1
|
Hu X, Xie J, Yang Y, Qiu Z, Lu W, Lin X, Xu B. Multi-Target Neural Differentiation (MTND) Therapeutic Cocktail to Suppress Brain Tumor. Int J Mol Sci 2023; 24:12329. [PMID: 37569705 PMCID: PMC10418641 DOI: 10.3390/ijms241512329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Brain tumors have been proved challenging to treat. Here we established a Multi-Target Neural Differentiation (MTND) therapeutic cocktail to achieve effective and safe treatment of brain malignancies by targeting the important hallmarks in brain cancers: poor cell differentiation and compromised cell cycle. In-vitro and in-vivo experiments confirmed the significant therapeutic effect of our MTND therapy. Significantly improved therapeutic effects over current first-line chemo-drugs have been identified in clinical cells, with great inhibition of the growth and migration of tumor cells. Further in-vivo experiments confirmed that sustained MTND treatment showed a 73% reduction of the tumor area. MTND also induced strong expression of phenotypes associated with cell cycle exit/arrest and rapid neural reprograming from clinical glioma cells to glutamatergic and GABAergic expressing cells, which are two key neuronal types involved in many human brain functions, including learning and memory. Collectively, MTND induced multi-targeted genotypic expression changes to achieve direct neural conversion of glioma cells and controlled the cell cycle/tumorigenesis development, helping control tumor cells' malignant proliferation and making it possible to treat brain malignant tumors effectively and safely. These encouraging results open avenues to developing new therapies for brain malignancies beyond cytotoxic agents, providing more effective medication recommendations with reduced toxicity.
Collapse
Affiliation(s)
- Xiaoping Hu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou 510060, China; (J.X.); (W.L.)
| | - Yilin Yang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Ziyi Qiu
- School of Biomedical Engineering (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou 510060, China; (J.X.); (W.L.)
| | - Xudong Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
- School of Biomedical Engineering (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
2
|
Liu X, Guo C, Leng T, Fan Z, Mai J, Chen J, Xu J, Li Q, Jiang B, Sai K, Yang W, Gu J, Wang J, Sun S, Chen Z, Zhong Y, Liang X, Chen C, Cai J, Lin Y, Liang J, Hu J, Yan G, Zhu W, Yin W. Differential regulation of H3K9/H3K14 acetylation by small molecules drives neuron-fate-induction of glioma cell. Cell Death Dis 2023; 14:142. [PMID: 36805688 PMCID: PMC9941105 DOI: 10.1038/s41419-023-05611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Differentiation therapy using small molecules is a promising strategy for improving the prognosis of glioblastoma (GBM). Histone acetylation plays an important role in cell fate determination. Nevertheless, whether histone acetylation in specific sites determines GBM cells fate remains to be explored. Through screening from a 349 small molecule-library, we identified that histone deacetylase inhibitor (HDACi) MS-275 synergized with 8-CPT-cAMP was able to transdifferentiate U87MG GBM cells into neuron-like cells, which were characterized by cell cycle arrest, rich neuron biomarkers, and typical neuron electrophysiology. Intriguingly, acetylation tags of histone 3 at lysine 9 (H3K9ac) were decreased in the promoter of multiple oncogenes and cell cycle genes, while ones of H3K9ac and histone 3 at lysine 14 (H3K14ac) were increased in the promoter of neuron-specific genes. We then compiled a list of genes controlled by H3K9ac and H3K14ac, and proved that it is a good predictive power for pathologic grading and survival prediction. Moreover, cAMP agonist combined with HDACi also induced glioma stem cells (GSCs) to differentiate into neuron-like cells through the regulation of H3K9ac/K14ac, indicating that combined induction has the potential for recurrence-preventive application. Furthermore, the combination of cAMP activator plus HDACi significantly repressed the tumor growth in a subcutaneous GSC-derived tumor model, and temozolomide cooperated with the differentiation-inducing combination to prolong the survival in an orthotopic GSC-derived tumor model. These findings highlight epigenetic reprogramming through H3K9ac and H3K14ac as a novel approach for driving neuron-fate-induction of GBM cells.
