1
|
Liu M, Tang B, Xiang R, Hu P, Xu C, Hu L, Li Q. Aberrant expression of MRAS and HEG1 as the biomarkers for osimertinib resistance in LUAD. Discov Oncol 2024; 15:678. [PMID: 39560891 DOI: 10.1007/s12672-024-01552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are the most applied targeted therapy for EGFR-mutant lung adenocarcinoma (LUAD). The third-generation EGFR-TKI, osimertinib, is widely used throughout lung cancer treatment, with single or combination modes. One of the main barriers in osimertinib treatment is the acquired resistance and mechanisms are not fully understood. Gene expression other than genetic mutations might predict drug response and mediate resistance occurrence. We analyzed six datasets of osimertinib-resistant LUAD cells from the Gene Expression Omnibus (GEO) database and identified two hub genes, named MRAS and HEG1. We found that the expression mode of MRAS/HEG1 in LUAD was osimertinib-dependent and contributed to drug resistance. We also explored potential mechanisms of hub genes related osimertinib resistance and emphasized the M2 infiltration involved. Moreover, potential therapeutic agents conquering MRAS/HEG1-related resistance were also identified. In conclusion, MRAS and HEG1 might be responsible for osimertinib resistance and could be promising prognostic biomarkers for osimertinib response in LUAD, which might provide insights into therapeutic strategies.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Bo Tang
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Run Xiang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan University, Chengdu, 610042, China
| | - Peihong Hu
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Chuan Xu
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing, 400039, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Lanlin Hu
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Yu-Yue Pathology Scientific Research Center, Chongqing, 400039, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Qiang Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China.
| |
Collapse
|
2
|
Thatikonda V, Lyu H, Jurado S, Kostyrko K, Bristow CA, Albrecht C, Alpar D, Arnhof H, Bergner O, Bosch K, Feng N, Gao S, Gerlach D, Gmachl M, Hinkel M, Lieb S, Jeschko A, Machado AA, Madensky T, Marszalek ED, Mahendra M, Melo-Zainzinger G, Molkentine JM, Jaeger PA, Peng DH, Schenk RL, Sorokin A, Strauss S, Trapani F, Kopetz S, Vellano CP, Petronczki M, Kraut N, Heffernan TP, Marszalek JR, Pearson M, Waizenegger IC, Hofmann MH. Co-targeting SOS1 enhances the antitumor effects of KRAS G12C inhibitors by addressing intrinsic and acquired resistance. NATURE CANCER 2024; 5:1352-1370. [PMID: 39103541 PMCID: PMC11424490 DOI: 10.1038/s43018-024-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Combination approaches are needed to strengthen and extend the clinical response to KRASG12C inhibitors (KRASG12Ci). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12Ci seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12Ci treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12Ci naive and relapsed KRASG12C-mutant tumors.
Collapse
Affiliation(s)
- Venu Thatikonda
- Boehringer Ingelheim RCV, Vienna, Austria.
- Exscientia, Vienna, Austria.
| | - Hengyu Lyu
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Christopher A Bristow
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Ningping Feng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Annette A Machado
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ethan D Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jessica M Molkentine
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - David H Peng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Timothy P Heffernan
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
3
|
Synthesis, molecular docking, and in-vitro studies of pyrimidine-2-thione derivatives as antineoplastic agents via potential RAS/PI3K/Akt/JNK inhibition in breast carcinoma cells. Sci Rep 2022; 12:22146. [PMID: 36550279 PMCID: PMC9780203 DOI: 10.1038/s41598-022-26571-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In the present investigation, derivatives from (2-6) containing pyrimidine-2-thione moiety incorporated with different heterocycles such as pyrazoline, phenyl pyrazoline, and pyrimidine were synthesized using different methods. These pyrimidine-2-thione derivatives were evaluated in-silico for their capability to inhibit the H-RAS-GTP active form protein with insight to their pharmacokinetics properties. According to our findings, compound 5a was selected for in vitro studies as it has the in-silico top-ranked binding energy. Furthermore, compound 5a induced apoptosis to panels of cancer cell lines with the best IC50 on MCF-7 breast cancer cells (2.617 ± 1.6 µM). This effect was associated with the inhibition of phosphorylated RAS, JNK proteins, and PI3K/Akt genes expression. Thus, compound 5a has upregulated p21 gene and p53 protein levels. Moreover, 5a arrested the cell cycle progression at the sub-G0/G1 phase. In conclusion, the synthesized compound, 5a exhibited potent antineoplastic activity against breast cancer cell growth by targeting RAS/ PI3K/Akt/ JNK signaling cascades.
