1
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
2
|
Veal M, Dias G, Kersemans V, Sneddon D, Faulkner S, Cornelissen B. A Model System to Explore the Detection Limits of Antibody-Based Immuno-SPECT Imaging of Exclusively Intranuclear Epitopes. J Nucl Med 2021; 62:1537-1544. [PMID: 33789931 PMCID: PMC8612322 DOI: 10.2967/jnumed.120.251173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
Imaging of intranuclear epitopes using antibodies tagged to cell-penetrating peptides has great potential given its versatility, specificity, and sensitivity. However, this process is technically challenging because of the location of the target. Previous research has demonstrated a variety of intranuclear epitopes that can be targeted with antibody-based radioimmunoconjugates. Here, we developed a controlled-expression model of nucleus-localized green fluorescent protein (GFP) to interrogate the technical limitations of intranuclear SPECT using radioimmunoconjugates, notably the lower target-abundance detection threshold. Methods: We stably transfected the lung adenocarcinoma cell line H1299 with an enhanced GFP (EGFP)-tagged histone 2B (H2B) and generated 4 cell lines expressing increasing levels of GFP. EGFP levels were quantified using Western blot, flow cytometry, and enzyme-linked immunosorbent assay. An anti-GFP antibody (GFP-G1) was modified using dibenzocyclooctyne-N3-based strain-promoted azide-alkyne cycloaddition with the cell-penetrating peptide TAT (GRKKRRQRRRPPQGYG), which also includes a nuclear localization sequence, and the metal ion chelator N3-Bn-diethylenetriamine pentaacetate (DTPA) to allow radiolabeling with 111In. Cell uptake of 111In-GFP-G1-TAT was evaluated across 5 cell clones expressing different levels of H2B-EGFP in vitro. Tumor uptake in xenograft-bearing mice was quantified to determine the smallest amount of target epitope that could be detected using 111In-GFP-G1-TAT. Results: We generated 4 H1299 cell clones expressing different levels of H2B-EGFP (0-1 million copies per cell, including wild-type H1299 cells). GFP-G1 monoclonal antibody was produced and purified in house, and selective binding to H2B-EGFP was confirmed. The affinity (dissociation constant) of GFP-G1 was determined as 9.1 ± 3.0 nM. GFP-G1 was conjugated to TAT and DTPA. 111In-GFP-G1-TAT uptake in H2B-EGFP-expressing cell clones correlated linearly with H2B-EGFP expression (P < 0.001). In vivo xenograft studies demonstrated that 111In-GFP-G1-TAT uptake in tumor tissue correlated linearly with expression of H2B-EGFP (P = 0.004) and suggested a lower target-abundance detection threshold of approximately 240,000 copies per cell. Conclusion: Here, we present a proof-of-concept demonstration that antibody-based imaging of intranuclear targets is capable both of detecting the presence of an epitope of interest with a copy number above 240,000 copies per cell and of determining differences in expression level above this threshold.
Collapse
Affiliation(s)
- Mathew Veal
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
| | - Gemma Dias
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
| | - Veerle Kersemans
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
| | - Deborah Sneddon
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; and
| |
Collapse
|
3
|
Reissmann S, Filatova MP. New generation of cell‐penetrating peptides: Functionality and potential clinical application. J Pept Sci 2021; 27:e3300. [DOI: 10.1002/psc.3300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Siegmund Reissmann
- Faculty of Biological Sciences, Institute of Biochemistry and Biophysics Friedrich Schiller University Dornburger Str. 25 Jena Thueringia 07743 Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| |
Collapse
|
4
|
Hsieh K, Hsu C, Hung I, Yeh C, Chen Y, Cheng C. Positively charged liposomes consisting of the
KTTKS
pentapeptide conjugated with rhodamine increase rhodamine toxicity in
E. coli
and zebrafish embryo. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai‐Hsuan Hsieh
- Department of Applied Chemistry National Chia‐Yi University Chia‐Yi City Taiwan, ROC
| | - Chih‐Ying Hsu
- Department of Applied Chemistry National Chia‐Yi University Chia‐Yi City Taiwan, ROC
| | - I‐Ju Hung
- Department of Applied Chemistry National Chia‐Yi University Chia‐Yi City Taiwan, ROC
| | - Chih‐Ling Yeh
- Department of Applied Chemistry National Chia‐Yi University Chia‐Yi City Taiwan, ROC
| | - Yau‐Hung Chen
- Department of Chemistry Tamkang University New Taipei City Taiwan, ROC
| | - Chien‐Chung Cheng
- Department of Applied Chemistry National Chia‐Yi University Chia‐Yi City Taiwan, ROC
| |
Collapse
|
5
|
EJP18 peptide derived from the juxtamembrane domain of epidermal growth factor receptor represents a novel membrane-active cell-penetrating peptide. Biochem J 2020; 477:45-60. [DOI: 10.1042/bcj20190452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Membrane-active peptides have been extensively studied to probe protein–membrane interactions, to act as antimicrobial agents and cell-penetrating peptides (CPPs) for the delivery of therapeutic agents to cells. Hundreds of membrane-active sequences acting as CPPs have now been described including bioportides that serve as single entity modifiers of cell physiology at the intracellular level. Translation of promising CPPs in pre-clinical studies have, however, been disappointing as only few identified delivery systems have progressed to clinical trials. To search for novel membrane-active peptides a sequence from the EGFR juxtamembrane region was identified (named EJP18), synthesised, and examined in its L- and D-form for its ability to mediate the delivery of a small fluorophore and whole proteins to cancer cell lines. Initial studies identified the peptide as being highly membrane-active causing extensive and rapid plasma membrane reorganisation, blebbing, and toxicity. At lower, non-toxic concentrations the peptides outperformed the well-characterised CPP octaarginine in cellular delivery capacity for a fluorophore or proteins that were associated with the peptide covalently or via ionic interactions. EJP18 thus represents a novel membrane-active peptide that may be used as a naturally derived model for biophysical protein–membrane interactions or for delivery of cargo into cells for therapeutic or diagnostic applications.
