1
|
Di WY, Chen YN, Cai Y, Geng Q, Tan YL, Li CH, Wang YN, Shang YH, Fang C, Cheng SJ. The diagnostic significance of cerebrospinal fluid cytology and circulating tumor DNA in meningeal carcinomatosis. Front Neurol 2023; 14:1076310. [PMID: 36937524 PMCID: PMC10022429 DOI: 10.3389/fneur.2023.1076310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Objective The objective of this research is to investigate the clinical application value of cerebrospinal fluid (CSF) cytology and circulating tumor DNA (ctDNA) in lung adenocarcinoma (LUAD) meningeal metastasis-meningeal carcinomatosis (MC), and to further explore the possible molecular mechanisms and drug treatment targets of LUAD meningeal metastasis by next-generation sequencing (NGS). Methods We retrospectively analyzed LUAD with MC in 52 patients. CSF cytology was carried out using the slide centrifugation precipitation method and May-Grüwald-Giemsa (MGG) staining. Tumor tissue, plasma and CSF ctDNA of some MC patients were detected by NGS. Results Of the 52 MC patients, 46 (88.46%) were positive for CSF cytology and 34 (65.38%) were positive for imaging, with statistically significant differences in diagnostic positivity (P < 0.05). In 32 of these patients, CSF cytology, cerebrospinal fluid ctDNA, plasma ctDNA and MRI examination were performed simultaneously, and the positive rates were 84.38, 100, 56.25, and 62.50% respectively, the difference was statistically significant (P < 0.001). Analysis of the NGS profiles of tumor tissues, plasma and CSF of 12 MC patients: the mutated gene with the highest detection rate was epidermal growth factor receptor (EGFR) and the detection rate were 100, 58.33, and 100% respectively in tumor tissues, plasma and CSF, and there were 6 cases of concordance between plasma and tissue EGFR mutation sites, with a concordance rate of 50.00%, and 12 cases of concordance between CSF and tissue EGFR mutation sites, with a concordance rate of 100%. In addition, mutations not found in tissue or plasma were detected in CSF: FH mutation, SETD2 mutation, WT1 mutation, CDKN2A mutation, CDKN2B mutation, and multiple copy number variants (CNV), with the most detected being CDKN2A mutation and MET amplification. Conclusion CSF cytology is more sensitive than traditional imaging in the diagnosis of meningeal carcinomatosis and has significant advantages in the early screening and diagnosis of MC patients. CSF ctDNA can be used as a complementary diagnostic method to negative results of CSF cytology and MRI, and CSF ctDNA can be used as an important method for liquid biopsy of patients with MC, which has important clinical significance in revealing the possible molecular mechanisms and drug treatment targets of meningeal metastasis of LUAD.
Collapse
Affiliation(s)
- Wei-Ying Di
- Clinical Medical College, Hebei University, Baoding, China
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ya-Nan Chen
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yun Cai
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Qiang Geng
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan-Li Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Chun-Hui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ya-Nan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan-Hong Shang
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- *Correspondence: Chuan Fang
| | - Shu-Jie Cheng
- Clinical Medical College, Hebei University, Baoding, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
- Shu-Jie Cheng
| |
Collapse
|
2
|
Vigneau AL, Rico C, Boerboom D, Paquet M. Statins downregulate YAP and TAZ and exert anti-cancer effects in canine mammary tumour cells. Vet Comp Oncol 2021; 20:437-448. [PMID: 34881506 DOI: 10.1111/vco.12789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
Canine mammary tumours (CMTs) are the most common neoplasms in intact bitches, and few chemotherapeutic options are available for highly invasive and metastatic tumours. Recent studies have shown the potential involvement of dysregulated Hippo signalling in CMT development and progression. Statins can activate the Hippo pathway by blocking protein geranylgeranylation (GGylation), resulting in decreased expression and activity of the transcriptional co-activators YAP and TAZ. In this study, we therefore sought to determine if statins could exert anti-cancer effects in CMT cells. Our results demonstrate that Atorvastatin and Fluvastatin are cytotoxic to two CMT cell lines (CMT9 and CMT47), with ED50 values ranging from 0.95 to 23.5 μM. Both statins acted to increase apoptosis and promote cell cycle arrest. Both statins also decreased YAP and TAZ expression and reduced the mRNA levels of key Hippo transcriptional target genes known to be involved in breast cancer progression and chemoresistance (CYR61, CTGF and RHAMM). Moreover, both statins effectively inhibited cell migration and anchorage independent growth, but did not influence matrix invasion. Taken together, our results demonstrate for the first time that statins act upon the Hippo pathway in CMT cells to counteract several molecular and cellular hallmarks of cancer. These findings suggest that targeting the Hippo pathway with statins represents a novel and promising approach for the treatment canine mammary gland cancers.