Collapse
|
4
|
Dorel M, Klinger B, Mari T, Toedling J, Blanc E, Messerschmidt C, Nadler-Holly M, Ziehm M, Sieber A, Hertwig F, Beule D, Eggert A, Schulte JH, Selbach M, Blüthgen N. Neuroblastoma signalling models unveil combination therapies targeting feedback-mediated resistance. PLoS Comput Biol 2021; 17:e1009515. [PMID: 34735429 PMCID: PMC8604339 DOI: 10.1371/journal.pcbi.1009515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/19/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically between these cell lines. By generating quantitative perturbation data and mathematical modelling, we determined potential resistance mechanisms. We found that negative feedbacks within MAPK signalling and via the IGF receptor mediate re-activation of MAPK signalling upon treatment in resistant cell lines. By using cell-line specific models, we predict that combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance, and tested these predictions experimentally. In addition, phospho-proteomic profiling confirmed the cell-specific feedback effects and synergy of MEK and IGFR targeted treatment. Our study shows that a quantitative understanding of signalling and feedback mechanisms facilitated by models can help to develop and optimise therapeutic strategies. Our findings should be considered for the planning of future clinical trials introducing MEKi in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Mathurin Dorel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bertram Klinger
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tommaso Mari
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Joern Toedling
- Department of Pediatric, Division of Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eric Blanc
- Berlin Institute of Health, Berlin, Germany
| | | | | | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anja Sieber
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric, Division of Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Angelika Eggert
- Department of Pediatric, Division of Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric, Division of Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
5
|
Weber SM, Carroll SL. The Role of R-Ras Proteins in Normal and Pathologic Migration and Morphologic Change. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1499-1510. [PMID: 34111428 PMCID: PMC8420862 DOI: 10.1016/j.ajpath.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The contributions that the R-Ras subfamily [R-Ras, R-Ras2/teratocarcinoma 21 (TC21), and M-Ras] of small GTP-binding proteins make to normal and aberrant cellular functions have historically been poorly understood. However, this has begun to change with the realization that all three R-Ras subfamily members are occasionally mutated in Noonan syndrome (NS), a RASopathy characterized by the development of hematopoietic neoplasms and abnormalities affecting the immune, cardiovascular, and nervous systems. Consistent with the abnormalities seen in NS, a host of new studies have implicated R-Ras proteins in physiological and pathologic changes in cellular morphology, adhesion, and migration in the cardiovascular, immune, and nervous systems. These changes include regulating the migration and homing of mature and immature immune cells, vascular stabilization, clotting, and axonal and dendritic outgrowth during nervous system development. Dysregulated R-Ras signaling has also been linked to the pathogenesis of cardiovascular disease, intellectual disabilities, and human cancers. This review discusses the structure and regulation of R-Ras proteins and our current understanding of the signaling pathways that they regulate. It explores the phenotype of NS patients and their implications for the R-Ras subfamily functions. Next, it covers recent discoveries regarding physiological and pathologic R-Ras functions in key organ systems. Finally, it discusses how R-Ras signaling is dysregulated in cancers and mechanisms by which this may promote neoplasia.