Collapse
|
6
|
Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 Polyepitope Constructs Using Cationic and Amphipathic Cell Penetrating Peptides into Mammalian Cells. Curr HIV Res 2020; 17:408-428. [DOI: 10.2174/1570162x17666191121114522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Background:
An effective vaccine against human immunodeficiency virus 1 (HIV-1) is
an important global health priority. Despite many efforts in the development of the HIV-1 vaccine,
no effective vaccine has been approved yet. Recently, polyepitope vaccines including several immunogenic
and conserved epitopes of HIV-1 proteins have received special attention.
Methods:
In this study, HIV-1 Nef, Tat, Gp160 and P24 proteins were considered for selection of
immunodominant and conserved epitopes due to their critical roles in the viral life cycle and pathogenesis.
At first, the Nef60-84-Nef126-144-Tat29-49-Gp16030-53-Gp160308-323-P248-151 DNA construct was
designed using in silico studies. Then, the DNA construct was subcloned in pEGFP-N1 and pET-
24a (+) expression vectors and the rNef-Tat-Gp160-P24 polyepitope peptide was generated in E.coli
expression system for in vitro delivery using novel cell-penetrating peptides (CPPs), LDP-NLS and
CyLoP-1, in a non-covalent manner. Also, the HR9 and MPG CPPs were used to transfer the DNA
construct.
Results:
Our results showed that the recombinant polyepitope peptide generated in Rosetta strain
migrated as a clear band of ~31 kDa in SDS-PAGE. The SEM data confirmed the formation of stable
nanoparticles with a size below 250 nm. MTT assay revealed that the complexes did not represent
any considerable cytotoxic effect compared to untreated cells. The results of fluorescence microscopy,
flow cytometry and western blotting indicated that these CPPs successfully delivered polyepitope
constructs into HEK-293T cell line.
Conclusion:
These data suggested that these CPPs can be used as a promising approach for the development
of the HIV-1 vaccine.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Barba-Bon A, Pan YC, Biedermann F, Guo DS, Nau WM, Hennig A. Fluorescence Monitoring of Peptide Transport Pathways into Large and Giant Vesicles by Supramolecular Host–Dye Reporter Pairs. J Am Chem Soc 2019; 141:20137-20145. [DOI: 10.1021/jacs.9b09563] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Barba-Bon
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring
1, 28759 Bremen, Germany
| | - Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring
1, 28759 Bremen, Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring
1, 28759 Bremen, Germany
| |
Collapse
|
8
|
Rostami B, Irani S, Bolhassani A, Cohan RA. M918: A Novel Cell Penetrating Peptide for Effective Delivery of HIV-1 Nef and Hsp20-Nef Proteins into Eukaryotic Cell Lines. Curr HIV Res 2019; 16:280-287. [PMID: 30520377 PMCID: PMC6416460 DOI: 10.2174/1570162x17666181206111859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 12/02/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND HIV-1 Nef protein is a possible attractive target in the development of therapeutic HIV vaccines including protein-based vaccines. The most important disadvantage of protein-based vaccines is their low immunogenicity which can be improved by heat shock proteins (Hsps) as an immunomodulator, and cell-penetrating peptides (CPPs) as a carrier. METHODS In this study, the HIV-1 Nef and Hsp20-Nef proteins were generated in E.coli expression system for delivery into the HEK-293T mammalian cell line using a novel cell-penetrating peptide, M918, in a non-covalent fashion. The size, zeta potential and morphology of the peptide/protein complexes were studied by scanning electron microscopy (SEM) and Zeta sizer. The efficiency of Nef and Hsp20-Nef transfection using M918 was evaluated by western blotting in HEK-293T cell line. RESULTS The SEM data confirmed the formation of discrete nanoparticles with a diameter of approximately 200-250 nm and 50-80 nm for M918/Nef and M918/Hsp20-Nef, respectively. The dominant band of ~ 27 kDa and ~ 47 kDa was detected in the transfected cells with the Nef/ M918 and Hsp20-Nef/ M918 nanoparticles at a molar ratio of 1:20 using anti-HIV-1 Nef monoclonal antibody. These bands were not detected in the un-transfected and transfected cells with Nef or Hsp20- Nef protein alone indicating that M918 could increase the penetration of Nef and Hsp20-Nef proteins into the cells. CONCLUSION These data suggest that M918 CPP can be used to enter HIV-1 Nef and Hsp20-Nef proteins inside mammalian cells efficiently as a promising approach in HIV-1 vaccine development.
Collapse
Affiliation(s)
- Bahareh Rostami
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Pilot Nano-Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Kalmouni M, Al-Hosani S, Magzoub M. Cancer targeting peptides. Cell Mol Life Sci 2019; 76:2171-2183. [PMID: 30877335 PMCID: PMC11105397 DOI: 10.1007/s00018-019-03061-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/08/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
Despite continuing advances in the development of biomacromolecules for therapeutic purposes, successful application of these often large and hydrophilic molecules has been hindered by their inability to efficiently traverse the cellular plasma membrane. In recent years, cell-penetrating peptides (CPPs) have received considerable attention as a promising class of delivery vectors due to their ability to mediate the efficient import of a large number of cargoes in vitro and in vivo. However, the lack of target specificity of CPPs remains a major obstacle to their clinical development. To address this issue, researchers have developed strategies in which chemotherapeutic drugs are conjugated to cancer targeting peptides (CTPs) that exploit the unique characteristics of the tumor microenvironment or cancer cells, thereby improving cancer cell specificity. This review highlights several of these strategies that are currently in use, and discusses how multi-component nanoparticles conjugated to CTPs can be designed to provide a more efficient cancer therapeutic delivery strategy.