Collapse
Affiliation(s)
- Anne-Laurence Vigneau
- Département de Pathologie et de Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
3
|
Frequent genetic defects in the p16/INK4A tumor suppressor in canine cell models of breast cancer and melanoma. In Vitro Cell Dev Biol Anim 2021; 57:519-530. [PMID: 34014456 DOI: 10.1007/s11626-021-00571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The cyclin-dependent kinase inhibitors (CKIs) belong to a group of key cell cycle proteins that regulate important cancer drug targets such as the cyclin/CDK complexes. Gene defects in the INK4A/B CKI tumor suppressor locus are frequently associated with human cancers and we have previously identified similar defects in canine models. Many of the cancer-associated genetic alterations, known to play roles in mammary tumor development and progression, appear similar in humans and dogs. The objectives of this study were to characterize expression defects in the INK4 genes, and the encoded p16 family proteins, in spontaneous canine primary mammary tumors (CMT) as well as in canine malignant melanoma (CML) cell lines to further develop these models of spontaneous cancers. Gene expression profiles and characterization of p16 protein were performed by rtPCR assay and immunoblotting followed by an analysis of relevant sequences with bioinformatics. The INK4 gene family were expressed differentially and the genes encoding the tumor suppressor p16, p14, and p15 proteins were often identified as defective in CMT and CML cell lines. The altered expression profiles for INK4 locus encoded tumor suppressor genes was also confirmed by the identification of similar gene defects in primary canine mammary tumor biopsy specimens which were also comparable to defects found in human breast cancer. These data strongly suggest that defects identified in the INK4 locus in canine cell lines are lesions originating in spontaneous canine cancers and are not the product of selection in culture. These findings further validate canine tumor models for use in developing a clear understanding of the gene defects present and may help identify new therapeutic cancer treatments that restore these tumor suppressor pathways based on precision medicine in canine cancers.
Collapse
|
4
|
Bird RC, DeInnocentes P, Church Bird AE, Lutful Kabir FM, Martinez-Romero EG, Smith AN, Smith BF. Autologous hybrid cell fusion vaccine in a spontaneous intermediate model of breast carcinoma. J Vet Sci 2020; 20:e48. [PMID: 31565891 PMCID: PMC6769329 DOI: 10.4142/jvs.2019.20.e48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is among the most common malignancies affecting women and reproductively intact female dogs, resulting in death from metastatic disease if not treated effectively. To better manage the disease progression, canine mammary tumor (CMT) cells derived from malignant canine mammary cancers were fused to autologous dendritic cells (DCs) to produce living hybrid-cell fusion vaccines for canine patients diagnosed with spontaneous mammary carcinoma. The high-speed sorting of rare autologous canine patient DCs from the peripheral blood provides the autologous component of fusion vaccines, and fusion to major histocompatibility complex-unmatched CMT cells were produced at high rates. The vaccinations were delivered to each patient following a surgical resection 3 times at 3-week intervals in combination with immuno-stimulatory oligonucleotides and Gemcitabine adjunct therapy. The immunized patient animals survived 3.3-times longer (median survival 611 days) than the control patients (median survival 184 days) and also appeared to exhibit an enhanced quality of life. A comparison of vaccinated patients diagnosed with inflammatory mammary carcinoma resulted in a very short median survival (42 days), suggesting no effect of vaccination. The data showed that the development of autologous living DC-based vaccine strategies in patient animals designed to improve the management of canine mammary carcinoma can be successful and may allow an identification of the antigens that can be translatable to promote effective immunity in canine and human patients.
