1
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
2
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
3
|
Li Q, Kang J, Liu N, Huang J, Zhang X, Pang K, Zhang S, Wang M, Zhao Y, Dong S, Li H, Zhao D, Lu F, Zhang W. Hydrogen sulfide improves endothelial barrier function by modulating the ubiquitination degradation of KLF4 through TRAF7 S-sulfhydration in diabetic aorta. Free Radic Biol Med 2024; 216:118-138. [PMID: 38479633 DOI: 10.1016/j.freeradbiomed.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Anomalous vascular endothelium significantly contributes to various cardiovascular diseases. VE-cadherin plays a vital role in governing the endothelial barrier. Krüppel-like factor 4(KLF4), as a transcription factor, which binds the VE-cadherin promoter and enhances its transcription. Tumor necrosis factor receptor-associated factor 7 (TRAF7) is an E3 ubiquitin ligase that has been shown to modulate the degradation of KLF4. H2S can covalently modify cysteine residues on proteins through S-sulfhydration, thereby influencing the structure and functionality of the target protein. However, the role of S-sulfhydration on endothelial barrier integrity remains to be comprehensively elucidated. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates endothelial integrity and its underlying mechanism. In this study, we observed that protein S-sulfhydration was reduced in the endothelium during diabetes and TRAF7 was the main target. Overexpression of TRAF7-Cys327 mutant could mitigate the endothelial barrier damage by weakening TRAF7 interaction with KLF4 and reducing ubiquitination degradation of KLF4. In conclusion, our research demonstrates that H2S plays a pivotal role in regulating S-sulfhydration of TRAF7 at Cys327. This regulation effectively inhibits the ubiquitin-mediated degradation of KLF4, resulting in an upregulation of VE-cadherin levels. This molecular mechanism contributes to the prevention of endothelial barrier damage.
Collapse
Affiliation(s)
- Qianzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Jiaxin Kang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Jiayi Huang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Xueya Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Kemiao Pang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Hongxia Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China.
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
4
|
Zhang Y, Zhao H, Fu X, Wang K, Yang J, Zhang X, Wang H. The role of hydrogen sulfide regulation of pyroptosis in different pathological processes. Eur J Med Chem 2024; 268:116254. [PMID: 38377826 DOI: 10.1016/j.ejmech.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Pyroptosis is one kind of programmed cell death in which the cell membrane ruptures and subsequently releases cell contents and pro-inflammatory cytokines including IL-1β and IL-18. Pyroptosis is caused by many types of pathological stimuli, such as hyperglycemia (HG), oxidative stress, and inflammation, and is mediated by gasdermin (GSDM) protein family. Increasing evidence indicates that pyroptosis plays an important role in multiple diseases, such as cancer, kidney diseases, inflammatory diseases, and cardiovascular diseases. Therefore, the regulation of pyroptosis is crucial for the occurrence, development, and treatment of many diseases. Hydrogen sulfide (H2S) is a biologically active gasotransmitter following carbon monoxide (CO) and nitrogen oxide (NO) in mammalian tissues. So far, three enzymes, including 3-mercaptopyruvate sulphurtransferase (3-MST), cystathionine γ- Lyase (CSE), and Cystine β-synthesis enzyme (CBS), have been found to catalyze the production of endogenous H2S in mammals. H2S has been reported to have multiple biological functions including anti-inflammation, anti-oxidative stress, anti-apoptosis and so on. Hence, H2S is involved in various physiological and pathological processes. In recent years, many studies have demonstrated that H2S plays a critical role by regulating pyroptosis in various pathological processes, such as ischemia-reperfusion injury, alcoholic liver disease, and diabetes cardiomyopathy. However, the relevant mechanism has not been completely understood. Therefore, elucidating the mechanism by which H2S regulates pyroptosis in diseases will help understand the pathogenesis of multiple diseases and provide important new avenues for the treatment of many diseases. Here, we reviewed the progress of H2S regulation of pyroptosis in different pathological processes, and analyzed the molecular mechanism in detail to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Kexiao Wang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Jiahao Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | | | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