Collapse
Affiliation(s)
- Mona Kalmouni
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Sumaya Al-Hosani
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Ramírez PG, Del Pópolo MG, Vila JA, Szleifer I, Longo GS. Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy. J Colloid Interface Sci 2019; 552:701-711. [PMID: 31176053 DOI: 10.1016/j.jcis.2019.05.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022]
Abstract
The mechanism that arginine-rich cell penetrating peptides (ARCPPs) use to translocate lipid membranes is not entirely understood. In the present work, we develop a molecular theory that allows to investigate the adsorption and insertion of ARCPPs on membranes bearing hydrophilic pores. This method accounts for size, shape, conformation, protonation state and charge distribution of the peptides; it also describes the state of protonation of acidic membrane lipids. We present a systematic investigation of the effect of pore size, peptide concentration and sequence length on the extent of peptide adsorption and insertion into the pores. We show that adsorption on the intact (non-porated) lipid membrane plays a key role on peptide translocation. For peptides shorter than nona-arginine, adsorption on the intact membrane increases significantly with chain length, but it saturates for longer peptides. However, this adsorption behavior only occurs at relatively low peptide concentrations; increasing peptide concentration favors adsorption of the shorter molecules. Adsorption of longer peptides increases the intact membrane negative charge as a result of further deprotonation of acidic lipids. Peptide insertion into the pores depends non-monotonically on pore radius, which reflects the short range nature of the effective membrane-peptide interactions. The size of the pore that promotes maximum adsorption depends on the peptide chain length. Peptide translocation is a thermally activated process, so we complement our thermodynamic approach with a simple kinetic model that allows to rationalize the ARCPPs translocation rate in terms of the free energy gain of adsorption, and the energy cost of creating a transmembrane pore with peptides in it. Our results indicate that strategies to improve translocation efficiency should focus on enhancing peptide adsorption.
Collapse
Affiliation(s)
- Pedro G Ramírez
- Instituto de Matemática Aplicada San Luis (IMASL), UNSL-CONICET, San Luis, Argentina
| | - Mario G Del Pópolo
- IICB-CONICET & Facultad de Ciencias Exactas y Naturales (FCEN), UNCuyo, Mendoza, Argentina
| | - Jorge A Vila
- Instituto de Matemática Aplicada San Luis (IMASL), UNSL-CONICET, San Luis, Argentina
| | - I Szleifer
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston IL, USA
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina.
| |
Collapse
|
11
|
Jensen K, WuWong DJ, Wong S, Matsuyama M, Matsuyama S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp Biol Med (Maywood) 2019; 244:621-629. [PMID: 30836793 DOI: 10.1177/1535370219833624] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Bax induces mitochondria-dependent programed cell death. While cytotoxic drugs activating Bax have been developed for cancer treatment, clinically effective therapeutics suppressing Bax-induced cell death rescuing essential cells have not been developed. This mini-review will summarize previously reported Bax inhibitors including peptides, small compounds, and antibodies. We will discuss potential applications and the future direction of these Bax inhibitors.
Collapse
Affiliation(s)
- Kelsey Jensen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - David Jasen WuWong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Sean Wong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Mieko Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Shigemi Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Tansi FL, Filatova MP, Koroev DO, Volpina OM, Lange S, Schumann C, Teichgräber UK, Reissmann S, Hilger I. New generation CPPs show distinct selectivity for cancer and noncancer cells. J Cell Biochem 2018; 120:6528-6541. [DOI: 10.1002/jcb.27943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Dmitri O. Koroev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Olga M. Volpina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | | | | | - Ulf K. Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| | - Siegmund Reissmann
- Jena Bioscience GmbH Jena Germany
- Centrum of Molecular Biomedicine, Institute of Biochemistry and Biophysics, Friedrich‐Schiller‐University Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| |
Collapse
|
13
|
Keller AA, Scheiding B, Breitling R, Licht A, Hemmerich P, Lorkowski S, Reissmann S. Transduction and transfection of difficult-to-transfect cells: Systematic attempts for the transfection of protozoa Leishmania. J Cell Biochem 2018; 120:14-27. [PMID: 30216507 DOI: 10.1002/jcb.27463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Cell-penetrating peptides (CPPs) are used to internalize different cargoes, including DNA, into live mammalian and plant cells. Despite many cells being easily transfected with this approach, other cells are rather "difficult" or "hard to transfect," including protist cells of the genus Leishmania. Based on our previous results in successfully internalizing proteins into Leishmania tarentolae cells, we used single CPPs and three different DNA-binding proteins to form protein-like complexes with plasmids covered with CPPs. We attempted magnetofection, electroporation, and transfection using a number of commercially available detergents. While complex formation with negatively charged DNA required substantially higher amounts of CPPs than those necessary for mostly neutral proteins, the cytotoxicity of the required amounts of CPPs and auxiliaries was thoroughly studied. We found that Leishmania cells were indeed susceptible to high concentrations of some CPPs and auxiliaries, although in a different manner compared with that for mammalian cells. The lack of successful transfections implies the necessity to accept certain general limitations regarding DNA internalization into difficult-to-transfect cells. Only electroporation allowed reproducible internalization of large and rigid plasmid DNA molecules through electrically disturbed extended membrane areas, known as permeable membrane macrodomains.