Collapse
Affiliation(s)
- R Curtis Bird
- Department of Pathobiology, Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Patricia DeInnocentes
- Department of Pathobiology, Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Allison E Church Bird
- Department of Pathobiology, Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Farruk M Lutful Kabir
- Department of Pathobiology, Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - E Gisela Martinez-Romero
- Department of Pathobiology, Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Annette N Smith
- Department of Clinical Sciences, Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Department of Pathobiology, Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Scott-Ritchey Research Center, Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Ezzat GM, El-Shoeiby MH. Determinants of p14/ARF methylation in healthy females: association with reproductive and non-reproductive risk factors of breast cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
DNA methylation is associated with the risk factors of breast cancer. However, the impact of the reproductive and non-reproductive risk factors of breast cancer on p14/ARF methylation is not well known. Therefore, we investigated the relationships between p14/ARF methylation percentage and risk factors of breast cancer including age, family history, obesity, and reproductive risk factors in 120 breast cancer-free subjects; 60 women with a first-degree family history of breast cancer and 60 age-matched women with no family history of breast cancer. Extracted DNA from the whole blood was bisulfite-treated by EZ DNA modification kit. Quantitative methylation of p14/ARF was analyzed by methylation-specific PCR then methylation percentage of p14/ARF was calculated.
Results
P14/ARF methylation percentage was not related to any of the risk factors of breast cancer except age. Our study showed that p14/ARF methylation percentage was significantly higher in females with age ≥ 40 years than in females with age < 40 years (p=0.029). Also, a positive significant correlation between the p14/ARF methylation percentage and age was detected (r = 0.285, p = 0.014). Furthermore, univariate regression analysis showed that the age is independently associated with high p14/ARF methylation percentage (β = 1. 46, p = 0.029).
Conclusion
Among healthy females, the age is strongly linked to the peripheral p14/ARF methylation percentage. The present study suggests that p14/ARF methylation is not associated with other breast cancer risk factors. These results need oncoming research on a large cohort to define the interactions between p14/ARF methylation and the risk factors of breast cancer.
Collapse
|
6
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
7
|
Evaluation of 14-3-3 sigma as a potential partner of p16 in quiescence and differentiation. In Vitro Cell Dev Biol Anim 2018; 54:658-665. [DOI: 10.1007/s11626-018-0291-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
|
8
|
Guillemette S, Rico C, Godin P, Boerboom D, Paquet M. In Vitro Validation of the Hippo Pathway as a Pharmacological Target for Canine Mammary Gland Tumors. J Mammary Gland Biol Neoplasia 2017; 22:203-214. [PMID: 28822004 DOI: 10.1007/s10911-017-9384-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasms in intact female dogs. Some clinical and molecular similarities between certain CMT subtypes and breast cancer make them a potential model for the study of the human disease. As misregulated Hippo signaling is thought to play an important role in breast cancer development and also occurs in CMTs, we sought to determine if Hippo represents a valid pharmacological target for the treatment of CMTs. Six CMT cell lines were assessed for their expression of the Hippo pathway effectors YAP and TAZ and for their sensitivity to verteporfin, an inhibitor of YAP-mediated transcriptional coactivation. Four cell lines that expressed YAP (CMT-9, -12, -28, -47) were found to be very sensitive to verteporfin treatment, which killed the cells through induction of apoptosis with ED50 values of 14-79 nM. Conversely, two YAP-negative cell lines (CF-35, CMT-25) were an order of magnitude more resistant to verteporfin. Verteporfin suppressed the expression of YAP/TAZ target genes, particularly CYR61 and CTGF, which play important roles in breast cancer development. Verteporfin was also able to inhibit cell migration and anchorage-independent growth. Likewise, verteporfin efficiently suppressed tumor cell invasiveness in the CMT-28 and -47 lines, but not in CF-35 cells. Together, our findings provide proof of principle that pharmacological targeting of the Hippo pathway compromises the viability and attenuates the malignant behavior of CMT cells. These results will serve as the basis for the development of novel chemotherapeutic approaches for CMTs that could translate to human medicine.