Collapse
Affiliation(s)
- Xincheng Liu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China ,grid.284723.80000 0000 8877 7471Department of Emergency Medicine, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 P. R. China
| | - Cui Guo
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Tiandong Leng
- grid.9001.80000 0001 2228 775XDepartment of Neuroscience, Morehouse School of Medicine, Atlanta, GA 30310 USA
| | - Zhen Fan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Jialuo Mai
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Jiehong Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Jinhai Xu
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Qianyi Li
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Bin Jiang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Ke Sai
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Wenzhuo Yang
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Jiayu Gu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Jingyi Wang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Shuxin Sun
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Zhijie Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Yingqian Zhong
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Xuanming Liang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Chaoxin Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Jing Cai
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Yuan Lin
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Jiankai Liang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Jun Hu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Guangmei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 P. R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Wei Yin
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| |
Collapse
|
3
|
Cytokines Induce Monkey Neural Stem Cell Differentiation through Notch Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1308526. [PMID: 32509845 PMCID: PMC7244951 DOI: 10.1155/2020/1308526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/01/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022]
Abstract
The mammalian central nervous system (CNS) has a limited ability to renew the damaged cells after a brain or spinal cord injury whether it is nonhuman primates like monkeys or humans. Transplantation of neural stem cells (NSCs) is a potential therapy for CNS injuries due to their pluripotency and differentiation abilities. Cytokines play an important role in CNS development and repair of CNS injuries. However, the detailed cytokine signaling response in monkey neural stem cells is rarely studied. In our previous research, we isolated NSCs from the adult monkey brain and found the effects of cytokines on monkey NSCs. Now, we further analyzed the regulation mechanisms of cytokines to the proliferation of monkey NSCs such as bone morphogenic protein 4 (BMP4), BMP4/leukaemia inhibitory factor (LIF), or retinoic acid (RA)/Forskolin. The data showed that BMP4 inhibited cell proliferation to arrest, but it did not affect the stemness of NSCs. BMP4/LIF promoted the astrocyte-like differentiation of monkey NSCs, and RA/forskolin induced the neuronal differentiation of monkey NSCs. BMP4/LIF and RA/forskolin induced monkey NSC differentiation by regulating Notch signaling. These results provide some theoretical evidence for NSC therapy to brain or spinal cord injury in regenerative medicine.
Collapse
|
4
|
Mai J, Gu J, Liu Y, Liu X, Sai K, Chen Z, Lu W, Yang X, Wang J, Guo C, Sun S, Xing F, Sheng L, Lu B, Zhu Z, Sun H, Xue D, Lin Y, Cai J, Tan Y, Li C, Yin W, Cao L, Ou‐yang Y, Qiu P, Su X, Yan G, Liang J, Zhu W. Negative regulation of miR-1275 by H3K27me3 is critical for glial induction of glioblastoma cells. Mol Oncol 2019; 13:1589-1604. [PMID: 31162799 PMCID: PMC6599839 DOI: 10.1002/1878-0261.12525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/09/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway induces glial differentiation of glioblastoma (GBM) cells, but the mechanism by which microRNA (miRNA) regulate this process remains poorly understood. In this study, by performing miRNA genomics and loss- and gain-of-function assays in dibutyryl-cAMP-treated GBM cells, we identified a critical negative regulator, hsa-miR-1275, that modulates a set of genes involved in cancer progression, stem cell maintenance, and cell maturation and differentiation. Additionally, we confirmed that miR-1275 directly and negatively regulates the protein expression of glial fibrillary acidic protein (GFAP), a marker of mature astrocytes. Of note, tri-methyl-histone H3 (Lys27) (H3K27me3), downstream of the PKA/polycomb repressive complex 2 (PRC2) pathway, accounts for the downregulation of miR-1275. Furthermore, decreased miR-1275 expression and induction of GFAP expression were also observed in dibutyryl-cAMP-treated primary cultured GBM cells. In a patient-derived glioma stem cell tumor model, a cAMP elevator and an inhibitor of H3K27me3 methyltransferase inhibited tumor growth, induced differentiation, and reduced expression of miR-1275. In summary, our study shows that epigenetic inhibition of miR-1275 by the cAMP/PKA/PRC2/H3K27me3 pathway mediates glial induction of GBM cells, providing a new mechanism and novel targets for differentiation-inducing therapy.
