1
|
Dantas-Pereira L, Cunha-Junior EF, Andrade-Neto VV, Bower JF, Jardim GAM, da Silva Júnior EN, Torres-Santos EC, Menna-Barreto RFS. Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Anti-trypanosomatids Activities. Curr Pharm Des 2021; 27:1807-1824. [PMID: 33167829 DOI: 10.2174/1381612826666201109111802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited, and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo is essential for the development of a novel, specific and safe derivative, minimizing adverse effects.
Collapse
Affiliation(s)
- Luíza Dantas-Pereira
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edézio F Cunha-Junior
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Valter V Andrade-Neto
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - John F Bower
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Guilherme A M Jardim
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eufrânio N da Silva Júnior
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo C Torres-Santos
- Laboratorio de Bioquimica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Sayonara DMV, Maria ADF, Priscila VG, Glauce SBV, Maria JT. In vitro and in vivo evaluation of quinones from Auxemma oncocalyx Taub. on Leishmania braziliensis. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jmpr2014.5141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Sun T, Zhang Y. Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation. Nucleic Acids Res 2008; 36:1654-64. [PMID: 18263620 PMCID: PMC2275129 DOI: 10.1093/nar/gkm1180] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selective and potent inhibition of mitochondrial translation in Saccharomyces cerevisiae by pentamidine suggests a novel antimicrobial action for this drug. Electrophoresis mobility shift assay, T1 ribonuclease footprinting, hydroxyl radical footprinting and isothermal titration calorimetry collectively demonstrated that pentamidine non-specifically binds to two distinct classes of sites on tRNA. The binding was driven by favorable entropy changes indicative of a large hydrophobic interaction, suggesting that the aromatic rings of pentamidine are inserted into the stacked base pairs of tRNA helices. Pentamidine binding disrupts the tRNA secondary structure and masks the anticodon loop in the tertiary structure. Consistently, we showed that pentamidine specifically inhibits tRNA aminoacylation but not the cognate amino acid adenylation. Pentamidine inhibited protein translation in vitro with an EC(50) equivalent to that binds to tRNA and inhibits tRNA aminoacylation in vitro, but drastically higher than that inhibits translation in vivo, supporting the established notion that the antimicrobial activity of pentamidine is largely due to its selective accumulation by the pathogen rather than by the host cell. Therefore, interrupting tRNA aminoacylation by the entropy-driven non-specific binding is an important mechanism of pentamidine in inhibiting protein translation, providing new insights into the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | |
Collapse
|
4
|
In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 2008; 52:1318-24. [PMID: 18227186 DOI: 10.1128/aac.01159-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro and in vivo antifungal activities of T-2307, a novel arylamidine, were evaluated and compared with those of fluconazole, voriconazole, micafungin, and amphotericin B. T-2307 exhibited broad-spectrum activity against clinically significant pathogens, including Candida species (MIC range, 0.00025 to 0.0078 microg/ml), Cryptococcus neoformans (MIC range, 0.0039 to 0.0625 microg/ml), and Aspergillus species (MIC range, 0.0156 to 4 microg/ml). Furthermore, T-2307 exhibited potent activity against fluconazole-resistant and fluconazole-susceptible-dose-dependent Candida albicans strains as well as against azole-susceptible strains. T-2307 exhibited fungicidal activity against some Candida and Aspergillus species and against Cryptococcus neoformans. In mouse models of disseminated candidiasis, cryptococcosis, and aspergillosis, the 50% effective doses of T-2307 were 0.00755, 0.117, and 0.391 mg.kg(-1).dose(-1), respectively. This agent was considerably more active than micafungin and amphotericin B against candidiasis and than amphotericin B against cryptococcosis, and its activity was comparable to the activities of micafungin and amphotericin B against aspergillosis. The results of preclinical in vitro and in vivo evaluations performed thus far indicate that T-2307 could represent a potent injectable agent for the treatment of candidiasis, cryptococcosis, and aspergillosis.
Collapse
|
5
|
Sperandeo NR, Briñón MC, Brun R. Synthesis, antiprotozoal and cytotoxic activities of new N-(3,4-dimethyl-5-isoxazolyl)-1,2-naphthoquinone-4-amino derivatives. ACTA ACUST UNITED AC 2005; 59:431-5. [PMID: 15178304 DOI: 10.1016/j.farmac.2004.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 03/06/2004] [Indexed: 10/26/2022]
Abstract
Three derivatives of N-(3,4-dimethyl-5-isoxazolyl)-1,2-naphthoquinone-4-amino (1), a compound which exhibits significant activity against Trypanosoma cruzi and Plasmodium falciparum but with cytotoxicity toward murine L-6 cells, were synthesized with the aim of ameliorating its cytotoxicity. The in vitro antiprotozoal and cytotoxic activities of the synthesized compounds were evaluated against T. cruzi, Trypanosoma brucei rhodesiense, P. falciparum and murine L-6 cells. The hydroxymethyl (2) and the oxime (3) derivatives were active against T. cruzi, with IC50 values in a range comparable to those of 1 (IC50: 0.65 microg/ml) and benznidazole (IC50: 0.56 microg/ml) while the carboxymethyloxime (4) was inactive. Compounds 2 and 3 were cytotoxic toward L-6 cells, with IC50 values identical to that of 1 (IC50: 0.50 microg/ml). The results did not support the suggestion that 2 and 3 may be used as prodrugs of 1.