Collapse
Affiliation(s)
- Andrea-Anneliese Keller
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany
| | - Berith Scheiding
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany
| | | | | | - Peter Hemmerich
- Leibniz Institute for Aging Research, Fritz Lipmann Institute, Jena, Germany
| | - Stefan Lorkowski
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Leipzig, Germany
| | - Siegmund Reissmann
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Biochemistry and Biophysics, Jena, Germany
| |
Collapse
|
14
|
Duan T, He L, Tokura Y, Liu X, Wu Y, Shi Z. Construction of tunable peptide nucleic acid junctions. Chem Commun (Camb) 2018; 54:2846-2849. [PMID: 29364308 DOI: 10.1039/c8cc00108a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.
Collapse
Affiliation(s)
- Tanghui Duan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074 Hongshan, Wuhan, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Via MA, Del Pópolo MG, Wilke N. Negative Dipole Potentials and Carboxylic Polar Head Groups Foster the Insertion of Cell-Penetrating Peptides into Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3102-3111. [PMID: 29394073 DOI: 10.1021/acs.langmuir.7b04038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-penetrating peptides (CPPs) are polycationic sequences of amino acids recognized as some of the most effective vehicles for delivering membrane-impermeable cargos into cells. CPPs can traverse cell membranes by direct translocation, and assessing the role of lipids on the membrane permeation process is important to convene a complete model of the CPP translocation. In this work, we focus on the biophysical basis of peptide-fatty acid interactions, analyzing how the acid-base and electrostatic properties of the lipids determine the CPP adsorption and incorporation into a Langmuir monolayer, focusing thus on the first two stages of the direct translocation mechanism. We sense the binding and insertion of the peptide into the lipid structure by measuring the changes in the surface pressure, the surface potential, and the reflectivity of the interface. We show that, beyond the presence of anionic moieties, negative dipole potentials and carboxylic polar head groups significantly promote the insertion of the peptide into the monolayer. On the basis of our results, we propose the appearance of stable CPP-lipid complexes whose kinetics of formation depends on the length of the lipids' hydrocarbon chains.
Collapse
Affiliation(s)
- Matías A Via
- CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza , Argentina
- Instituto de Histologı́a y Embriologı́a de Mendoza (IHEM-CONICET) & Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina
| | - Mario G Del Pópolo
- CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza , Argentina
| | | |
Collapse
|
16
|
Europium and terbium Schiff base peptide complexes as potential antimicrobial agents against Salmonella typhimurium and Pseudomonas aeruginosa. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Intracellular and transdermal protein delivery mediated by non-covalent interactions with a synthetic guanidine-rich molecular carrier. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Trends in the Binding of Cell Penetrating Peptides to siRNA: A Molecular Docking Study. JOURNAL OF BIOPHYSICS 2017; 2017:1059216. [PMID: 28321253 PMCID: PMC5340175 DOI: 10.1155/2017/1059216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/15/2017] [Indexed: 11/20/2022]
Abstract
The use of gene therapeutics, including short interfering RNA (siRNA), is limited by the lack of efficient delivery systems. An appealing approach to deliver gene therapeutics involves noncovalent complexation with cell penetrating peptides (CPPs) which are able to penetrate the cell membranes of mammals. Although a number of CPPs have been discovered, our understanding of their complexation and translocation of siRNA is as yet insufficient. Here, we report on computational studies comparing the binding affinities of CPPs with siRNA, considering a variety of CPPs. Specifically, seventeen CPPs from three different categories, cationic, amphipathic, and hydrophobic CPPs, were studied. Molecular mechanics were used to minimize structures, while molecular docking calculations were used to predict the orientation and favorability of sequentially binding multiple peptides to siRNA. Binding scores from docking calculations were highest for amphipathic peptides over cationic and hydrophobic peptides. Results indicate that initial complexation of peptides will likely occur along the major groove of the siRNA, driven by electrostatic interactions. Subsequent binding of CPPs is likely to occur in the minor groove and later on bind randomly, to siRNA or previously bound CPPs, through hydrophobic interactions. However, hydrophobic CPPs do not show this binding pattern. Ultimately binding yields a positively charged nanoparticle capable of noninvasive cellular import of therapeutic molecules.
Collapse
|
19
|
CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:167-176. [DOI: 10.1016/j.bbamem.2016.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 01/17/2023]
|
20
|
Enhancement of hERG channel activity by scFv antibody fragments targeted to the PAS domain. Proc Natl Acad Sci U S A 2016; 113:9916-21. [PMID: 27516548 DOI: 10.1073/pnas.1601116113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human human ether-à-go-go-related gene (hERG) potassium channel plays a critical role in the repolarization of the cardiac action potential. Changes in hERG channel function underlie long QT syndrome (LQTS) and are associated with cardiac arrhythmias and sudden death. A striking feature of this channel and KCNH channels in general is the presence of an N-terminal Per-Arnt-Sim (PAS) domain. In other proteins, PAS domains bind ligands and modulate effector domains. However, the PAS domains of KCNH channels are orphan receptors. We have uncovered a family of positive modulators of hERG that specifically bind to the PAS domain. We generated two single-chain variable fragments (scFvs) that recognize different epitopes on the PAS domain. Both antibodies increase the rate of deactivation but have different effects on channel activation and inactivation. Importantly, we show that both antibodies, on binding to the PAS domain, increase the total amount of current that permeates the channel during a ventricular action potential and significantly reduce the action potential duration recorded in human cardiomyocytes. Overall, these molecules constitute a previously unidentified class of positive modulators and establish that allosteric modulation of hERG channel function through ligand binding to the PAS domain can be attained.