Collapse
Affiliation(s)
- Jialuo Mai
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of Anesthesiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jiayu Gu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ying Liu
- Department of Infectious DiseaseThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xincheng Liu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ke Sai
- Department of Neurosurgery/Neuro-oncologySun Yat-sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhijie Chen
- Department of Neurosurgery/Neuro-oncologySun Yat-sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wanjun Lu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xiaozhi Yang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jingyi Wang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Cui Guo
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Shuxin Sun
- Department of Neurosurgery/Neuro-oncologySun Yat-sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Fan Xing
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Longxiang Sheng
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Hongjiaqi Sun
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Dongdong Xue
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yaqian Tan
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Chuntao Li
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lin Cao
- Department of Anesthesiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Ying Ou‐yang
- Department of Pediatrics, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
CFTR activation suppresses glioblastoma cell proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 508:1279-1285. [PMID: 30573361 DOI: 10.1016/j.bbrc.2018.12.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate the function of Cystic fibrosis transmembrane conductance regulator (CFTR) in human glioblastoma (GBM) cells. Data dining results of the Human Protein Atlas showed that low CFTR expression was associated with poor prognosis for GBM patients. We found that CFTR protein expression was lower in U87 and U251 GBM cells than that in normal humane astrocyte cells. CFTR activation significantly reduced GBM cell proliferation. In addition, CFTR activation significantly abrogated migration and invasion of GBM cells. Besides, CFTR activator Forskolin treatment markedly reduced MMP-2 protein expression. These effects of CFTR activation were significantly inhibited by CFTR inhibitor CFTRinh-172 pretreatment. Our findings suggested that JAK2/STAT3 signaling was involved in the anti-glioblastoma effects of CFTR activation. Moreover, CFTR overexpression in combination with Forskolin induced a synergistic anti-proliferative response in U87 cells. Overall, our findings demonstrated that CFTR activation suppressed GBM cell proliferation, migration and invasion likely through the inhibition of JAK2/STAT3 signaling.
Collapse
|
6
|
Lv P, Wang W, Cao Z, Zhao D, Zhao G, Li D, Qi L, Xu J. Fsk and IBMX inhibit proliferation and proapoptotic of glioma stem cells via activation of cAMP signaling pathway. J Cell Biochem 2018; 120:321-331. [PMID: 30171713 DOI: 10.1002/jcb.27364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/26/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We aimed to find out the underlying mechanism of forskolin (Fsk) and 3-isobutyl-1-methylxanthine (IBMX) on glioma stem cells (GSCs). METHODS The expression of cAMP-related protein CREB and pCREB as well as apoptosis-related proteins were detected through Western blot analysis. The level of proliferation and growth rate of human GSCs was measured through thiazolyl blue tetrazolium bromide assay and stem cells forming sphere assay. The apoptosis-related gene expression was measured through reverse transcription-polymerase chain reaction. RESULTS cAMP signaling pathway was activated in GSCs with Fsk-IBMX administration. Fsk-IBMX could inhibit the proliferation as well as invasion and promote the apoptosis of U87 cells. Besides, U0126 could inhibit MAPK signaling pathway to increase the sensitivity of GSCs to cAMP signaling pathway. As a result, Fsk-IBMX combined with U0126 had more negative effect on GSCs. CONCLUSIONS The relationship of cAMP and MAPK signaling pathway in GSCs may provide a potential therapeutic strategy in glioma.