Collapse
Affiliation(s)
- Shannon M Weber
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
6
|
Zhang L, Meng S, Yan B, Chen J, Zhou L, Shan L, Wang Y. Anti-Proliferative, Pro-Apoptotic, Anti-Migrative and Tumor-Inhibitory Effects and Pleiotropic Mechanism of Theaflavin on B16F10 Melanoma Cells. Onco Targets Ther 2021; 14:1291-1304. [PMID: 33658796 PMCID: PMC7920628 DOI: 10.2147/ott.s286350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Theaflavin (TF) is a primary pigment of tea, exhibiting anti-proliferative, pro-apoptotic and anti-metastatic activities on cancer cell lines. However, it is unknown whether TF is effective in treating melanoma cells. Methods To determine the effects of TF on melanoma cells, we conducted in vitro assays of cell viability, DAPI staining, wound healing, transwell, and flow cytometry as well as in vivo experiments on B16F10-bearing mouse model. Real-time PCR (qPCR) and Western blot (WB) were conducted to explore the molecular actions of TF. Results The cell viability assay showed that TF exerted inhibitory effect on B16F10 cells in a dose-dependent manner from 40 to 400 μg/mL, with IC50 values ranging from 223.8±7.1 to 103.7±7.0 μg/mL. Moreover, TF induced early and late apoptosis and inhibited migration/invasion of B16F10 cells in a dose-dependent manner, indicating its pro-apoptotic and anti-migrative effects. In vivo, TF significantly inhibited B16F10 tumor size in mice model from 40 to 120 mg/kg, which exerted higher effect than that of cisplatin. The molecular data showed that TF significantly up-regulated the mRNA expressions of pro-apoptotic genes (Bax, Casp3, Casp8, c-fos, c-Jun, and c-Myc), up-regulated the protein expressions of apoptosis-related p53 and JNK signaling molecules (ASK1, phosphorylated Chk1/2, cleaved caspase 3, phosphorylated JNK, c-JUN, cleaved PARP, and phosphorylated p53), and down-regulated the protein expressions of proliferation-related MEK/ERK and PI3K/AKT signaling molecules (phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated PI3K, and phosphorylated AKT) as well as the expressions of MMP2 and MMP9. Conclusion It can be concluded that TB exhibited anti-proliferative, pro-apoptotic, anti-migrative, and tumor-inhibitory effects on melanoma cells through pleiotropic actions on the above pathways. This study provides new evidence of anti-melanoma efficacy and mechanism of TF, contributing to the development of TF-derived natural products for melanoma therapy.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, People's Republic of China
| | - Shijie Meng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Bo Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jie Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Ying Wang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Endo T. M-Ras is Muscle-Ras, Moderate-Ras, Mineral-Ras, Migration-Ras, and Many More-Ras. Exp Cell Res 2020; 397:112342. [PMID: 33130177 DOI: 10.1016/j.yexcr.2020.112342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
The Ras family of small GTPases comprises about 36 members in humans. M-Ras is related to classical Ras with regard to its regulators and effectors, but solely constitutes a subfamily among the Ras family members. Although classical Ras strongly binds Raf and highly activates the ERK pathway, M-Ras less strongly binds Raf and moderately but sustainedly activates the ERK pathway to induce neuronal differentiation. M-Ras also possesses specific effectors, including RapGEFs and the PP1 complex Shoc2-PP1c, which dephosphorylates Raf to activate the ERK pathway. M-Ras is highly expressed in the brain and plays essential roles in dendrite formation during neurogenesis, in contrast to the axon formation by R-Ras. M-Ras is also highly expressed in the bone and induces osteoblastic differentiation and transdifferentiation accompanied by calcification. Moreover, M-Ras elicits epithelial-mesenchymal transition-mediated collective and single cell migration through the PP1 complex-mediated ERK pathway activation. Activating missense mutations in the MRAS gene have been detected in Noonan syndrome, one of the RASopathies, and MRAS gene amplification occurs in several cancers. Furthermore, several SNPs in the MRAS gene are associated with coronary artery disease, obesity, and dyslipidemia. Therefore, M-Ras carries out a variety of cellular, physiological, and pathological functions. Further investigations may reveal more functions of M-Ras.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