Collapse
|
21
|
Sims LB, Curtis LT, Frieboes HB, Steinbach-Rankins JM. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer. J Nanobiotechnology 2016; 14:33. [PMID: 27102372 PMCID: PMC4840861 DOI: 10.1186/s12951-016-0185-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/12/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Uncoordinated cellular proliferation and dysregulated angiogenesis in solid tumors are coupled with inadequate tissue, blood, and lymphatic vascularization. Consequently, tumors are often characterized by hypoxic regions with limited access to vascular-borne substances. In particular, systemically administered nanoparticles (NPs) targeting tumor cells and relying on vascular access to reach tumor tissue can suffer from limited therapeutic efficacy due to inhomogeneous intra-tumor distribution and insufficient cellular internalization of NPs. To circumvent these challenges, NP surfaces can be modified to facilitate tumor interstitial transport and cellular uptake. RESULTS We create poly(lactic-co-glycolic) acid NPs modified with MPG, polyethylene glycol (PEG), MPG/PEG, and Vimentin (VIM), and evaluate their cellular uptake in 2D (monolayer) cell culture of human cervical carcinoma (HeLa). We compare NP performance by evaluating uptake by non-cancerous vaginal (VK2) cells. We further assess NP interstitial transport in hypo-vascularized lesions by evaluating the effect of the various modifications on NP penetration in 3D cell culture of the HeLa cells. Results show that after 24 h incubation with HeLa cells in monolayer, MPG, MPG/PEG, PEG, and VIM NPs were internalized at 66×, 24×, 30×, and 15× that of unmodified NPs, respectively. In contrast, incubation with VK2 cells in monolayer showed that MPG , MPG/PEG , PEG , and VIM NPs internalized at 6.3×, 4.3×, 12.4×, and 3.0× that of unmodified NPs, respectively. Uptake was significantly enhanced in tumorigenic vs. normal cells, with internalization of MPG NPs by HeLa cells being twice that of PEG NPs by VK2 cells. After 24 h incubation in HeLa 3D cell culture, MPG and MPG/PEGNPs were internalized 2× and 3× compared to PEG and VIM NPs, respectively. Whereas MPG NPs were internalized mostly in the cell culture periphery (1.2×, 1.4×, and 2.7× that of PEG, MPG/PEG, and VIM NPs, respectively), PEG NPs at 250 μm penetrated 2× farther into the tissue culture than MPG NPs. For all NP types, cellular internalization was severely hindered in 3D compared to monolayer. CONCLUSIONS Although MPG surface modification enhances internalization and uptake in hypo-vascularized cervical tissue culture, coating with PEG reduces this internalization while enhancing penetration. A delivery strategy combining NPs with either modification may balance cellular internalization vs. tissue penetration in hypo-vascularized cervical cancer lesions.
Collapse
Affiliation(s)
- Lee B Sims
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA
| | - Louis T Curtis
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA. .,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA. .,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA. .,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
22
|
Kadkhodayan S, Sadat SM, Irani S, Fotouhi F, Bolhassani A. Generation of GFP Native Protein for Detection of Its Intracellular Uptake by Cell-Penetrating Peptides. Folia Biol (Praha) 2016; 62:103-9. [PMID: 27516189 DOI: 10.14712/fb2016062030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Different types of lipid- and polymer-based vectors have been developed to deliver proteins into cells, but these methods showed relatively poor efficiency. Recently, a group of short, highly basic peptides known as cell-penetrating peptides (CPPs) were used to carry polypeptides and proteins into cells. In this study, expression and purification of GFP protein was performed using the prokaryotic pET expression system. We used two amphipathic CPPs (Pep-1 and CADY-2) as a novel delivery system to transfer the GFP protein into cells. The morphological features of the CPP/GFP complexes were studied by scanning electron microscopy (SEM), Zetasizer, and SDS-PAGE. The efficiency of GFP transfection using Pep-1 and CADY-2 peptides and TurboFect reagent was compared with FITC-antibody protein control delivered by these transfection vehicles in the HEK-293T cell line. SEM data confirmed formation of discrete nanoparticles with a diameter of below 300 nm. Moreover, formation of the complexes was detected using SDS-PAGE as two individual bands, indicating non-covalent interaction. The size and homogeneity of Pep-1/GFP and CADY-2/GFP complexes were dependent on the ratio of peptide/cargo formulations, and responsible for their biological efficiency. The cells transfected by Pep-1/GFP and CADY-2/GFP complexes at a molar ratio of 20 : 1 demonstrated spreading green regions using fluorescent microscopy. Flow cytometry results showed that the transfection efficiency of Pep-based nanoparticles was similar to CADY-based nanoparticles and comparable with TurboFect-protein complexes. These data open an efficient way for future therapeutic purposes.
Collapse
Affiliation(s)
- S Kadkhodayan
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S M Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - S Irani
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - F Fotouhi
- Influenza Research Lab., Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - A Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
23
|
Steinbach JM, Seo YE, Saltzman WM. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization. Acta Biomater 2016; 30:49-61. [PMID: 26602822 PMCID: PMC4695306 DOI: 10.1016/j.actbio.2015.11.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023]
Abstract
The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery.
Collapse
Affiliation(s)
- Jill M Steinbach
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Young-Eun Seo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
24
|
González-Magaldi M, Vázquez-Calvo Á, de la Torre BG, Valle J, Andreu D, Sobrino F. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication. PLoS One 2015; 10:e0141415. [PMID: 26505190 PMCID: PMC4624780 DOI: 10.1371/journal.pone.0141415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7) sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM) were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target.
