1
|
Zhang C, Chang C, Zhao W, Gao H, Wang Q, Li D, Zhang F, Zhang S, Xu C. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation. PLoS One 2017; 12:e0180607. [PMID: 28749992 PMCID: PMC5531498 DOI: 10.1371/journal.pone.0180607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 06/19/2017] [Indexed: 01/03/2023] Open
Abstract
Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116) (NM_001106564.1) was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05), whereas it was significantly higher in the over-expression group (P<0.05). The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M) was significantly reduced in the interference group (P<0.05), but significantly increased in the over-expression group (P<0.01). Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.
Collapse
Affiliation(s)
- Chunyan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Weiming Zhao
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Hang Gao
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Qiwen Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Deming Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shifu Zhang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang, Henan, China
- * E-mail:
| |
Collapse
|
2
|
The Role of IL-1 Family Members and Kupffer Cells in Liver Regeneration. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6495793. [PMID: 27092311 PMCID: PMC4820608 DOI: 10.1155/2016/6495793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Interleukin-1 (IL-1) family and Kupffer cells are linked with liver regeneration, but their precise roles remain unclear. IL-1 family members are pleiotropic factors with a range of biological roles in liver diseases, inducing hepatitis, cirrhosis, and hepatocellular carcinoma, as well as liver regeneration. Kupffer cells are the main source of IL-1 and IL-1 receptor antagonist (IL-1Ra), the key members of IL-1 family. This systemic review highlights a close association of IL-1 family members and Kupffer cells with liver regeneration, although their specific roles are inconclusive. Moreover, IL-1 members are proposed to induce effects on liver regeneration through Kupffer cells.
Collapse
|
3
|
Katselis C, Apostolou K, Feretis T, Papanikolaou IG, Zografos GC, Toutouzas K, Papalois A. Role of Stem Cells Transplantation in Tissue Regeneration After Acute or Chronic Acetaminophen Induced Liver Injury. J INVEST SURG 2015; 29:112-20. [PMID: 26650889 DOI: 10.3109/08941939.2015.1086040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Acetaminophen-induced liver injury (APAP) is recognized as a frequent etiologic factor responsible for hepatic damage in the developed world. Management remains still elusive as treatment options are limited and their results are inconclusive. Consequently new strategies are explored at the experimental level. Mesenchymal stem cells (MSCs) present a promising modality as they can promote liver regeneration (LG) and compensate acute liver injury (ALI). MATERIALS AND METHODS Our research was focused on articles related to drug-induced liver injury, mechanisms of liver regeneration (LG) after Acute Liver Injury (ALI) and recent experimental protocols of Mesenchymal Stem Cells (MSCs) transplantation after chemical insult. All these studies are cited on Pubmed and MedLine. RESULTS This review has three distinct sections. First recent developments in ALI pathogenesis are presented. The second section covers cellular pathways and histological findings relevant to liver regeneration. The final chapter analyzes MSCs transplantation protocols after ALI and interrelation between liver regeneration and hepatic differentiation of MSCs. CONCLUSION Adipose tissue stem cells (ADSCs) and (MSCs) transplantation represents a promising modality in severe ALI management although many aspects remain to be clarified.
Collapse
Affiliation(s)
- Charalampos Katselis
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Konstantinos Apostolou
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Themistoklis Feretis
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Ioannis G Papanikolaou
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - George C Zografos
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece
| | - Konstantinos Toutouzas
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece
| | - Apostolos Papalois
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| |
Collapse
|
4
|
Tissue Remodelling following Resection of Porcine Liver. BIOMED RESEARCH INTERNATIONAL 2015; 2015:248920. [PMID: 26240819 PMCID: PMC4512564 DOI: 10.1155/2015/248920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
Abstract
AIM To study genes regulating the extracellular matrix (ECM) and investigate the tissue remodelling following liver resection in porcine. METHODS Four pigs with 60% partial hepatectomy- (PHx-) induced liver regeneration were studied over six weeks. Four pigs underwent sham surgery and another four pigs were used as controls of the normal liver growth. Liver biopsies were taken upon laparotomy, after three and six weeks. Gene expression profiles were obtained using porcine-specific oligonucleotide microarrays. Immunohistochemical staining was performed and a proliferative index was assessed. RESULTS More differentially expressed genes were associated with the regulation of ECM in the resection group compared to the sham and control groups. Secreted protein acidic and rich in cysteine (SPARC) and collagen 1, alpha 2 (COL1A2) were both upregulated in the early phase of liver regeneration, validated by immunopositive cells during the remodelling phase of liver regeneration. A broadened connective tissue was demonstrated by Masson's Trichrome staining, and an immunohistochemical staining against pan-Cytokeratin (pan-CK) demonstrated a distinct pattern of migrating cells, followed by proliferating cell nuclear antigen (PCNA) positive nuclei. CONCLUSIONS The present study demonstrates both a distinct pattern of PCNA positive nuclei and a deposition of ECM proteins in the remodelling phase of liver regeneration.
Collapse
|
5
|
Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes Dev 2015; 29:904-9. [PMID: 25934503 PMCID: PMC4421979 DOI: 10.1101/gad.258855.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wangensteen et al. employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah−/− mouse model of hereditary tyrosinemia. The transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. The fundamental question of which genes are most important in controlling liver regeneration remains unanswered. We employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah−/− mouse model of hereditary tyrosinemia. We discovered that the transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. Our approach enabled the identification of these factors as important regulators of liver repopulation and potential drug targets for the promotion of liver repopulation.