8
|
Li R, Bai S, Yang D, Dong C. A crayfish Ras gene is involved in the defense against bacterial infection under high temperature. FISH & SHELLFISH IMMUNOLOGY 2019; 86:608-617. [PMID: 30502469 DOI: 10.1016/j.fsi.2018.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/03/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Temperature is an important environmental factor influencing crustacean resistance to pathogen infection. However, the mechanism underlying immune regulation by temperature remains unclear in crustacean. Here, we report a Ras gene of crayfish (designated as PcRAS1) which is involved in immune regulation of crayfish under high temperature. PcRAS1 is induced by both high temperature and bacterial infection and the induction by bacterial infection is associated with temperature. Significant changes of PcRAS1 expression was observed at 32 °C and 24 °C after infection with Aeromonas hydrophila, but relative moderate alternation was found at 16 °C after challenged with A. hydrophila. PcRAS1 silencing significantly reduced crayfish survival from high temperature (32 °C and 24 °C) or bacterial infection at 32 °C, but there was no significant effect on survival from bacterial infection at 24 °C or 16 °C. Further analysis reveals that PO activity is reduced by high temperature or enhanced by bacterial infection. Moreover, both the decreased PO activity and the enhanced PO activity are affected by PcRAS1 expression. PcRAS1 silencing further reduces PO activity under high temperature and compromises the enhanced PO activity by bacterial infection. Lipid peroxidation (LPO) and total antioxidant capacity (TAC) are also involved in the responses to high temperature. LPO is enhanced by lower temperature. TAC is reduced by high temperature and TAC change resulting from high temperature is amplified by PcRAS1 silencing. These results collectively indicate that PcRAS1 is involved in immune regulation against bacterial infection mediated by temperature.
Collapse
Affiliation(s)
- Ronghui Li
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Suhua Bai
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Decui Yang
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chaohua Dong
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
M-Ras/Shoc2 signaling modulates E-cadherin turnover and cell-cell adhesion during collective cell migration. Proc Natl Acad Sci U S A 2019; 116:3536-3545. [PMID: 30808747 PMCID: PMC6397545 DOI: 10.1073/pnas.1805919116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collective cell migration is required for normal embryonic development and contributes to various biological processes, including wound healing and cancer cell invasion. The M-Ras GTPase and its effector, the Shoc2 scaffold, are proteins mutated in the developmental RASopathy Noonan syndrome, and, here, we report that activated M-Ras recruits Shoc2 to cell surface junctions where M-Ras/Shoc2 signaling contributes to the dynamic regulation of cell-cell junction turnover required for collective cell migration. MCF10A cells expressing the dominant-inhibitory M-RasS27N variant or those lacking Shoc2 exhibited reduced junction turnover and were unable to migrate effectively as a group. Through further depletion/reconstitution studies, we found that M-Ras/Shoc2 signaling contributes to junction turnover by modulating the E-cadherin/p120-catenin interaction and, in turn, the junctional expression of E-cadherin. The regulatory effect of the M-Ras/Shoc2 complex was mediated at least in part through the phosphoregulation of p120-catenin and required downstream ERK cascade activation. Strikingly, cells rescued with the Noonan-associated, myristoylated-Shoc2 mutant (Myr-Shoc2) displayed a gain-of-function (GOF) phenotype, with the cells exhibiting increased junction turnover and reduced E-cadherin/p120-catenin binding and migrating as a faster but less cohesive group. Consistent with these results, Noonan-associated C-Raf mutants that bypass the need for M-Ras/Shoc2 signaling exhibited a similar GOF phenotype when expressed in Shoc2-depleted MCF10A cells. Finally, expression of the Noonan-associated Myr-Shoc2 or C-Raf mutants, but not their WT counterparts, induced gastrulation defects indicative of aberrant cell migration in zebrafish embryos, further demonstrating the function of the M-Ras/Shoc2/ERK cascade signaling axis in the dynamic control of coordinated cell movement.