Collapse
Affiliation(s)
- Samantha Guillemette
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Godin
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
9
|
Kabir FML, DeInnocentes P, Agarwal P, Mill CP, Riese Nd DJ, Bird RC. Estrogen receptor-α, progesterone receptor, and c- erbB/HER-family receptor mRNA detection and phenotype analysis in spontaneous canine models of breast cancer. J Vet Sci 2017; 18:149-158. [PMID: 27515268 PMCID: PMC5489461 DOI: 10.4142/jvs.2017.18.2.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/02/2016] [Accepted: 07/21/2016] [Indexed: 02/02/2023] Open
Abstract
Well characterized, stable, p16-defective canine mammary cancer (CMT) cell lines and normal canine mammary epithelial cells were used to investigate expression of the major breast cancer-specific hormone receptors estrogen receptor alpha (ER1) and progesterone receptor (PR) as well as luminal epithelial-specific proto-oncogenes encoding c-erbB-1 (epidermal growth factor receptor/EGFr), c-erbB-2/HER2, c-erbB-3, and c-erbB-4 receptors. The investigation developed and validated quantitative reverse transcriptase polymerase chain reaction assays for each transcript to provide rapid assessment of breast cancer phenotypes for canine cancers, based on ER1, PR, and c-erbB-2/HER2 expressions, similar to those in human disease. Roles for relatively underexplored c-erbB-3 and c-erbB-4 receptor expressions in each of these breast cancer phenotypes were also evaluated. Each quantitative assay was validated by assessment of amplicon size and DNA sequencing following amplification. Differential expression of ER1, PR, and c-erbB-2 in CMT cell lines clearly defined distinct human-like breast cancer phenotypes for a selection of CMT-derived cell lines. Expression profiles for EGFr family genes c-erbB-3 and c-erbB-4 in CMT models also provided an enriched classification of canine breast cancer identifying new extended phenotypes beyond the conventional luminal-basal characterization used in human breast cancer.
Collapse
Affiliation(s)
- Farruk M Lutful Kabir
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Patricia DeInnocentes
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - David J Riese Nd
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - R Curtis Bird
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| |
Collapse
|
10
|
Lutful Kabir FM, Alvarez CE, Bird RC. Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression. Vet Sci 2015; 3:vetsci3010001. [PMID: 29056711 PMCID: PMC5644615 DOI: 10.3390/vetsci3010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/19/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Breast cancer represents the second most frequent neoplasm in humans and sexually intact female dogs after lung and skin cancers, respectively. Many similar features in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression and response to conventional therapies have supported development of this comparative model as an alternative to mice. The highly conserved similarities between canine and human genomes are also key to this comparative analysis, especially when compared to the murine genome. Studies with canine mammary tumor (CMT) models have shown a strong genetic correlation with their human counterparts, particularly in terms of altered expression profiles of cell cycle regulatory genes, tumor suppressor and oncogenes and also a large group of non-coding RNAs or microRNAs (miRNAs). Because CMTs are considered predictive intermediate models for human breast cancer, similarities in genetic alterations and cancer predisposition between humans and dogs have raised further interest. Many cancer-associated genetic defects critical to mammary tumor development and oncogenic determinants of metastasis have been reported and appear to be similar in both species. Comparative analysis of deregulated gene sets or cancer signaling pathways has shown that a significant proportion of orthologous genes are comparably up- or down-regulated in both human and dog breast tumors. Particularly, a group of cell cycle regulators called cyclin-dependent kinase inhibitors (CKIs) acting as potent tumor suppressors are frequently defective in CMTs. Interestingly, comparative analysis of coding sequences has also shown that these genes are highly conserved in mammals in terms of their evolutionary divergence from a common ancestor. Moreover, co-deletion and/or homozygous loss of the INK4A/ARF/INK4B (CDKN2A/B) locus, encoding three members of the CKI tumor suppressor gene families (p16/INK4A, p14ARF and p15/INK4B), in many human and dog cancers including mammary carcinomas, suggested their important conserved genetic order and localization in orthologous chromosomal regions. miRNAs, as powerful post-transcriptional regulators of most of the cancer-associated genes, have not been well evaluated to date in animal cancer models. Comprehensive expression profiles of miRNAs in CMTs have revealed their altered regulation showing a strong correlation with those found in human breast cancers. These genetic correlations between human and dog mammary cancers will greatly advance our understanding of regulatory mechanisms involving many critical cancer-associated genes that promote neoplasia and contribute to the promising development of future therapeutics.