Collapse
Affiliation(s)
| | - Ángela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Beatriz G. de la Torre
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Valle
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
25
|
A fusogenic peptide from a sea urchin fertilization protein promotes intracellular delivery of biomacromolecules by facilitating endosomal escape. J Control Release 2015; 212:85-93. [DOI: 10.1016/j.jconrel.2015.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
|
26
|
Zhu S, Chen S, Gao Y, Guo F, Li F, Xie B, Zhou J, Zhong H. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv 2015; 23:1980-91. [PMID: 26181841 DOI: 10.3109/10717544.2015.1043472] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biodegradable polymer nanoparticle drug carriers are an attractive strategy for oral delivery of peptide and protein drugs. However, their ability to cross the intestinal epithelium membrane is largely limited. Therefore, in the present study, cell-penetrating peptides (R8, Tat, penetratin) and a secretion peptide (Sec) with N-terminal stearylation were introduced to modify nanoparticles (NPs) on the surface to improve oral bioavailability of peptide and protein drugs. In vitro studies conducted in Caco-2 cells showed the value of the apparent permeability coefficient (Papp) of the nanoparticles co-modified with Sec and penetratin (Sec-Pen-NPs) was about two-times greater than that of the nanoparticles modified with only penetratin (Pen-NPs), while the increase of transcellular transport of nanoparticles modified together with Sec and R8 (Sec-R8-NPs), or Sec and Tat (Sec-Tat-NPs), was not significant compared with nanoparticles modified with only R8 (R8-NPs) or Tat (Tat-NPs). Using insulin as the model drug, in vivo studies performed on rats indicated that compared to Pen-NPs, the relative bioavailability of insulin for Sec-Pen-NPs was 1.71-times increased after ileal segments administration, and stronger hypoglycemic effects was also observed. Therefore, the nanoparticles co-modified with penetratin and Sec could act as attractive carriers for oral delivery of insulin.
Collapse
Affiliation(s)
- Siqi Zhu
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Shuangxi Chen
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Yuan Gao
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Feng Guo
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Fengying Li
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Baogang Xie
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| | - Jianliang Zhou
- b Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Haijun Zhong
- a School of Pharmacy, Nanchang University , Jiangxi , China and
| |
Collapse
|
27
|
Tansi F, Kallweit E, Kaether C, Kappe K, Schumann C, Hilger I, Reissmann S. Internalization of Near-Infrared Fluorescently Labeled Activatable Cell-Penetrating Peptide and of Proteins into Human Fibrosarcoma Cell Line HT-1080. J Cell Biochem 2015; 116:1222-31. [DOI: 10.1002/jcb.25075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Felista Tansi
- Institute of Diagnostic and Interventional Radiology; Department of Experimental Radiology; Jena University Hospital; Friedrich-Schiller University; Erlanger Allee 101 Jena 07747 Germany
| | - Eric Kallweit
- Institute of Diagnostic and Interventional Radiology; Department of Experimental Radiology; Jena University Hospital; Friedrich-Schiller University; Erlanger Allee 101 Jena 07747 Germany
- Ernst-Abbe-University of Applied Sciences; Carl-Zeiss-Promenade 2 Jena 07745 Germany
| | - Christoph Kaether
- Leibniz Institute for Age Research; Fritz-Lipmann-Institute; Beutenbergstr. 11 Jena 07745 Germany
| | - Katarina Kappe
- Jena Bioscience GmbH; Loebstedter Str. 80 Jena 07749 Germany
| | - Christina Schumann
- Ernst-Abbe-University of Applied Sciences; Carl-Zeiss-Promenade 2 Jena 07745 Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology; Department of Experimental Radiology; Jena University Hospital; Friedrich-Schiller University; Erlanger Allee 101 Jena 07747 Germany
| | - Siegmund Reissmann
- Jena Bioscience GmbH; Loebstedter Str. 80 Jena 07749 Germany
- Centrum of Molecular Biomedicine; Institute of Biochemistry and Biophysics; Friedrich- Schiller-University; Dornburger Str. 25 Jena 07743 Germany
| |
Collapse
|
28
|
Bello I, Salerno M. Evidence against a role of P-glycoprotein in the clearance of the Alzheimer's disease Aβ1-42 peptides. Cell Stress Chaperones 2015; 20:421-30. [PMID: 25591827 PMCID: PMC4406933 DOI: 10.1007/s12192-014-0566-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/27/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022] Open
Abstract
It has been proposed that the amyloid-β peptides (Aβ) cause the neuronal degeneration in the Alzheimer's disease brain. An imbalance between peptide production at the neuronal level and their elimination across the blood-brain-barrier (BBB) results in peptide accumulation inside the brain. The identification and functional characterization of the transport systems in the BBB with the capacity to transport Aβ is crucial for the understanding of Aβ peptide traffic from the brain to the blood. In this context, it has been suggested that the P-glycoprotein (P-gp), expressed in endothelial cells of the BBB, plays a role in the elimination of Aβ. However, there is little, if any, experimental evidence to support this; therefore, the aim of this investigation was to determine whether P-gp is capable of transporting Aβ peptides. Our results show that ATPase activity measured in plasma membrane vesicles of K562 cells overexpressing P-gp is not increased by the presence of Aβ42, suggesting that Aβ42 is not a P-gp substrate. Similarly, P-gp of pirarubicin was unaffected by Aβ42. Moreover, the overexpression of P-gp does not protect cells against Aβ42 toxicity. Taken together, our results support the conclusion that Aβ42 is not transported by P-gp.