Collapse
|
10
|
Young LC, Rodriguez-Viciana P. MRAS: A Close but Understudied Member of the RAS Family. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a033621. [PMID: 29311130 DOI: 10.1101/cshperspect.a033621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member.
Collapse
Affiliation(s)
- Lucy C Young
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94158
| | - Pablo Rodriguez-Viciana
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Zhang W, Wu M, Chong QY, Zhang M, Zhang X, Hu L, Zhong Y, Qian P, Kong X, Tan S, Li G, Ding K, Lobie PE, Zhu T. Loss of Estrogen-Regulated MIR135A1 at 3p21.1 Promotes Tamoxifen Resistance in Breast Cancer. Cancer Res 2018; 78:4915-4928. [PMID: 29945962 DOI: 10.1158/0008-5472.can-18-0069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/11/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
The dysregulation of miRNAs has been increasingly recognized as a critical mediator of cancer development and progression. Here, we show that frequent deletion of the MIR135A1 locus is associated with poor prognosis in primary breast cancer. Forced expression of miR-135a decreased breast cancer progression, while inhibition of miR-135a with a specific miRNA sponge elicited opposing effects, suggestive of a tumor suppressive role of miR-135a in breast cancer. Estrogen receptor alpha (ERα) bound the promoter of MIR135A1 for its transcriptional activation, whereas tamoxifen treatment inhibited expression of miR-135a in ERα+ breast cancer cells. miR-135a directly targeted ESR1, ESRRA, and NCOA1, forming a negative feedback loop to inhibit ERα signaling. This regulatory feedback between miR-135a and ERα demonstrated that miR-135a regulated the response to tamoxifen. The tamoxifen-mediated decrease in miR-135a expression increased the expression of miR-135a targets to reduce tamoxifen sensitivity. Consistently, miR-135a expression was downregulated in ERα+ breast cancer cells with acquired tamoxifen resistance, while forced expression of miR-135a partially resensitized these cells to tamoxifen. Tamoxifen resistance mediated by the loss of miR-135a was shown to be partially dependent on the activation of the ERK1/2 and AKT pathways by miR-135a-targeted genes. Taken together, these results indicate that deletion of the MIR135A1 locus and decreased miR-135a expression promote ERα+ breast cancer progression and tamoxifen resistance.Significance: Loss of miR-135a in breast cancer disrupts an estrogen receptor-induced negative feedback loop, perpetuating disease progression and resistance to therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/17/4915/F1.large.jpg Cancer Res; 78(17); 4915-28. ©2018 AACR.
Collapse
Affiliation(s)
- Weijie Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Wu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lan Hu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanghao Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences and Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjun Kong
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Sheng Tan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Gaopeng Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore.