Collapse
Affiliation(s)
- Farruk M Lutful Kabir
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, USA.
- Current address: Department of Pediatrics, Division of Pulmonology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Carlos E Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital Departments of Pediatrics and Veterinary Clinical Sciences, The Ohio State University Colleges of Medicine and Veterinary Medicine, Columbus, OH 43205, USA.
| | - R Curtis Bird
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, USA.
| |
Collapse
|
11
|
Lutful Kabir FM, DeInnocentes P, Bird RC. Altered microRNA Expression Profiles and Regulation of INK4A/CDKN2A Tumor Suppressor Genes in Canine Breast Cancer Models. J Cell Biochem 2015; 116:2956-69. [DOI: 10.1002/jcb.25243] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 01/25/2023]
Affiliation(s)
| | - Patricia DeInnocentes
- Department of Pathobiology; College of Veterinary Medicine; Auburn University; Alabama 36849
| | - Richard Curtis Bird
- Department of Pathobiology; College of Veterinary Medicine; Auburn University; Alabama 36849
| |
Collapse
|
12
|
Jiang JL, Tian GL, Chen SJ, Xu LI, Wang HQ. Promoter methylation of p16 and RASSF1A genes may contribute to the risk of papillary thyroid cancer: A meta-analysis. Exp Ther Med 2015; 10:1549-1555. [PMID: 26622524 DOI: 10.3892/etm.2015.2656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
The aim of the present meta-analysis was to investigate the correlation of promoter methylation of the p16 and Ras association domain family 1 isoform A (RASSF1A) genes with the risk of the development of papillary thyroid cancer (PTC). A number of electronic databases were searched without language restrictions as follows: Medline (1966-2013), the Cochrane Library database (Issue 12, 2013), Embase (1980-2013), CINAHL (1982-2013), Web of Science (1945-2013) and the Chinese Biomedical Database (CBM; 1982-2013). A meta-analysis was performed with the use of Stata statistical software. The odds ratios (ORs), ratio differences (RDs) and 95% confidence intervals (95% CIs) were calculated. In the present meta-analysis, eleven clinical cohort studies with a total of 734 patients with PTC were included. The results of the current meta-analysis indicated that the frequency of promoter methylation of p16 in cancer tissues was significantly higher compared with that in normal, adjacent and benign tissues (cancer tissues vs. normal tissues: OR=7.14; 95% CI, 3.30-15.47; P<0.001; cancer tissues vs. adjacent tissues: OR=11.90; 95% CI, 5.55-25.52; P<0.001; cancer tissues vs. benign tissues: OR=2.25; 95% CI, 1.67-3.03; P<0.001, respectively). The results also suggest that RASSF1A promoter methylation may be implicated in the pathogenesis of PTC (cancer tissues vs. normal tissues: RD=0.53; 95% CI, 0.42-0.64; P<0.001; cancer tissues vs. adjacent tissues: RD=0.39; 95% CI, 0.31-0.48; P<0.001; cancer tissues vs. benign tissues: RD=0.39; 95% CI, 0.31-0.47; P<0.001; respectively). Thus, the present meta-analysis indicates that aberrant promoter methylation of p16 and RASSF1A genes may play a crucial role in the pathogenesis of PTC.