Collapse
Affiliation(s)
- Peng Lv
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Weiyao Wang
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Zhiyou Cao
- 465 Hospital, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Guifang Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Dailin Li
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin, China
| | - Ling Qi
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Junjie Xu
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, China
| |
Collapse
|
7
|
Gnanasegaran N, Govindasamy V, Kathirvaloo P, Musa S, Abu Kasim NH. Effects of cell cycle phases on the induction of dental pulp stem cells toward dopaminergic-like cells. J Tissue Eng Regen Med 2017; 12:e881-e893. [PMID: 28079995 DOI: 10.1002/term.2401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/16/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is characterized by tremors and cognitive issues, and is due to the death of dopaminergic (DA-ergic) neurons in brain circuits that are responsible for producing neurotransmitter dopamine (DA). Currently, cell replacement therapies are underway to improve upon existing therapeutic approaches such as drug treatments and electrical stimulation. Among the widely available sources, dental pulp stem cells (DPSCs) from deciduous teeth have gained popularity because of their neural crest origin and inherent propensity toward neuronal lineage. Despite the various pre-clinical studies conducted, an important factor yet to be elucidated is the influence of growth phases in a typical trans-differentiation process. This study selected DPSCs at three distinct time points with variable growth phase proportions (G0/G1, S and G2/M) for in vitro trans-differentiation into DA-ergic-like cells. Using commercially available PCR arrays, we identified distinct gene profiles pertaining to cell cycles in these phases. The differentiation outcomes were assessed in terms of morphology and gene and protein expression, as well as with functional assays. It was noted that DPSCs with the highest G0/G1 phase were comparatively the best, representing at least a 2-fold up regulation (p < 0.05) of DA-ergic molecular cues compared to those from the remaining time points. Further investigations in terms of protein expression and DA-release assays also revealed a similar phenomenon (p < 0.05). These findings are expected to provide vital information for consideration in improving standard operating procedures in future cell transplantation work. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nareshwaran Gnanasegaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayendran Govindasamy
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Premasangery Kathirvaloo
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sabri Musa
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Sun X, Zhang J, Zhao Q, Chen X, Zhu W, Yan G, Zhou T. Stochastic modeling suggests that noise reduces differentiation efficiency by inducing a heterogeneous drug response in glioma differentiation therapy. BMC SYSTEMS BIOLOGY 2016; 10:73. [PMID: 27515956 PMCID: PMC4982223 DOI: 10.1186/s12918-016-0316-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Background Glioma differentiation therapy is a novel strategy that has been used to induce glioma cells to differentiate into glia-like cells. Although some advances in experimental methods for exploring the molecular mechanisms involved in differentiation therapy have been made, a model-based comprehensive analysis is still needed to understand these differentiation mechanisms and improve the effects of anti-cancer therapeutics. This type of analysis becomes necessary in stochastic cases for two main reasons: stochastic noise inherently exists in signal transduction and phenotypic regulation during targeted therapy and chemotherapy, and the relationship between this noise and drug efficacy in differentiation therapy is largely unknown. Results In this study, we developed both an additive noise model and a Chemical-Langenvin-Equation model for the signaling pathways involved in glioma differentiation therapy to investigate the functional role of noise in the drug response. Our model analysis revealed an ultrasensitive mechanism of cyclin D1 degradation that controls the glioma differentiation induced by the cAMP inducer cholera toxin (CT). The role of cyclin D1 degradation in human glioblastoma cell differentiation was then experimentally verified. Our stochastic simulation demonstrated that noise not only renders some glioma cells insensitive to cyclin D1 degradation during drug treatment but also induce heterogeneous differentiation responses among individual glioma cells by modulating the ultrasensitive response of cyclin D1. As such, the noise can reduce the differentiation efficiency in drug-treated glioma cells, which was verified by the decreased evolution of differentiation potential, which quantified the impact of noise on the dynamics of the drug-treated glioma cell population. Conclusion Our results demonstrated that targeting the noise-induced dynamics of cyclin D1 during glioma differentiation therapy can increase anti-glioma effects, implying that noise is a considerable factor in assessing and optimizing anti-cancer drug interventions. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0316-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Zhong-shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China. .,School of Mathematical and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jiajun Zhang
- School of Mathematical and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qi Zhao
- School of Mathematics, Liaoning University, Shenyang, 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, China
| | - Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Wenbo Zhu
- Zhong-shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China.
| | - Guangmei Yan
- Zhong-shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Tianshou Zhou
- School of Mathematical and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Zorzan M, Giordan E, Redaelli M, Caretta A, Mucignat-Caretta C. Molecular targets in glioblastoma. Future Oncol 2016; 11:1407-20. [PMID: 25952786 DOI: 10.2217/fon.15.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is the most lethal brain tumor. The poor prognosis results from lack of defined tumor margins, critical location of the tumor mass and presence of chemo- and radio-resistant tumor stem cells. The current treatment for glioblastoma consists of neurosurgery, followed by radiotherapy and temozolomide chemotherapy. A better understanding of the role of molecular and genetic heterogeneity in glioblastoma pathogenesis allowed the design of novel targeted therapies. New targets include different key-role signaling molecules and specifically altered pathways. The new approaches include interference through small molecules or monoclonal antibodies and RNA-based strategies mediated by siRNA, antisense oligonucleotides and ribozymes. Most of these treatments are still being tested yet they stay as solid promises for a clinically relevant success.