5
|
Zhu YX, Yang Q, Zhang YP, Liu ZG. FGF2 Functions in H 2S's Attenuating Effect on Brain Injury Induced by Deep Hypothermic Circulatory Arrest in Rats. Mol Biotechnol 2023:10.1007/s12033-023-00952-3. [PMID: 37919618 DOI: 10.1007/s12033-023-00952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Deep hypothermic circulatory arrest (DHCA) can protect the brain during cardiac and aortic surgery by cooling the body, but meanwhile, temporary or permanent brain injury may arise. H2S protects neurons and the central nervous system, especially from secondary neuronal injury. We aim to unveil part of the mechanism of H2S's attenuating effect on brain injury induced by DHCA by exploring crucial target genes, and further promote the clinical application of H2S in DHCA. Nine SD rats were utilized to provide histological and microarray samples, and further the differential expression analysis. Then we conducted GO and KEGG pathway enrichment analyses on candidate genes. The protein-protein interaction (PPI) networks were performed by STRING and GeneMANIA. Crucial target genes' expression was validated by qRT-PCR and western blot. Histological study proved DHCA's damaging effect and H2S's repairing effect on brain. Next, we got 477 candidate genes by analyzing differentially expressed genes. The candidate genes were enriched in 303 GO terms and 28 KEGG pathways. Then nine genes were selected as crucial target genes. The function prediction by GeneMANIA suggested their close relation to immunity. FGF2 was identified as the crucial gene. FGF2 plays a vital role in the pathway when H2S attenuates brain injury after DHCA. Our research provides more information for understanding the mechanism of H2S attenuating brain injury after DHCA. We infer the process might probably be closely associated with immunity.
Collapse
Affiliation(s)
- Yu-Xiang Zhu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China
| | - Qin Yang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Binhai District, Tianjin, 300457, People's Republic of China
| | - You-Peng Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China
| | - Zhi-Gang Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
6
|
Dri E, Lampas E, Lazaros G, Lazarou E, Theofilis P, Tsioufis C, Tousoulis D. Inflammatory Mediators of Endothelial Dysfunction. Life (Basel) 2023; 13:1420. [PMID: 37374202 DOI: 10.3390/life13061420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Endothelial dysfunction (ED) is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and inflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. It has been reported that the maintenance of endothelial cell integrity serves a significant role in human health and disease due to the involvement of the endothelium in several processes, such as regulation of vascular tone, regulation of hemostasis and thrombosis, cell adhesion, smooth muscle cell proliferation, and vascular inflammation. Inflammatory modulators/biomarkers, such as IL-1α, IL-1β, IL-6, IL-12, IL-15, IL-18, and tumor necrosis factor α, or alternative anti-inflammatory cytokine IL-10, and adhesion molecules (ICAM-1, VCAM-1), involved in atherosclerosis progression have been shown to predict cardiovascular diseases. Furthermore, several signaling pathways, such as NLRP3 inflammasome, that are associated with the inflammatory response and the disrupted H2S bioavailability are postulated to be new indicators for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we summarize the knowledge of a plethora of reviews, research articles, and clinical trials concerning the key inflammatory modulators and signaling pathways in atherosclerosis due to endothelial dysfunction.