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
12
|
Liu Q, Liu J, Wang P, Zhang Y, Li B, Yu Y, Dang H, Li H, Zhang X, Wang Z. Poly-dimensional network comparative analysis reveals the pure pharmacological mechanism of baicalin in the targeted network of mouse cerebral ischemia. Brain Res 2017; 1666:70-79. [PMID: 28465229 DOI: 10.1016/j.brainres.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
AIM This study aimed to investigate the pure pharmacological mechanisms of baicalin/baicalein (BA) in the targeted network of mouse cerebral ischemia using a poly-dimensional network comparative analysis. METHODS Eighty mice with induced focal cerebral ischemia were randomly divided into four groups: BA, Concha Margaritifera (CM), vehicle and sham group. A poly-dimensional comparative analysis of the expression levels of 374 stroke-related genes in each of the four groups was performed using MetaCore. RESULTS BA significantly reduced the ischemic infarct volume (P<0.05), whereas CM was ineffective. Two processes and 10 network nodes were shared between "BA vs CM" and vehicle, but there were no overlapping pathways. Two pathways, three processes and 12 network nodes overlapped in "BA vs CM" and BA. The pure pharmacological mechanism of BA resulted in targeting of pathways related to development, G-protein signaling, apoptosis, signal transduction and immunity. The biological processes affected by BA were primarily found to correlate with apoptotic, anti-apoptotic and neurophysiological processes. Three network nodes changed from up-regulation to down-regulation, while mitogen-activated protein kinase kinase 6 (MAP2K6, also known as MEK6) changed from down-regulation to up-regulation in "BA vs CM" and vehicle. The changed nodes were all related to cell death and development. CONCLUSION The pure pharmacological mechanism of BA is related to immunity, apoptosis, development, cytoskeletal remodeling, transduction and neurophysiology, as ascertained using a poly-dimensional network comparative analysis.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Pengqian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Haixia Dang
- China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Haixia Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Xiaoxu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
13
|
Human Ribosomal Proteins RPeL27, RPeL43, and RPeL41 Are Upregulated in Nasopharyngeal Carcinoma Cell Lines. DISEASE MARKERS 2016; 2016:5179594. [PMID: 28018022 PMCID: PMC5149637 DOI: 10.1155/2016/5179594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022]
Abstract
Apart from their canonical role in ribosome biogenesis, there is increasing evidence of ribosomal protein genes' involvement in various cancers. A previous study by us revealed significant differential expression of three ribosomal protein genes (RPeL27, RPeL41, and RPeL43) between cell lines derived from tumor and normal nasopharyngeal epithelium. However, the results therein were based on a semiquantitative assay, thus preliminary in nature. Herein, we provide findings of a deeper analysis of these three genes in the context to nasopharyngeal carcinoma (NPC) tumorigenesis. Their expression patterns were analyzed in a more quantitative manner at transcript level. Their protein expression levels were also investigated. We showed results that are contrary to previous report. Rather than downregulation, these genes were significantly overexpressed in NPC cell lines compared to normal control at both transcript and protein levels. Nevertheless, their association with NPC has been established. Immunoprecipitation pulldown assays indicate the plausible interaction of either RPeL27 or RPeL43 with POTEE/TUBA1A and ACTB/ACTBL2 complexes. In addition, RPeL43 is shown to bind with MRAS and EIF2S1 proteins in a NPC cell line (HK1). Our findings support RPeL27, RPeL41, and RPeL43 as potential markers of NPC and provide insights into the interaction targets of RPeL27 and RPeL43 proteins.
Collapse
|
14
|
ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential. Oncogene 2016; 35:5692-5698. [PMID: 27086924 DOI: 10.1038/onc.2016.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022]
Abstract
The Ras-related (R-Ras) isoforms TC21, R-Ras and M-Ras are members of the Ras superfamily of small GTPases. R-Ras family proteins are frequently overexpressed in human cancers, and expression of activated mutants of these GTPases is sufficient to induce cell transformation. Unlike Ras, few activating mutations of R-Ras proteins have been reported in human cancer, and very little is known about the regulation of their activity. In this study, we report that TC21 and R-Ras are phosphorylated on a conserved serine, Ser186 and Ser201, respectively, in intact cells. This residue is located in the C-terminal hypervariable region of the proteins and is not conserved in M-Ras. We show that the MAP kinases ERK1/2 phosphorylate TC21 and R-Ras on this C-terminal serine residue both in vitro and in vivo. Phosphorylation of R-Ras proteins does not affect their subcellular localization or stability but rather stimulates their activation. Phosphorylation-defective mutants of R-Ras and TC21 are compromised in their ability to promote cancer cell adhesion and migration/invasion, respectively. Importantly, we show that phosphorylation of TC21 and R-Ras potentiates their tumorigenic activity in immunodeficient mice. Our results identify a novel regulatory mechanism of the small GTPases TC21 and R-Ras that controls their oncogenic potential.