Collapse
Affiliation(s)
- Ivan Bello
- Sorbonne Paris Cité, Laboratoire CSPBAT, CNRS (UMR 7244), UFR-SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Milena Salerno
- Sorbonne Paris Cité, Laboratoire CSPBAT, CNRS (UMR 7244), UFR-SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny, France
| |
Collapse
|
29
|
Durzyńska J, Przysiecka Ł, Nawrot R, Barylski J, Nowicki G, Warowicka A, Musidlak O, Goździcka-Józefiak A. Viral and Other Cell-Penetrating Peptides as Vectors of Therapeutic Agents in Medicine. J Pharmacol Exp Ther 2015; 354:32-42. [DOI: 10.1124/jpet.115.223305] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
|
30
|
Kuwahara K, Harada K, Yamagoshi R, Yamamoto T, Shinohara Y. Effects of employment of distinct strategies to capture antibody on antibody delivery into cultured cells. Mol Cell Biochem 2015; 404:25-30. [PMID: 25697272 DOI: 10.1007/s11010-015-2362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/14/2015] [Indexed: 11/24/2022]
Abstract
The characteristics of antibody delivery into cultured HeLa cells were examined using two delivery systems. Both systems used a cell-penetrating peptide as a tool for intrusion of an antibody into the cells, but either a "protein A derivative" or "hydrophobic motif" was employed to capture the antibody. When we examined the uptake of the Alexa Fluor-labeled antibody by the use of these two systems, both systems were found to effectively deliver the antibody into the cultured cells. However, when we compared the amount of antibody delivered by these systems with the amount of transferrin uptake, the former was 10 times smaller than the latter. The lower efficiency of antibody delivery than transferrin uptake seemed to be attributable to the involvement of the antibody delivery reagent, which failed to catch the antibody molecule. This interpretation was validated by an experiment using a larger amount of antibody, and the amount of antibody delivered by the "protein A derivative" system under this condition was determined to be 13 ng proteins/10(5) cells. The antibody delivery achieved by the "protein A derivative" or "hydrophobic motif" showed two differences, i.e., a difference in intracellular distribution of the delivered antibody molecules and a difference in the fluorescence spectrum observed with cellular lysates. Possible reasons for these differences between the two delivery systems are discussed.
Collapse
Affiliation(s)
- Kana Kuwahara
- Institute for Genome Research, University of Tokushima, Kuramoto-cho-3, Tokushima, 770-8503, Japan
| | | | | | | | | |
Collapse
|
31
|
Purkayastha N, Capone S, Beck AK, Seebach D, Leeds J, Thompson K, Moser HE. Antibacterial Activity of Enrofloxacin and Ciprofloxacin Derivatives ofβ-Octaarginine. Chem Biodivers 2015; 12:179-93. [DOI: 10.1002/cbdv.201400456] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 11/09/2022]
|
32
|
Herce HD, Garcia AE, Cardoso MC. Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc 2014; 136:17459-67. [PMID: 25405895 PMCID: PMC4277769 DOI: 10.1021/ja507790z] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Guanidinium-rich
molecules, such as cell-penetrating peptides,
efficiently enter living cells in a non-endocytic energy-independent
manner and transport a wide range of cargos, including drugs and biomarkers.
The mechanism by which these highly cationic molecules efficiently
cross the hydrophobic barrier imposed by the plasma membrane remains
a fundamental open question. Here, a combination of computational
results and in vitro and live-cell experimental evidence reveals an
efficient energy-independent translocation mechanism for arginine-rich
molecules. This mechanism unveils the essential role of guanidinium
groups and two universal cell components: fatty acids and the cell
membrane pH gradient. Deprotonated fatty acids in contact with the
cell exterior interact with guanidinium groups, leading to a transient
membrane channel that facilitates the transport of arginine-rich peptides
toward the cell interior. On the cytosolic side, the fatty acids become
protonated, releasing the peptides and resealing the channel. This
fundamental mechanism appears to be universal across cells from different
species and kingdoms.
Collapse
Affiliation(s)
- Henry D Herce
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
33
|
Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 2014; 20:760-84. [DOI: 10.1002/psc.2672] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Siegmund Reissmann
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Biochemistry and Biophysics; Dornburger Strasse 25 07743 Jena Germany
- Jena Bioscience GmbH; Loebstedter Strasse 80 07749 Jena Germany
| |
Collapse
|
34
|
Liu X, Zhao Q, Peng X, Xia S, Shen W, Zong Y, Cheng J, Wu W, Zhang M, Du F, Xu W, Qian H, Shao Q. PTD-mediated intracellular delivery of mutant NFAT minimum DNA binding domain inhibited the proliferation of T cells. Int Immunopharmacol 2014; 19:110-8. [DOI: 10.1016/j.intimp.2014.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 12/01/2022]
|
35
|
Keller AA, Breitling R, Hemmerich P, Kappe K, Braun M, Wittig B, Schaefer B, Lorkowski S, Reissmann S. Transduction of Proteins intoLeishmania Tarentolaeby Formation of Non-Covalent Complexes With Cell-Penetrating Peptides. J Cell Biochem 2013; 115:243-52. [DOI: 10.1002/jcb.24654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Andrea-Anneliese Keller
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Nutrition and Abbe Centre of Photonics; Dornburger Str. 25 07743 Jena Germany
| | | | - Peter Hemmerich
- Leibniz Institute for Age Research - Fritz Lipmann Institute; Beutenbergstr. 11 07745 Jena Germany
| | - Katarina Kappe
- Jena Bioscience GmbH; Loebstedter Str. 80 07749 Jena Germany
| | - Maria Braun
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Nutrition and Abbe Centre of Photonics; Dornburger Str. 25 07743 Jena Germany
| | - Berith Wittig
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Nutrition and Abbe Centre of Photonics; Dornburger Str. 25 07743 Jena Germany
| | - Buerk Schaefer
- Jena Bioscience GmbH; Loebstedter Str. 80 07749 Jena Germany
| | - Stefan Lorkowski
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Nutrition and Abbe Centre of Photonics; Dornburger Str. 25 07743 Jena Germany
| | - Siegmund Reissmann
- Jena Bioscience GmbH; Loebstedter Str. 80 07749 Jena Germany
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Biochemistry and Biophysics; Dornburger Str. 25 07743 Jena Germany
| |
Collapse
|
36
|
Kubiak-Ossowska K, Burley G, Patwardhan SV, Mulheran PA. Spontaneous membrane-translocating peptide adsorption at silica surfaces: a molecular dynamics study. J Phys Chem B 2013; 117:14666-75. [PMID: 24176015 PMCID: PMC3871889 DOI: 10.1021/jp409130s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Spontaneous membrane-translocating
peptides (SMTPs) have recently
been shown to directly penetrate cell membranes. Adsorption of a SMTP,
and some engineered extensions, at model silica surfaces is studied
herein using fully atomistic molecular dynamics simulations in order
to assess their potential to construct novel drug delivery systems.