Collapse
Affiliation(s)
- Eirini Dri
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Evangelos Lampas
- Department of Cardiology, Konstantopouleio General Hospital, 14233 Athens, Greece
| | - George Lazaros
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Emilia Lazarou
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Costas Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| |
Collapse
|
7
|
Zhang H, Du J, Huang Y, Tang C, Jin H. Hydrogen Sulfide Regulates Macrophage Function in Cardiovascular Diseases. Antioxid Redox Signal 2023; 38:45-56. [PMID: 35658575 DOI: 10.1089/ars.2022.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is an endogenous gasotransmitter that plays a vital role in immune system regulation. Recently, the regulation of macrophage function by H2S has been extensively and actively recognized. Recent Advances: The mechanisms by which endogenous H2S controls macrophage function have attracted increasing attention. The generation of endogenous H2S from macrophages is mainly catalyzed by cystathionine-γ-lyase. H2S is involved in the macrophage activation and inflammasome formation, which contributes to macrophage apoptosis, adhesion, chemotaxis, and polarization. In addition, H2S has redox ability and interacts with reactive oxygen species to prevent oxidative stress. Moreover, H2S epigenetically regulates gene expression. Critical Issues: In this article, the generation of endogenous H2S in macrophages and its regulatory effect on macrophage function are reviewed. In addition, the signal transduction targeting macrophages by H2S is also addressed. Finally, the potential therapeutic effect of H2S on macrophages is discussed. Future Directions: Further experiments are required to explore the involvement of endogenous H2S in the regulation of macrophage function in various physiological and pathophysiological processes and elucidate the mechanisms involved. Regarding the clinical translation of H2S, further exploration of the application of H2S in inflammation-related diseases is needed. Antioxid. Redox Signal. 38, 45-56.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China.,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People's Republic of China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
8
|
Melo ISF, Ziviani VP, Barbosa BCM, Rodrigues FF, Silva RRL, da Silva Neto L, de Fátima Â, César IC, Machado RR, Coelho MM. Synthesis of 2-(2-(4-thioxo-3H-1,2-dithiole-5-yl) phenoxy)ethyl)isoindole-1,3-thione, a novel hydrogen sulfide-releasing phthalimide hybrid, and evaluation of its activity in models of inflammatory pain. Eur J Pharmacol 2022; 938:175409. [PMID: 36436591 DOI: 10.1016/j.ejphar.2022.175409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous mediator that modulates several physiological and pathological processes. Phthalimide analogues, substances that have the phthalimide ring in the structure, belong to the group of thalidomide analogues. Both H2S donors and phthalimide analogues exhibit activities in models of inflammation and pain. As molecular hybridization is an important strategy aiming to develop drugs with a better pharmacological profile, in the present study we synthesized a novel H2S-releasing phthalimide hybrid, 2-(2-(4-thioxo-3H-1,2-dithiole-5-yl) phenoxy)ethyl)isoindole-1,3-thione (PTD-H2S), and evaluated its activity in models of inflammatory pain in mice. Per os (p.o.) administration of PTD-H2S (125 or 250 mg/kg) reduced mechanical allodynia induced by carrageenan and lipopolysaccharide. Intraperitoneal (i.p.) administration of PTD-H2S (25 mg/kg), but not equimolar doses of its precursors 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (14.2 mg/kg) and 2-phthalimidethanol (12 mg/kg), reduced mechanical allodynia induced by lipopolysaccharide. The antiallodynic effect induced by PTD-H2S (25 mg/kg, i.p.) was more sustained than that induced by the H2S donor NaHS (8 mg/kg, i.p.). Previous administration of hydroxocobalamin (300 mg/kg, i.p.) or glibenclamide (40 mg/kg, p.o.) attenuated PTD-H2S antiallodynic activity. In conclusion, we synthesized a novel H2S-releasing phthalimide hybrid and demonstrated its activity in models of inflammatory pain. PTD-H2S activity may be due to H2S release and activation of ATP-sensitive potassium channels. The demonstration of PTD-H2S activity in models of pain stimulates further studies aiming to evaluate H2S-releasing phthalimide hybrids as candidates for analgesic drugs.
Collapse
Affiliation(s)
- Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Victor P Ziviani
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Barbara C M Barbosa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roger R L Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo da Silva Neto
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Isabela C César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
da Silva MC, dos Santos VM, da Silva MVB, Prazeres TCMM, Cartágenes MDSS, Calzerra NTM, de Queiroz TM. Involvement of shedding induced by ADAM17 on the nitric oxide pathway in hypertension. Front Mol Biosci 2022; 9:1032177. [PMID: 36310604 PMCID: PMC9614329 DOI: 10.3389/fmolb.2022.1032177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022] Open
Abstract
A Disintegrin and Metalloprotease 17 (ADAM17), also called tumor necrosis factor-ɑ (TNF-ɑ) convertase (TACE), is a well-known protease involved in the sheddase of growth factors, chemokines and cytokines. ADAM17 is also enrolled in hypertension, especially by shedding of angiotensin converting enzyme type 2 (ACE2) leading to impairment of angiotensin 1–7 [Ang-(1–7)] production and injury in vasodilation, induction of renal damage and cardiac hypertrophy. Activation of Mas receptor (MasR) by binding of Ang-(1–7) induces an increase in the nitric oxide (NO) gaseous molecule, which is an essential factor of vascular homeostasis and blood pressure control. On the other hand, TNF-ɑ has demonstrated to stimulate a decrease in nitric oxide bioavailability, triggering a disrupt in endothelium-dependent vasorelaxation. In spite of the previous studies, little knowledge is available about the involvement of the metalloprotease 17 and the NO pathways. Here we will provide an overview of the role of ADAM17 and Its mechanisms implicated with the NO formation.