Collapse
Affiliation(s)
- N R Sperandeo
- Dpto. de Farmacia, Faculdad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | | | | |
Collapse
|
6
|
Zhang Y, Li Z, Pilch DS, Leibowitz MJ. Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding. Nucleic Acids Res 2002; 30:2961-71. [PMID: 12087182 PMCID: PMC117049 DOI: 10.1093/nar/gkf394] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antimicrobial agent pentamidine inhibits the self-splicing of the group I intron Ca.LSU from the transcripts of the 26S rRNA gene of Candida albicans, but the mechanism of pentamidine inhibition is not clear. We show that preincubation of the ribozyme with pentamidine enhances the inhibitory effect of the drug and alters the folding of the ribozyme in a pattern varying with drug concentration. Pentamidine at 25 microM prevents formation of the catalytically active F band conformation of the precursor RNA and alters the ribonuclease T1 cleavage pattern of Ca.LSU RNA. The effects on cleavage suggest that pentamidine mainly binds to specific sites in or near asymmetric loops of helices P2 and P2.1 on the ribozyme, as well as to the tetraloop of P9.2 and the loosely paired helix P9, resulting in an altered structure of helix P7, which contains the active site. Positively charged molecules antagonize pentamidine inhibition of catalysis and relieve the drug effect on ribozyme folding, suggesting that pentamidine binds to a magnesium binding site(s) of the ribozyme to exert its inhibitory effect.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biotechnology, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | |
Collapse
|
7
|
Alegria AE, Cordones E, Santiago G, Marcano Y, Sanchez S, Gordaliza M, Martín-Martín ML. Reductive activation of terpenylnaphthoquinones. Toxicology 2002; 175:167-75. [PMID: 12049845 DOI: 10.1016/s0300-483x(02)00076-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four terpenylnaphthoquinones were found to enhance the rate of superoxide production in the presence of ascorbate as detected from the superoxide dismutase (SOD)-inhibitable initial oxygen consumption rates. Initial rates of oxygen consumption in the presence of ascorbate plus quinone increase with an increase in the half-wave reduction potentials of the quinones. These quinones also enhance the rate of Cyt(III)c reduction by xanthine/xanthine oxidase (X/XO) in both air- and nitrogen-saturated aqueous solutions at pH 7.4. Maximum rates of Cyt(III)c reduction in nitrogen and oxygen-saturated solutions (V(max)), in the presence of X/XO, increase with an increase in the half-wave reduction potentials of the quinones. SOD inhibits Cyt(III)c reduction rates in the presence of these quinones and X/XO in a manner which is also dependent on the quinone half-wave redox potential. The relative antineoplastic activity of two of these quinones follows the order in rates of oxygen consumption or Cyt(III)c reduction. This is consistent with an antineoplastic action of these quinones through the mechanism of redox cycling or possible interference or inhibition of mitochondrial respiration.
Collapse
Affiliation(s)
- Antonio E Alegria
- Department of Chemistry, University of Puerto Rico at Humacao, CUH Station, Humacao, PR 00791, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Luque F, Fernández-Ramos C, Entrala E, Rosales MJ, Navarro JA, Romero MA, Salas JM, Sánchez-Moreno M. In vitro evaluation of newly synthesised [1,2,4]triazolo[1,5a]pyrimidine derivatives against Trypanosoma cruzi, Leishmania donovani and Phytomonas staheli. Comp Biochem Physiol C Toxicol Pharmacol 2000; 126:39-44. [PMID: 11048663 DOI: 10.1016/s0742-8413(00)00093-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The antiprotozoal activity of newly synthesised compounds, all [1,2,4]triazolo [1,5a]pyrimidine derivatives, was tested against the protozoan parasites Trypanosoma cruzi, Leishmania donovani and Phytotmonas staheli. Six of these compounds significantly inhibited in vitro cell growth of the epimastigote forms of T. cruzi, and the promastigote forms of L. donovani and P. staheli. Some of the compounds reached complete growth inhibition at 1 microg/ml for 48 h of parasite/drug interaction. None of the compounds tested showed significant toxicity against cells of Aedes albopictus, mouse macrophages J-774A.1 and Lycopersicum esculentum at dosages five times greater than used against parasites.
Collapse
Affiliation(s)
- F Luque
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular ,Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sperandeo NR, de Bertorello MM, Briñón MC. Synthesis and some physiochemical properties of 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1,4-naphthoquinone 4-imine derivatives. J Pharm Sci 1994; 83:332-5. [PMID: 8207676 DOI: 10.1002/jps.2600830313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Some derivatives of 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)- 1,4-naphthoquinone 4-imine (3), a poorly soluble drug, were synthesized in an attempt to improve their physicochemical properties. The new compounds were characterized by spectroscopic methods including an iterative NMR method (the LAOCOON III program). The physicochemical properties such as solubility, relative lipophilicity (RM), and partition coefficients (Leo-Hansch fragmental system) were determined. Some derivatives were more lipophilic than 3 and one was water soluble. In vitro antibacterial activity was also reported for some derivatives.
Collapse
Affiliation(s)
- N R Sperandeo
- Departamento de Farmacia, Facultad de Ciencias Quimicas, Córdoba, Argentina
| | | | | |
Collapse
|
10
|
Sauvain M, Dedet JP, Kunesch N, Poisson J, Gantier JC, Gayral P, Kunesch G. In Vitro andIn Vivo leishmanicidal activities of natural and synthetic quinoids. Phytother Res 1993. [DOI: 10.1002/ptr.2650070215] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Ortiz CS, Longhi MR, De Bertorello MM, Briñon MC. SYNTHESIS OFbis-ISOXAZOLYLNAPHTHOQUINONES. ORG PREP PROCED INT 1991. [DOI: 10.1080/00304949109458306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Affiliation(s)
- V B Braide
- Department of Pharmacology, College of Medical Sciences, University of Calabar, Nigeria
| |
Collapse
|