Collapse
Affiliation(s)
- Maira Zorzan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
10
|
Zhou Y, Wu S, Liang C, Lin Y, Zou Y, Li K, Lu B, Shu M, Huang Y, Zhu W, Kang Z, Xu D, Hu J, Yan G. Transcriptional upregulation of microtubule-associated protein 2 is involved in the protein kinase A-induced decrease in the invasiveness of glioma cells. Neuro Oncol 2015; 17:1578-88. [PMID: 26014048 DOI: 10.1093/neuonc/nov060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/14/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Malignant glioma is the most lethal primary tumor of the central nervous system, with notable cell invasion causing significant recurrence. Suppression of glioma invasion is very important for improving clinical outcomes. Drugs that directly disrupt the cytoskeleton have been developed for this purpose; however, drug resistance and unsatisfactory selectivity have limited their clinical use. Previously, we reported that protein kinase A (PKA, also known as cyclic-AMP dependent protein kinase) activation induced the differentiation of glioma cells. METHODS We used several small molecular inhibitors and RNA interference, combined with wound healing assays, Matrigel transwell assay, and microscopic observation, to determine whether activation of the PKA pathway could inhibit the invasion of human glioma cells. RESULTS Activation of PKA decreased the invasion of glioma cells. The mechanism operated via transcriptional upregulation of microtubule-associated protein 2 (MAP2), which was activated by the PKA pathway and led to ossification of microtubule dynamics via polymerization of tubulin. This resulted in morphological changes and a reduction in glioma cell invasion. Furthermore, chromosome immunoprecipitation and quantitative real-time polymerase chain reaction showed that signal transducer and activator of transcription 3 (STAT3) is involved in the transcriptional upregulation of MAP2. CONCLUSION Our findings suggested that PKA may represent a potential target for anti-invasion glioma therapy and that the downstream modulators (eg, STAT3/MAP2) partially mediate the effects of PKA.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Sihan Wu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Chaofeng Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yan Zou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Kai Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Minfeng Shu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Yijun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Zhuang Kang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Dong Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (Y.Z., S.W., Y.L., K.L., B.L., M.S., Y.H., W.Z., D.X., J.H., G.Y.); Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (C.L.); Department of Imaging, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Y.Z., Z.K.); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (J.H.)
| |
Collapse
|
11
|
Abstract
Topoisomerase IIα is a nuclear enzyme that alters DNA topology. It is a well-known anticancer target and related to cell differentiation status. All-trans retinoic acid (ATRA), an important active metabolite of vitamin A, is a promising anticancer agent in numerous malignancies. However, there are little data on the effect of retinoids on topoisomerase IIα regulation. In the present study, we investigated the relationship between ATRA and topoisomerase IIα, and the potential mechanisms of ATRA on topoisomerase IIα regulation. In several human carcinoma cell lines, ATRA was shown to suppress topoisomerase IIα protein, but not mRNA expression. ATRA induced the degradation of topoisomerase IIα through the proteasome pathway, but not the lysosome pathway. Ubiquitination was involved in this degradation. Western blot and immunocytochemistry proved that ATRA-induced topoisomerase IIα repression occurred only in the cell nuclei. ATRA not only influenced the cycle procession but also reduced the expression of cyclin D1. Cyclin D1, which is involved in cell differentiation, was regulated by topoisomerase IIα. Similar to cyclin D1, knockdown of topoisomerase IIα resulted in the increased differentiation of the cells, which was in contrast to the overexpression of topoisomerase IIα in the cells. Taken together, these data suggested that ATRA could target topoisomerase IIα and exert potential beneficial effects on cell differentiation.
Collapse
|
12
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
13
|
Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:109389. [PMID: 24971310 PMCID: PMC4058294 DOI: 10.1155/2014/109389] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/25/2014] [Accepted: 04/19/2014] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem cells (MSCs) have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs). We found (1) MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2) MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3) real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4) furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.