Collapse
Affiliation(s)
- Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Vanessa Maria dos Santos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Matheus Vinícius B. da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | | | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- *Correspondence: Thyago Moreira de Queiroz,
| |
Collapse
|
10
|
Zhu H, Sheng W, Liu C, Zhang H, Liang C, Zhang X, Wang K, Li X, Yu Y, Fan D, Zhu B. Rational design of a fluorescent probe and its applications of imaging and distinguishing between exogenous and endogenous H 2S in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120407. [PMID: 34600323 DOI: 10.1016/j.saa.2021.120407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S), a recognized environmental pollutant, comes from a wide range of sources. For example, H2S will be produced in the process of plant protein corruption, the decomposition of domestic sewage and garbage, food processing (wine brewing), etc. and once the concentration is too high, it will cause significant damage of environment and human body. Besides H2S is an important gas signal molecule in vivo, which can be transferred through lipid membrane. Its existence level is closely related to many diseases. If we can "visually" trace the transmembrane transmission of hydrogen sulfide, it will be very helpful for the study of oxidative stress processes, cell protection, signal transduction and related diseases closely related to H2S. Although some probes can detect H2S in environment, cytoplasm and organelles, there are few reports on the release and internalization of H2S. In this work, we report a H2S fluorescence probe that can retain on the cell membrane, named PCM. The probe PCM can not only detect endogenous and exogenous H2S, but also distinguish them, this provides a general strategy for the construction of probes to detect other biomarkers. In addition, PCM has been successfully applied to the detection of endogenous and exogenous H2S in zebrafish, which has the potential to become a new chemical tool and provide help for the research of H2S-related diseases.
Collapse
Affiliation(s)
- Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Hanming Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Changxu Liang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yamin Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
11
|
Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2022; 11:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/06/2021] [Indexed: 12/13/2022]
Abstract
Advances in nanotechnology have enabled the rapid development of stimuli-responsive therapeutic nanomaterials for precision gas therapy. Hydrogen sulfide (H2 S) is a significant gaseous signaling molecule with intrinsic biochemical properties, which exerts its various physiological effects under both normal and pathological conditions. Various nanomaterials with H2 S-responsive properties, as new-generation therapeutic agents, are explored to guide therapeutic behaviors in biological milieu. The cross disciplinary of H2 S is an emerging scientific hotspot that studies the chemical properties, biological mechanisms, and therapeutic effects of H2 S. This review summarizes the state-of-art research on H2 S-related nanomedicines. In particular, recent advances in H2 S therapeutics for cancer, such as H2 S-mediated gas therapy and H2 S-related synergistic therapies (combined with chemotherapy, photodynamic therapy, photothermal therapy, and chemodynamic therapy) are highlighted. Versatile imaging techniques for real-time monitoring H2 S during biological diagnosis are reviewed. Finally, the biosafety issues, current challenges, and potential possibilities in the evolution of H2 S-based therapy that facilitate clinical translation to patients are discussed.
