1
|
Nemati Haravani T, Parvizi P, Hejazi SH, Sedaghat MM, Eskandarian A, Nateghi Rostami M. Evaluation of expression variations in virulence-related genes of Leishmania major after several culture passages compared with Phlebotomus papatasi isolated promastigotes. PLoS One 2023; 18:e0284240. [PMID: 37053214 PMCID: PMC10101501 DOI: 10.1371/journal.pone.0284240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a prevalent infectious disease with considerable morbidity annually. Here, we aimed to investigate the likely variations in gene expression of glycoprotein63 (gp63), heat shock protein 70 (HSP70), histone, arginase, cysteine protease B (CPB), Leishmania homologue of receptors for activated C kinase (LACK), small hydrophilic endoplasmic reticulum-associated protein (SHERP) in metacyclic promastigotes of L. major isolated from Phlebotomus papatasi sand flies and promastigotes excessively cultured in culture medium. The parasites were collected from suspected CL cases in Pasteur Institute of Iran, cultured and inoculated into the female BALB/c mice (2×106 promastigotes). Sand flies were trapped in Qom province, fed with the blood of euthanized infected mice and subsequently dissected in order to isolate the midgut including stomodeal valve. The metacyclic promastigotes were isolated from Ph. papatasi (Pro-Ppap) using peanut agglutinin test (PNA), then continuously cultured in RPMI-1640 medium enriched with fetal bovine serum, penicillin (100 U/ml) and streptomycin (100 mg/ml) to reach stationary phase (Pro-Stat). The gene expression was evaluated in both parasitic stages (Pro-Ppap and Pro-Stat) using qRT-PCR. Out results showed a significant increased gene expression at Pro-Ppap stage for gp63 (P = 0.002), SHERP (P = 0.001) and histone (P = 0.026) genes, in comparison with Pro-Stat stage. Noticeably, significant changes were, also, demonstrated in 10th to 15th passages [gp63 (P = 0.041), arginase (P = 0.016), LACK (P = 0.025)] and in 5th to 20th passage (SHERP) (P = 0.029). In conclusion, the findings of the present study seem to be essential in designing Leishmania studies, in particular regarding host-parasite interaction, immunization and infectivity studies.
Collapse
Affiliation(s)
- Taher Nemati Haravani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Eskandarian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
2
|
Klaas M, Mäemets-Allas K, Heinmäe E, Lagus H, Cárdenas-León CG, Arak T, Eller M, Kingo K, Kankuri E, Jaks V. Thrombospondin-4 Is a Soluble Dermal Inflammatory Signal That Selectively Promotes Fibroblast Migration and Keratinocyte Proliferation for Skin Regeneration and Wound Healing. Front Cell Dev Biol 2021; 9:745637. [PMID: 34631719 PMCID: PMC8495264 DOI: 10.3389/fcell.2021.745637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 01/05/2023] Open
Abstract
Thrombospondin-4 (THBS4) is a non-structural extracellular matrix molecule associated with tissue regeneration and a variety of pathological processes characterized by increased cell proliferation and migration. However, the mechanisms of how THBS4 regulates cell behavior as well as the pathways contributing to its effects have remained largely unexplored. In the present study we investigated the role of THBS4 in skin regeneration both in vitro and in vivo. We found that THBS4 expression was upregulated in the dermal compartment of healing skin wounds in humans as well as in mice. Application of recombinant THBS4 protein promoted cutaneous wound healing in mice and selectively stimulated migration of primary fibroblasts as well as proliferation of keratinocytes in vitro. By using a combined proteotranscriptomic pathway analysis approach we discovered that β-catenin acted as a hub for THBS4-dependent cell signaling and likely plays a key role in promoting its downstream effects. Our results suggest that THBS4 is an important contributor to wound healing and its incorporation into novel wound healing therapies may be a promising strategy for treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Elizabeth Heinmäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Terje Arak
- Surgery Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mart Eller
- Surgery Clinic, Tartu University Hospital, Tartu, Estonia
| | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
3
|
Dillon LAL, Okrah K, Hughitt VK, Suresh R, Li Y, Fernandes MC, Belew AT, Corrada Bravo H, Mosser DM, El-Sayed NM. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic Acids Res 2015; 43:6799-813. [PMID: 26150419 PMCID: PMC4538839 DOI: 10.1093/nar/gkv656] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Protozoan parasites of the genus Leishmania are the etiological agents of leishmaniasis, a group of diseases with a worldwide incidence of 0.9–1.6 million cases per year. We used RNA-seq to conduct a high-resolution transcriptomic analysis of the global changes in gene expression and RNA processing events that occur as L. major transforms from non-infective procyclic promastigotes to infective metacyclic promastigotes. Careful statistical analysis across multiple biological replicates and the removal of batch effects provided a high quality framework for comprehensively analyzing differential gene expression and transcriptome remodeling in this pathogen as it acquires its infectivity. We also identified precise 5′ and 3′ UTR boundaries for a majority of Leishmania genes and detected widespread alternative trans-splicing and polyadenylation. An investigation of possible correlations between stage-specific preferential trans-splicing or polyadenylation sites and differentially expressed genes revealed a lack of systematic association, establishing that differences in expression levels cannot be attributed to stage-regulated alternative RNA processing. Our findings build on and improve existing expression datasets and provide a substantially more detailed view of L. major biology that will inform the field and potentially provide a stronger basis for drug discovery and vaccine development efforts.