Collapse
|
14
|
Zheng X, Ou Y, Shu M, Wang Y, Zhou Y, Su X, Zhu W, Yin W, Li S, Qiu P, Yan G, Zhang J, Hu J, Xu D. Cholera toxin, a typical protein kinase A activator, induces G1 phase growth arrest in human bladder transitional cell carcinoma cells via inhibiting the c-Raf/MEK/ERK signaling pathway. Mol Med Rep 2014; 9:1773-9. [PMID: 24626525 DOI: 10.3892/mmr.2014.2054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/19/2014] [Indexed: 11/06/2022] Open
Abstract
The biotoxin cholera toxin has been demonstrated to have anti-tumor activity in numerous types of cancer, including glioma. However, the role of cholera toxin in the tumorigenesis of transitional cell carcinoma (TCC), the most common malignant tumor of the bladder, remains to be elucidated. To address this, in the present study, two TCC cell lines, T24 and UM-UC-3, were treated with cholera toxin [protein kinase A (PKA) activator] and KT5720 (PKA inhibitor). Cell survival and proliferation, cell cycle alterations and apoptosis were analyzed using Hoechst staining, the MTT assay, fluorescence microscopy and flow cytometry. Western blot analysis was used to detect the expression of proteins involved in cell cycle regulation. The results revealed that cholera toxin significantly induced G1 arrest and downregulated the expression of cyclin D1 and cyclin-dependent kinase 4/6 in the TCC cell lines, and this was rescued by KT5720. Furthermore, it was demonstrated that cholera toxin downregulated the activation of the c-Raf/Mek/Erk cascade, an important mediator of tumor cell proliferation, via the PKA-dependent c-Raf phosphorylation at Ser-43. Furthermore, inhibition of Mek activity with UO126 mimicked the effects of cholera toxin. In conclusion, these results confirmed that cholera toxin specifically inhibited proliferation and induced G1 phase arrest in human bladder TCC cells. This effect was due to PKA-dependent inactivation of the c-Raf/Mek/Erk pathway. This suggested that cholera toxin may be a viable therapeutic treatment against tumorigenesis and proliferation in bladder cancer.
Collapse
Affiliation(s)
- Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yanqiu Ou
- Department of Cardiovascular Epidemiology, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Minfeng Shu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Youqiong Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yuxi Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Wei Yin
- Department of Biochemistry, Zhongshan Medical College, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Shifeng Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Jingxia Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Dong Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510089, P.R. China
| |
Collapse
|
15
|
Circadian properties of cancer stem cells in glioma cell cultures and tumorspheres. Cancer Lett 2013; 345:65-74. [PMID: 24333739 DOI: 10.1016/j.canlet.2013.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022]
Abstract
Increased cancer risk is linked to disruption of circadian rhythms. Cancer stem cells (CSCs) are a known cause of cancer aggressiveness, but their circadian properties have not been described. We discovered circadian rhythms in gene expression within C6 glioma tumorspheres enriched in CSCs and found that the circadian clock is particularly robust in medium lacking any growth factors. A method is introduced for identifying individual CSCs in culture for single-cell analysis. CSCs in monolayer cell culture failed to show a circadian rhythm in nuclear localization of mPER2 protein, suggesting that cell interactions or the tumor-like microenvironment within tumorspheres enable circadian timing.