Collapse
Affiliation(s)
- Jia-Li Jiang
- Department of Clinical Laboratory, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, P.R. China
| | - Gui-Lan Tian
- Department of Obstetrics and Gynecology, Center Hospital of Xiji Town, Zaozhuang, Shandong 277200, P.R. China
| | - Shu-Jiao Chen
- Department of Clinical Laboratory, Blood Center of Zaozhuang, Zaozhuang, Shandong 277000, P.R. China
| | - L I Xu
- Department of Clinical Laboratory, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, P.R. China
| | - Hui-Qin Wang
- Department of Clinical Laboratory, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, P.R. China
| |
Collapse
|
13
|
Xue L, Ouyang Q, Li J, Meng X, Li Y, Xing L, Wang J, Yan X, Zhang X. Different roles for p16(INK) (4a) -Rb pathway and INK4a/ARF methylation between adenocarcinomas of gastric cardia and distal stomach. J Gastroenterol Hepatol 2014; 29:1418-26. [PMID: 25123601 DOI: 10.1111/jgh.12547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM The incidence of distal gastric adenocarcinoma has significantly decreased, but gastric cardia adenocarcinoma has been on the rise. Cardia adenocarcinoma might be a specific entity distinct from the carcinoma of the rest stomach. The aim was to explore putative differences in p16(INK) (4a) -retinoblastoma (Rb) pathway and INK4a/ARF methylation between gastric cardia and distal adenocarcinomas. METHODS Ninety-six cardia adenocarcinomas and 79 distal samples were analyzed for comparing p16(INK) (4a) -Rb expressions, INK4a/ARF deletion, and methylation using immunohistochemistry, polymerase chain reaction, and methylation-specific polymerase chain reaction. RESULTS The expression of p16(INK) (4a) in cardia adenocarcinoma (43.2%) was significantly lower than in distal cases (75.0%, P < 0.05). As well, cardia adenocarcinoma showed lower expression of p14(ARF) compared with distal cases (34.1% vs 57.5%, P < 0.05). The incidence of p16(INK) (4a) deletion was 20.5% and 15.0%, while p14(ARF) deletion was 18.2% and 10.0% in cardia and distal adenocarcinomas, respectively, showing no significant differences between two entities. However, the incidences of p14(ARF) and p16(INK) (4a) methylation in cardia adenocarcinoma were significantly higher than in distal samples (p14(ARF) : 61.5% vs 43.6%; p16(INK) (4a) : 73.1% vs 51.3%, P < 0.05). INK4a/ARF methylations were more prevalent in poorly differentiated cardia carcinoma compared with poorly differentiated distal cases. CONCLUSIONS There were differences in p16(INK) (4a) -Rb immunotypes and INK4a/ARF methylation between two entities, indicating that cardia adenocarcinoma may be different in cell proliferation, differentiation, and gene biomarkers compared with distal gastric adenocarcinoma.
Collapse
Affiliation(s)
- Liying Xue
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
DeInnocentes P, Perry AL, Graff EC, Lutful Kabir FM, Curtis Bird R. Characterization of HOX gene expression in canine mammary tumour cell lines from spontaneous tumours. Vet Comp Oncol 2013; 13:322-36. [PMID: 24034269 DOI: 10.1111/vco.12062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023]
Abstract
Spatial/temporal controls of development are regulated by the homeotic (HOX) gene complex and require integration with oncogenes and tumour suppressors regulating cell cycle exit. Spontaneously derived neoplastic canine mammary carcinoma cell models were investigated to determine if HOX expression profiles were associated with neoplasia as HOX genes promote neoplastic potential in human cancers. Comparative assessment of human and canine breast cancer expression profiles revealed remarkable similarity for all four paralogous HOX gene clusters and several unlinked HOX genes. Five canine HOX genes were overexpressed with expression profiles consistent with oncogene-like character (HOXA1, HOXA13, HOXD4, HOXD9 and SIX1) and three HOX genes with underexpressed profiles (HOXA11, HOXC8 and HOXC9) were also identified as was an apparent nonsense mutation in HOXC6. This data, as well as a comparative analysis of similar data from human breast cancers suggested expression of selected HOX genes in canine mammary carcinoma could be contributing to the neoplastic phenotype.
Collapse
Affiliation(s)
- P DeInnocentes
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.,AURIC-Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - A L Perry
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA
| | - E C Graff
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.,Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, 36849, USA
| | - F M Lutful Kabir
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.,AURIC-Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - R Curtis Bird
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.,AURIC-Auburn University Research Initiative in Cancer, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|