Collapse
Affiliation(s)
- Laura A L Dillon
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Kwame Okrah
- Department of Mathematics, University of Maryland, College Park, MD 20742, USA
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Rahul Suresh
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Yuan Li
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Maria Cecilia Fernandes
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - A Trey Belew
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Hector Corrada Bravo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Ryba T, Hiratani I, Sasaki T, Battaglia D, Kulik M, Zhang J, Dalton S, Gilbert DM. Replication timing: a fingerprint for cell identity and pluripotency. PLoS Comput Biol 2011; 7:e1002225. [PMID: 22028635 PMCID: PMC3197641 DOI: 10.1371/journal.pcbi.1002225] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/27/2011] [Indexed: 12/31/2022] Open
Abstract
Many types of epigenetic profiling have been used to classify stem cells, stages of cellular differentiation, and cancer subtypes. Existing methods focus on local chromatin features such as DNA methylation and histone modifications that require extensive analysis for genome-wide coverage. Replication timing has emerged as a highly stable cell type-specific epigenetic feature that is regulated at the megabase-level and is easily and comprehensively analyzed genome-wide. Here, we describe a cell classification method using 67 individual replication profiles from 34 mouse and human cell lines and stem cell-derived tissues, including new data for mesendoderm, definitive endoderm, mesoderm and smooth muscle. Using a Monte-Carlo approach for selecting features of replication profiles conserved in each cell type, we identify “replication timing fingerprints” unique to each cell type and apply a k nearest neighbor approach to predict known and unknown cell types. Our method correctly classifies 67/67 independent replication-timing profiles, including those derived from closely related intermediate stages. We also apply this method to derive fingerprints for pluripotency in human and mouse cells. Interestingly, the mouse pluripotency fingerprint overlaps almost completely with previously identified genomic segments that switch from early to late replication as pluripotency is lost. Thereafter, replication timing and transcription within these regions become difficult to reprogram back to pluripotency, suggesting these regions highlight an epigenetic barrier to reprogramming. In addition, the major histone cluster Hist1 consistently becomes later replicating in committed cell types, and several histone H1 genes in this cluster are downregulated during differentiation, suggesting a possible instrument for the chromatin compaction observed during differentiation. Finally, we demonstrate that unknown samples can be classified independently using site-specific PCR against fingerprint regions. In sum, replication fingerprints provide a comprehensive means for cell characterization and are a promising tool for identifying regions with cell type-specific organization. While continued advances in stem cell and cancer biology have uncovered a growing list of clinical applications for stem cell technology, errors in indentifying cell lines have undermined a number of recent studies, highlighting a growing need for improvements in cell typing methods for both basic biological and clinical applications of stem cells. Induced pluripotent stem cells (iPSCs)—adult cells reprogrammed to a pluripotent state—show great promise for patient-specific stem cell treatments, but more efficient derivation of iPSCs depends on a more comprehensive understanding of pluripotency. Here, we describe a method to identify sets of regions that replicate at unique times in any given cell type (replication timing fingerprints) using pluripotent stem cells as an example, and show that genes in the pluripotency fingerprint belong to a class previously shown to be resistant to reprogramming in iPSCs, identifying potential new target genes for more efficient iPSC production. We propose that the order in which DNA is replicated (replication timing) provides a novel means for classifying cell types, and can reveal cell type specific features of genome organization.
Collapse
Affiliation(s)
- Tyrone Ryba
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Dana Battaglia
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Michael Kulik
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
5
|
Liu LJ, Xie R, Hussain S, Lian JB, Rivera-Perez J, Jones SN, Stein JL, Stein GS, van Wijnen AJ. Functional coupling of transcription factor HiNF-P and histone H4 gene expression during pre- and post-natal mouse development. Gene 2011; 483:1-10. [PMID: 21605641 DOI: 10.1016/j.gene.2011.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 01/19/2023]
Abstract
Transcription factor Histone Nuclear Factor P (HiNF-P; gene symbol Hinfp) mediates cell cycle control of histone H4 gene expression to support the packaging of newly replicated DNA as chromatin. The HiNF-P/p220(NPAT) complex controls multiple H4 genes in established human cell lines and is critical for cell proliferation. The mouse Hinfp(LacZ) null allele causes early embryonic lethality due to a blastocyst defect. However, neither Hinfp function nor its temporal expression relative to histone H4 genes during fetal development has been explored. Here, we establish that expression of Hinfp is biologically coupled with expression of twelve functional mouse H4 genes during pre- and post-natal tissue-development. Both Hinfp and H4 genes are robustly expressed at multiple embryonic (E) days (from E5.5 to E15.5), coincident with ubiquitous LacZ staining driven by the Hinfp promoter. Five highly expressed mouse H4 genes (Hist1h4d, Histh4f, Hist1h4m and Hist2h4) account for >90% of total histone H4 mRNA throughout development. Post-natal expression of H4 genes in mice is most evident in lung, spleen, thymus and intestine, and with few exceptions (e.g., adult liver) correlates with Hinfp gene expression. Histone H4 gene expression decreases butHinfp levels remain constitutive upon cell growth inhibition in culture. The in vivo co-expression of Hinfp and histone H4 genes is consistent with the biological function of Hinfp as a principal transcriptional regulator of histone H4 gene expression during mouse development.