Collapse
|
16
|
Ou Y, Zheng X, Gao Y, Shu M, Leng T, Li Y, Yin W, Zhu W, Huang Y, Zhou Y, Tang J, Qiu P, Yan G, Hu J, Ruan H, Hu H. Activation of cyclic AMP/PKA pathway inhibits bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics. Urol Oncol 2013; 32:47.e21-8. [PMID: 24140250 DOI: 10.1016/j.urolonc.2013.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE With the notorious reputation of the vicious invasion, the bladder cancer is the most common malignant tumor of the urinary system. Inhibiting invasion through microtubule dynamics interruption has emerged as an important treatment of bladder cancer. Here we investigated the role of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway in human bladder cancer cells invasion. MATERIALS AND METHODS With or without the treatment of various cAMP elevators, we assessed invasive and migrated capabilities of T24 and UM-UC-3, two high-grade invasive bladder cancer cell lines, using matrigel transwell inserts assay and scratch wound healing assay. The microtubule (MT) dynamics were examined by immunofluorescence and immunoblotting. Microtubule-Associated Protein 4 (MAP4) was silenced to investigate its role in tumor invasion. We also analyzed gene expression of MAP4 in 34 patients with bladder cancer using immunohistochemical staining assay. The interaction between PKA and MAP4 was examined by co-immunoprecipitation. RESULTS We used cAMP elevators and small interfering RNA of MAP4 here, found that both of them can potently inhibit the invasion and the migration of bladder cancer cells by disrupting microtubule (MT) cytoskeleton. Consistently, the bladder cancer grade is positively correlated with the protein level of MAP4. Furthermore, we found that cAMP/PKA signaling can disrupt MT cytoskeleton by the phosphorylation of MAP4. CONCLUSION Our results indicated that the cAMP/PKA signaling pathway might inhibit bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics, which could be exploited for the therapy of invasive bladder cancer.
Collapse
Affiliation(s)
- Yanqiu Ou
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China; Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Provincial Academy of Medical Sciences, Guangzhou, P.R. China
| | - Xiaoke Zheng
- Department of Phathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China; Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yixing Gao
- Department of Neurobiology, College of Basic Medical Science, The Third Military Medical University, Chongqing, P.R. China
| | - Minfeng Shu
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Tiandong Leng
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yan Li
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wei Yin
- Department of Biochemistry, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yijun Huang
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yuxi Zhou
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jianjun Tang
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Pengxin Qiu
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jun Hu
- Department of Microbiology, Zhong-shan School of Medcine, Sun Yat-Sen University, Guangzhou, P.R. China; Department of Pharmacology, Zhong-shan Medical College, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Science, The Third Military Medical University, Chongqing, P.R. China.
| | - Haiyan Hu
- Department of Pharmaceutics, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, P.R. China.
| |
Collapse
|
17
|
GSK3β/β-catenin signaling is correlated with the differentiation of glioma cells induced by wogonin. Toxicol Lett 2013; 222:212-23. [DOI: 10.1016/j.toxlet.2013.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/23/2022]
|
18
|
Role of fucosyltransferase IV in epithelial-mesenchymal transition in breast cancer cells. Cell Death Dis 2013; 4:e735. [PMID: 23887626 PMCID: PMC3730415 DOI: 10.1038/cddis.2013.241] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 11/09/2022]
Abstract
Epithelial–mesenchymal transition (EMT) is a crucial step in tumor progression and has an important role during cancer invasion and metastasis. Although fucosyltransferase IV (FUT4) has been implicated in the modulation of cell migration, invasion and cancer metastasis, its role during EMT is unclear. This study explores the molecular mechanisms of the involvement of FUT4 in EMT in breast cancer cells. Breast cancer cell lines display increased expression of FUT4, which is accompanied by enhanced appearance of the mesenchymal phenotype and which can be reversed by knockdown of endogenous FUT4. Moreover, FUT4 induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt, and inactivation of GSK3β and nuclear translocation of NF-κB, resulting in increased Snail and MMP-9 expression and greater cell motility. Taken together, these findings indicate that FUT4 has a role in EMT through activation of the PI3K/Akt and NF-κB signaling systems, which induce the key mediators Snail and MMP-9 and facilitate the acquisition of a mesenchymal phenotype. Our findings support the possibility that FUT4 is a novel regulator of EMT in breast cancer cells and a promising target for cancer therapy.