Collapse
Affiliation(s)
- Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Center for Molecular Studies in Digestive and Liver Diseases, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sophia Zhang
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Linda E Greenbaum
- Janssen Research and Development, Spring House, Pennsylvania 19477, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Center for Molecular Studies in Digestive and Liver Diseases, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
6
|
Zhang J, Yang Y, He T, Liu Y, Zhou Y, Chen Y, Xu C. Expression profiles uncover the relationship between erythropoietin and cell proliferation in rat hepatocytes after a partial hepatectomy. Cell Mol Biol Lett 2014; 19:331-46. [PMID: 24928528 PMCID: PMC6275805 DOI: 10.2478/s11658-014-0198-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin (EPO) has a beneficial effect on hepatic cell proliferation during liver regeneration. However, the underlying mechanism has not yet been elucidated. To uncover the proliferation response of EPO in rat liver regeneration after partial hepatectomy (PH) at the cellular level, hepatocytes (HCs) were isolated using Percoll density gradient centrifugation. The genes of the EPO-mediated signaling pathway and the target genes of the transcription factor (TF) in the pathway were identified in a pathway and TF database search. Their expression profiles were then detected using Rat Genome 230 2.0 Microarray. The results indicated that the EPO-mediated signaling pathway is involved in 19 paths and that 124 genes participate, of which 32 showed significant changes and could be identified as liver regeneration-related genes. In addition, 443 targets regulated by the TFs of the pathway and 60 genes associated with cell proliferation were contained in the array. Subsequently, the synergetic effect of these genes in liver regeneration was analyzed using the E(t) mathematical model based on their expression profiles. The results demonstrated that the E(t) values of paths 3, 8, 12 and 14-17 were significantly strengthened in the progressing phase of liver regeneration through the RAS/MEK/ERK or PI3K/AκT pathways. The synergetic effect of the target genes, in parallel with target-related cell proliferation, was also enhanced 12-72 h after PH, suggesting a potential positive effect of EPO on HC proliferation during rat liver regeneration. These data imply that the EPO receptor may allow EPO to promote HC proliferation through paths 3, 8, 12 and 14-17, mediating the RAS/MEK/ERK and PI3K/AκT pathways in rat liver regeneration after PH.
Collapse
Affiliation(s)
- Jihong Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yajuan Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Tingting He
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yunqing Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yun Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yongkang Chen
- College of Life Science and Technology, Jinan University, Guangzhou, 510632 P.R. China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P.R. China
| |
Collapse
|
7
|
Tyczewska M, Rucinski M, Trejter M, Ziolkowska A, Szyszka M, Malendowicz LK. Angiogenesis in the course of enucleation-induced adrenal regeneration--expression of selected genes and proteins involved in development of capillaries. Peptides 2012; 38:404-13. [PMID: 23041583 DOI: 10.1016/j.peptides.2012.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 01/13/2023]
Abstract
Enucleation-induced rapid proliferation of adrenocortical cells and restoration of adrenals structure requires formation of new blood vessels. The performed studies aimed to select from around 30,000 transcripts, identified by means of Affymetrix(®) Rat Gene 1.1 ST Array, the genes involved in angiogenesis in the course of enucleation-induced adrenal regeneration and to characterize their expression levels in regenerating gland between days 1 and 15 after surgery. At day 1 of regeneration almost 2000 genes showed more than 2-fold up/down-regulation. At days 1-3 after surgery the highest expression demonstrated genes involved in the development of inflammation and blood clot formation. From around 2000 genes we selected genes involved in angiogenesis. During the regeneration 62 genes involved in angiogenesis were identified as up- or down-regulated. Some data were also validated by QPCR. Levels of Vegfa and Kdr (Vegfr-2) mRNAs were very low at day 1 of regeneration and remained unchanged thereafter. The highest expression of Figf gene was found at day 5 while that of Vwf gene at days 1 and 2 after surgery. Levels of Thy1 mRNA increased notably between days 2 and 5 of the experiment. In comparison to control rats, Mc2r (ACTH receptor) expression was lowered at day 1 of the experiment and remained unchanged thereafter. This suggests that enucleation-induced adrenal neoangiogenesis does not require elevated expression of ACTH receptor. Results of our studies strongly suggest that enucleation-induced adrenal regeneration is an angiogenesis-dependent process. Moreover, immunohistochemistry suggests that regenerating adrenal parenchymal cells release numerous angiogenic factors which paracrinally may regulate formation of new vessels.
Collapse
Affiliation(s)
- Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
8
|
Xu CS, Jiang Y, Zhang LX, Chang CF, Wang GP, Shi RJ, Yang YJ. The role of Kupffer cells in rat liver regeneration revealed by cell-specific microarray analysis. J Cell Biochem 2012; 113:229-37. [PMID: 21898544 DOI: 10.1002/jcb.23348] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver regeneration after partial hepatectomy is a process with various types of cells involved. The role of Kupffer cells (KCs) in liver regeneration is still controversial. In this study we isolated KCs from regenerating liver and conducted cell-specific microarray analysis. The results demonstrated that the controversial role of KCs in liver regeneration could be explained with the expression patterns of TGF-α, IL-6, TNF, and possibly IL-18 during liver regeneration. IL-18 may play an important role in negative regulation of liver regeneration. The functional profiles of gene expression in KCs also indicated that KC signaling might play a negative role in cell proliferation: signaling genes were down regulated before cell division. Immune response genes in KCs were also down regulated during liver regeneration, demonstrating similar expression profiles to that of hepatocytes. The expression patterns of key genes in these functional categories were consistent with the temporal functional profiles.
Collapse
Affiliation(s)
- Cun-Shuan Xu
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | | | | | |
Collapse
|