Collapse
Affiliation(s)
- Li-Jun Liu
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Murakami M, Mizoguchi Y, Horibe Y, Komori K, Hori H, Kasahara M. In situ localization of S-phase-specific histone (H3) mRNA in Bowen's disease. APMIS 1999; 107:1005-12. [PMID: 10598872 DOI: 10.1111/j.1699-0463.1999.tb01503.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PCNA and Ki-67 immunohistochemistry has been used to assess cell proliferation in place of tritiated thymidine or BrdU labeling of S-phase cells. Recently, it has been possible to reliably demonstrate histone H3 mRNA by in situ hybridization in formalin-fixed and paraffin-embedded tissue sections. We have compared this new proliferation marker with Ki-67 and PCNA with regard to distribution of positive cells and labeling indices (LI%) for 22 cases of Bowen's disease. In normal skin, Ki-67-IHC positive cells and histone mRNA positive cells were observed in the basal and suprabasal layers of the epidermis. In Bowen's disease, positive cells with each marker were more frequent in upper neoplastic epidermis than in suprabasal layers, and the average LI%s were markedly elevated with all markers, the scores decreasing in the following order: PCNA-IHC, Ki-67-IHC and H3mRNA-ISH. However, the results of double staining demonstrated that S-phase cells do not necessarily show exactly the same distributions as with PCNA and Ki-67-IHC labeling. H3mRNA-ISH showed three different degrees of reaction with significantly different LI%s, whereas PCNA and Ki-67 LI% did not vary essentially in the same areas. These results strongly suggest that Bowen's disease, which is well known as a low-grade neoplastic state with malignant potential, also demonstrates clear intratumoral heterogeneity of S-phase cells using the H3mRNA-ISH method.
Collapse
Affiliation(s)
- M Murakami
- Department of Pathology, Fujita Health University, School of Medicine, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
King GJ, Latta L, Rutenberg J, Ossi A, Keeling SD. Alveolar bone turnover in male rats: site- and age-specific changes. Anat Rec (Hoboken) 1995; 242:321-8. [PMID: 7573979 DOI: 10.1002/ar.1092420305] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND This study compares alveolar bone turnover adjacent to distally drifting maxillary first molar teeth of rapidly and slowly growing rats. METHODS Two groups of forty male rats (1 and 3 months) were sacrificed. Sera were analyzed for acid (AcP), alkaline (AlkP), and tartrate-resistant acid phosphatase (TRAP). Bone histomophometry was done on parasagittal sections of maxillary molars. Molar drift was quantified cephalometrically. RESULTS Distal surface contained more osteoclasts and higher osteoclast percents than mesials at both ages (P < 0.001). There were also more osteoclasts on the distals of the older rats as compared to the young (P < 0.001). Osteoblast percents were higher (P < 0.001) in the older rats on both surfaces. Mesials had higher double-labeled surface, MAR and BFR than distals in the younger rats (P < 0.001). The younger rats had higher (P < 0.001) AlkP, AcP, and TRAP. There were no age-specific differences in rate of molar drift. A model of rate of molar drift (P < 0.0015) containing bone formation measures accounts for 54.9% of the variability. CONCLUSIONS We conclude that the bone turnover dynamics adjacent to maxillary first molars represent predominantly remodeling on the distal in both groups and modeling on the mesial only in the young rats, that distal molar tooth drift reflects alveolar bone turnover, and that alveolar bone manifests the marked reduction in bone cell activity that occurs in the rat skeleton after 8 weeks but that this reduction is compensated by recruitment or maintenance of more bone cells at these sites.
Collapse
Affiliation(s)
- G J King
- Department of Orthodontics, University of Florida, College of Dentistry, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
9
|
Stein GS, Stein JL, van Wijnen AJ, Lian JB. Histone gene transcription: a model for responsiveness to an integrated series of regulatory signals mediating cell cycle control and proliferation/differentiation interrelationships. J Cell Biochem 1994; 54:393-404. [PMID: 8014188 DOI: 10.1002/jcb.240540406] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone gene expression is restricted to the S-phase of the cell cycle. Control is at multiple levels and is mediated by the integration of regulatory signals in response to cell cycle progression and the onset of differentiation. The H4 gene promoter is organized into a series of independent and overlapping regulatory elements which exhibit selective, phosphorylation-dependent interactions with multiple transactivation factors. The three-dimensional organization of the promoter and, in particular, its chromatin structure, nucleosome organization, and interactions with the nuclear matrix may contribute to interrelationships of activities at multiple promoter elements. Molecular mechanisms are discussed that may participate in the coordinate expression of S-phase-specific core and H1 histone genes, together with other genes functionally coupled with DNA replication.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|