Collapse
|
19
|
Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu DL, Li ZW, Zhong JH, Xiao ZC, Zhou XF. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol 2013; 15:990-1007. [PMID: 23576602 DOI: 10.1093/neuonc/not039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High-grade glioma is incurable, with a short survival time and poor prognosis. The increased expression of p75 neurotrophin receptor (NTR) is a characteristic of high-grade glioma, but the potential significance of increased p75NTR in this tumor is not fully understood. Since p75NTR is the receptor for the precursor of brain-derived neurotrophic factor (proBDNF), it is suggested that proBDNF may have an impact on glioma. METHODS In this study we investigated the expression of proBDNF and its receptors p75NTR and sortilin in 52 cases of human glioma and 13 cases of controls by immunochemistry, quantitative real-time PCR, and Western blot methods. Using C6 glioma cells as a model, we investigated the roles of proBDNF on C6 glioma cell differentiation, growth, apoptosis, and migration in vitro. RESULTS We found that the expression levels of proBDNF, p75NTR, and sortilin were significantly increased in high-grade glioma and were positively correlated with the malignancy of the tumor. We also observed that tumors expressed proBDNF, p75NTR, and sortilin in the same cells with different subcellular distributions, suggesting an autocrine or paracrine loop. The ratio of proBDNF to mature BDNF was decreased in high-grade glioma tissues and was negatively correlated with tumor grade. Using C6 glioma cells as a model, we found that proBDNF increased apoptosis and differentiation and decreased cell growth and migration in vitro via p75NTR. CONCLUSIONS Our data indicate that proBDNF and its receptors are upregulated in high-grade glioma and might play an inhibitory effect on glioma.
Collapse
Affiliation(s)
- Jing Xiong
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, Yunnan Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
de Weille J, Fabre C, Gaven C, Bakalara N. Similar pyruvate kinase modifications in glioblastoma cells by 7β-hydroxycholesterol and glutamine withdrawal. Biochem Pharmacol 2013; 86:161-7. [PMID: 23537700 DOI: 10.1016/j.bcp.2013.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 12/22/2022]
Abstract
Oxysterols possess anti-proliferative properties that may be used with much effect in the treatment of cancer. We have demonstrated previously that 7 beta-hydroxycholesterol (7b-HC) provokes both metabolic stress, as witnessed by AMPK activation, and changes in lipid raft composition in C6 glioblastoma cells. These observations suggested that glycolysis might have been changed. Here we will show that 7b-HC increases cell cycle time and that it changes the affinity of pyruvate kinase to its substrate, phosphoenol pyruvate. The latter effect is mimicked by glutamine withdrawal.
Collapse
Affiliation(s)
- Jan de Weille
- Institut des Neurosciences de Montpellier, U1051 INSERM, 80 rue Augustin Fliche, 34295 Montpellier cedex 05, France.
| | | | | | | |
Collapse
|
21
|
Shu M, Zhou Y, Zhu W, Zhang H, Wu S, Chen J, Yan G. MicroRNA 335 is required for differentiation of malignant glioma cells induced by activation of cAMP/protein kinase A pathway. Mol Pharmacol 2012; 81:292-8. [PMID: 22172575 DOI: 10.1124/mol.111.076166] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioma is the most common malignant cancer affecting the central nerve system, with dismal prognosis. Differentiation-inducing therapy is a novel strategy that has been preliminarily proved effective against malignant glioma. We have reported previously that activation of cAMP/protein kinase A (PKA) pathway is capable of inducing glioma cell differentiation, characterized by astrocyte-like shape and dramatic induction of astrocyte biomarker glial fibrillary acidic protein (GFAP). However, little progress has been made on molecular mechanisms related. Here we demonstrate that microRNA 335 (miR-335) is responsible for the glioma cell differentiation stimulated by activation of cAMP/PKA pathway. In the cAMP elevator cholera toxin-induced differentiation model of rat C6 glioma cells, miR-335 was significantly up-regulated, which was mimicked by other typical cAMP/PKA pathway activators (e.g., forskolin, dibutyryl-cAMP) and abolished by PKA-specific inhibitor (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i] [1,6]benzodiazocine-10-carboxylic acid, hexyl ester (KT5720). In an assay measuring gain and loss of miR-335 function, exogenetic miR-335 resulted in induction of GFAP, whereas miR-335 specific inhibitor antagomir-335 violently blocked cholera toxin-induced GFAP up-regulation. It is noteworthy that in human U87-MG glioma cells and human primary culture glioma cells, miR-335 also mediated cholera toxin-induced differentiation. Taken together, our findings suggest that miR-335 is potently required for differentiation of malignant glioma cells induced by cAMP/PKA pathway activation, and a single microRNA may act as an important fate determinant to control the differentiation status of malignant gliomas, which has provided a new insight into differentiation-inducing therapy against malignant gliomas.
Collapse
Affiliation(s)
- Minfeng Shu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|