
3
|
Suico MA, Shuto T, Kai H. Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 2018; 9:168-177. [PMID: 27932483 PMCID: PMC5907832 DOI: 10.1093/jmcb/mjw051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Charest-Morin X, Fortin JP, Lodge R, Allaeys I, Poubelle PE, Marceau F. A tagged parathyroid hormone derivative as a carrier of antibody cargoes transported by the G protein coupled PTH1 receptor. Peptides 2014; 60:71-9. [PMID: 25128082 DOI: 10.1016/j.peptides.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023]
Abstract
Based on the known fact that the parathyroid hormone (PTH) might be extended at its C-terminus with biotechnological protein cargoes, a vector directing the secretion of PTH1-84 C-terminally fused with the antigenic epitope myc (PTH-myc) was exploited. The functional properties and potential of this analog for imaging PTH1R-expressing cells were examined. The PTH-myc construct was recombinantly produced as a conditioned medium (CM) of transfected HEK 293a cells (typical concentrations of 187nM estimated with ELISAs for PTH). PTH-myc CM induced cyclic AMP formations (10min), with a minor loss of potency relative to authentic PTH1-84, and c-Fos expression (1-3h). Treatment of recipient HEK 293a cells transiently expressing PTH1R with PTH-myc CM (supplemented with a fluorescent monoclonal anti-myc tag antibody, either 4A6 or 9E10) allowed the labeling of endosomal structures positive for Rab5 and/or for β-arrestin1 (microscopy, cytofluorometry). Authentic PTH was inactive in this respect, ruling out a non-specific form of endocytosis like pinocytosis. Using a horseradish peroxidase-conjugated secondary antibody, the endocytosis of the PTH-myc-based antibody complex by endogenous PTH1R was evidenced in MG-63 osteoblastoid cells. The secreted construct PTH-myc represents a bona fide agonist that supports the feasibility of transporting cargoes of considerable molecular weight inside cells using arrestin and Rab5-mediated PTH1R endocytosis. PTH-myc is also transported into cells that express PTH1R at a physiological level. Such tagged peptide hormones may be part of a cancer chemotherapy scheme exploiting a modular cytotoxic secondary antibody and the receptor repertoire expressed in a given tumor.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de recherche en Rhumatologie et Immunologie, CHU de Québec, Québec, QC, Canada G1V 4G2
| | - Jean-Philippe Fortin
- Pfizer's Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA 02139, USA
| | - Robert Lodge
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal, Montreal, QC, Canada H2W 1R7
| | - Isabelle Allaeys
- Centre de recherche en Rhumatologie et Immunologie, CHU de Québec, Québec, QC, Canada G1V 4G2
| | - Patrice E Poubelle
- Centre de recherche en Rhumatologie et Immunologie, CHU de Québec, Québec, QC, Canada G1V 4G2
| | - François Marceau
- Centre de recherche en Rhumatologie et Immunologie, CHU de Québec, Québec, QC, Canada G1V 4G2.
| |
Collapse
|