Collapse
|
15
|
MEK/ERK signaling pathway in apoptosis of SW620 cell line and inhibition effect of resveratrol. ASIAN PAC J TROP MED 2015; 9:49-53. [PMID: 26851786 DOI: 10.1016/j.apjtm.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To study the involvement of MAPK MEK/ERK signaling transduction pathway in the apoptosis process of SW620 tumor cell line and the inhibition effect of resveratrol. METHODS SW620 cell lines were divided into 5 groups, namely, control group, PD98059 group, low-dose resveratrol group, mid-dose resveratrol group and high-dose resveratrol group. The inhibition rate of cell proliferation was detected by MTT method. The expression of apoptotic molecules and MEK/ERK signaling pathway related proteins were assayed by real-time PCR and Western blotting. RESULTS Compared with control group, the proliferation of cells treated with resveratrol was significantly inhibited. In the case of apoptotic molecules, the expression of Bax, Caspase 3 and Caspase 9 was increased significantly while the expression of anti-apoptotic molecule Bcl2 was decreased significantly in resveratrol groups with a dose-dependent manner. In the case of molecules in MEK/ERK signaling pathway, the expression of Ras, Raf, MEK and ERK1/2 was decreased significantly in resveratrol groups with a dose-dependent manner. CONCLUSIONS PD98059 and resveratrol can effectively inhibit the proliferation of SW620 through inhibiting the MEK/ERK signaling pathway.
Collapse
|
16
|
Jin F, Gao D, Zhang C, Liu F, Chu B, Chen Y, Chen YZ, Tan C, Jiang Y. Exploration of 1-(3-chloro-4-(4-oxo-4H-chromen-2-yl)phenyl)-3-phenylurea derivatives as selective dual inhibitors of Raf1 and JNK1 kinases for anti-tumor treatment. Bioorg Med Chem 2013; 21:824-31. [DOI: 10.1016/j.bmc.2012.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 12/19/2022]
|
17
|
Araujo PPC, Marcello MA, Tincani AJ, Guilhen ACT, Morari EC, Ward LS. mRNA BRAF expression helps to identify papillary thyroid carcinomas in thyroid nodules independently of the presence of BRAFV600E mutation. Pathol Res Pract 2012; 208:489-92. [PMID: 22770943 DOI: 10.1016/j.prp.2012.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 12/21/2022]
Abstract
Literature has consistently shown associations of BRAFV600E mutation with papillary thyroid cancer clinical features. However, the clinical utility of BRAF expression has not been clinically explored so far. We studied 67 thyroid nodules (32 benign nodules and 35 PTC cases). BRAF mRNA expression levels measured by a quantitative real-time PCR and a PCR-RFLP were used to identify BRAFV600E mutation. BRAF mRNA expression was significantly higher in malignant (198.2±373.9 AU) than in benign (4.1±6.9 AU) nodules (p<0.0001). BRAF expression identified malignancy with a sensitivity of 80.6%, specificity of 77.1%, positive predictive value of 75.8%, and negative predictive value of 81.8%. A cut-point of 4.712, identified by the ROC curve, was able to sort out malignant nodules with an accuracy of 78.8%. Although we did not find any correlation between the presence of BRAF V600E mutation and clinical or tumor features such as age (p=0.309), gender (p=0.5453), ethnicity (p=0.9820), tumor size (p=1.000), multifocality (p=0.2530) or mRNA levels (p=0.7510), the study power for BRAF expression and diagnosis (99%; FPRP=0.85) indicated that data is noteworthy despite the relative small number of patients investigated. We concluded that BRAF mRNA expression may help to identify PTC among thyroid nodules independently of the presence of BRAFV600E mutation.
Collapse
|