The simulations are designed to reproduce the electric fields above
single, siloxide-rich charged surfaces, and the trajectories indicate
that the main driving force for adsorption is electrostatic. An increase
in the salt concentration slows down but does not prevent adsorption
of the SMTP to the surface; it also does not result in peptide desorption,
suggesting additional binding via hydrophobic forces. The results
are used to design extensions to the peptide sequence which we find
enhance adsorption but do not affect the adsorbed conformation. We
also investigate the effect of surface hydroxylation on the peptide
adsorption. In all cases, the final adsorbed conformations are with
the peptide flattened to the surface with arginine residues, which
are key to the peptide’s function, anchoring it to the surface
so that they are not exposed to solution. This conformation could
impact their role in membrane translocation and thus has important
implications for the design of future drug delivery vehicles.
Collapse
Affiliation(s)
- Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde , James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | | | | | | |
Collapse
|
37
|
Lim KJ, Sung BH, Shin JR, Lee YW, Kim DJ, Yang KS, Kim SC. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One 2013; 8:e66084. [PMID: 23776609 PMCID: PMC3679022 DOI: 10.1371/journal.pone.0066084] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/06/2013] [Indexed: 02/05/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.
Collapse
Affiliation(s)
- Ki Jung Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Bong Hyun Sung
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ju Ri Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Young Woong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Da Jung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kyung Seok Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- * E-mail:
| |
Collapse
|
38
|
Cellular Uptake Mechanism and Therapeutic Utility of a Novel Peptide in Targeted-Delivery of Proteins into Neuronal Cells. Pharm Res 2013; 30:2108-17. [DOI: 10.1007/s11095-013-1068-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/24/2013] [Indexed: 12/22/2022]
|
39
|
Keller AA, Mussbach F, Breitling R, Hemmerich P, Schaefer B, Lorkowski S, Reissmann S. Relationships between Cargo, Cell Penetrating Peptides and Cell Type for Uptake of Non-Covalent Complexes into Live Cells. Pharmaceuticals (Basel) 2013; 6:184-203. [PMID: 24275947 PMCID: PMC3816687 DOI: 10.3390/ph6020184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/16/2022] Open
Abstract
Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell. In our studies complexes are formed with labeled or readily detectable cargoes for qualitative and quantitative estimation of their internalization. Properties and behavior of adhesion and suspension vertebrate cells as well as the protozoa Leishmania tarentolae are investigated with respect to proteolytic activity, uptake efficiency, intracellular localization and cytotoxicity. Our results show that peptide stability to membrane-bound, secreted or intracellular proteases varies between different CPPs and that the suitability of individual CPPs for a particular cargo in complex formation by non-covalent interactions requires detailed studies. Cells vary in their sensitivity to increasing concentrations of CPPs. Thus, most cells can be efficiently transduced with peptides, proteins and nucleotides with intracellular concentrations in the low micromole range. For each cargo, cell type and CPP the optimal conditions must be determined separately.
Collapse
Affiliation(s)
- Andrea-Anneliese Keller
- Biological and Pharmaceutical Faculty, Friedrich Schiller University, Dornburger Str. 25, 07743 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Vollrath SBL, Fürniss D, Schepers U, Bräse S. Amphiphilic peptoid transporters – synthesis and evaluation. Org Biomol Chem 2013; 11:8197-201. [DOI: 10.1039/c3ob41139g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Ma Y, Gong C, Ma Y, Fan F, Luo M, Yang F, Zhang YH. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues. J Control Release 2012; 162:286-94. [PMID: 22824782 DOI: 10.1016/j.jconrel.2012.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/31/2012] [Accepted: 07/15/2012] [Indexed: 12/26/2022]
Abstract
The ability of cell-penetrating peptides (CPPs) to deliver a range of membrane-impermeable molecules into living cells makes them attractive potential vehicles for therapeutics. However, in vivo, the efficiency of CPP delivery to the cytosol remains unsatisfactory owing to endosomal entrapment and/or systemic toxicity, which severely restrict their bioavailability and efficacy in in vivo applications. In this study, we developed a series of novel chimeras consisting of various numbers of d- and l-arginine residues and investigated their cellular uptake behaviors and systemic toxicities. We demonstrated that the intracellular distribution, uptake efficiency, and systemic toxicity of these oligoarginines were all significantly affected by the number of d-arginine residues in the peptide sequence. We also found that a hybrid peptide, (rR)(3)R(2), possessed low systemic toxicity, high uptake efficiency, and, remarkably, achieved efficient cytosolic delivery not only in cultured cells but also in living tissue cells in mice after intravenous injection, implying that this heterogeneous motif might have promising applications in the delivery of cargoes of small sizes directed to cytosolic targets in vivo. Our studies into the uptake mechanism of (rR)(3)R(2) indicate that its cellular uptake was not affected by pharmacological or physical inhibitors of endocytosis but by the elimination of the membrane potential, suggesting that (rR)(3)R(2) does not enter the cells via endocytosis but rather through direct membrane translocation driven by the membrane potential. The results here might provide useful guidelines for the design and application of CPPs in drug delivery.
Collapse
Affiliation(s)
- Yan Ma
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|