Collapse
Affiliation(s)
- He Ding
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Jinhu Chang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| |
Collapse
|
12
|
Bibli SI, Fleming I. Oxidative Post-Translational Modifications: A Focus on Cysteine S-Sulfhydration and the Regulation of Endothelial Fitness. Antioxid Redox Signal 2021; 35:1494-1514. [PMID: 34346251 DOI: 10.1089/ars.2021.0162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Changes in the oxidative balance can affect cellular physiology and adaptation through redox signaling. The endothelial cells that line blood vessels are particularly sensitive to reactive oxygen species, which can alter cell function by a number of mechanisms, including the oxidative post-translational modification (oxPTM) of proteins on critical cysteine thiols. Such modifications can act as redox-switches to alter the function of targeted proteins. Recent Advances: Mapping the cysteine oxPTM proteome and characterizing the effects of individual oxPTMs to gain insight into consequences for cellular responses has proven challenging. A recent addition to the list of reversible oxPTMs that contributes to cellular redox homeostasis is persulfidation or S-sulfhydration. Critical Issues: It has been estimated that up to 25% of proteins are S-sulfhydrated, making this modification almost as abundant as phosphorylation. In the endothelium, persulfides are generated by the trans-sulfuration pathway that catabolizes cysteine and cystathionine to generate hydrogen sulfide (H2S) and H2S-related sulfane sulfur compounds (H2Sn). This pathway is of particular importance for the vascular system, as the enzyme cystathionine γ lyase (CSE) in endothelial cells accounts for a significant portion of total vascular H2S/H2Sn production. Future Directions: Impaired CSE activity in endothelial dysfunction has been linked with marked changes in the endothelial cell S-sulfhydrome and can contribute to the development of atherosclerosis and hypertension. It will be interesting to determine how changes in the S-sulfhydration of specific networks of proteins contribute to endothelial cell physiology and pathophysiology. Antioxid. Redox Signal. 35, 1494-1514.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Gagat M, Zielińska W, Mikołajczyk K, Zabrzyński J, Krajewski A, Klimaszewska-Wiśniewska A, Grzanka D, Grzanka A. CRISPR-Based Activation of Endogenous Expression of TPM1 Inhibits Inflammatory Response of Primary Human Coronary Artery Endothelial and Smooth Muscle Cells Induced by Recombinant Human Tumor Necrosis Factor α. Front Cell Dev Biol 2021; 9:668032. [PMID: 34604206 PMCID: PMC8484921 DOI: 10.3389/fcell.2021.668032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is one of the most important proinflammatory cytokines, which affects many processes associated with the growth and characteristics of endothelial, smooth muscle, and immune system cells. However, there is no correlation between most in vivo and in vitro studies on its role in endothelial cell proliferation and migration. In this study, we examined the effect of recombinant human (rh) TNFα produced in HEK293 cells on primary human coronary artery endothelial cells (pHCAECs) in the context of F-actin organization and such processes as migration and adhesion. Furthermore, we evaluated the possibility of the inhibition of the endothelial inflammatory response by the CRISPR-based regulation of TPM1 gene expression. We showed that TNFα-induced activation of pHCAECs was related to the reorganization of the actin cytoskeleton into parallel-arranged stress fibers running along the longer axis of pHCAECs. It allowed for the directed and parallel motion of the cells during coordinated migration. This change in F-actin organization promoted strong but discontinuous cell–cell contacts involved in signalization between migrating cells. Moreover, this form of intercellular connections together with locally increased adhesion was related to the formation of migrasomes and further migracytosis. Stabilization of the actin cytoskeleton through the CRISPR-based activation of endogenous expression of TPM1 resulted in the inhibition of the inflammatory response of pHCAECs following treatment with rh TNFα and stabilization of cell–cell junctions through reduced cleavage of vascular endothelial cadherin (VE-cadherin) and maintenance of the stable levels of α- and β-catenins. We also showed that CRISPR-based activation of TPM1 reduced inflammatory activation, proliferation, and migration of primary human coronary artery smooth muscle cells. Therefore, products of the TPM1 gene may be a potential therapeutic target for the treatment of proinflammatory vascular disorders.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Klaudia Mikołajczyk
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Jan Zabrzyński
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland.,Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, University of Medical Sciences, Poznań, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
14
|
TNFα regulates the expression of the CSE gene in HUVEC. Exp Ther Med 2021; 22:1233. [PMID: 34539829 DOI: 10.3892/etm.2021.10667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/11/2021] [Indexed: 11/05/2022] Open
Abstract
The hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) signaling pathway is involved in several inflammatory conditions, where tumor necrosis factor-α (TNFα) is one of the inflammatory cytokines activated during sepsis. Therefore, the present study investigated the role of the NF-κB transcription factor binding site in the transcriptional regulation of the CSE gene in 293T cells following treatment with TNFα using luciferase assays, as well as using western blotting and reverse transcription-quantitative PCR to examine the effect of TNFα on CSE expression in HUVECs. After transfected 293T cells were incubated with various concentrations of TNFα for 1, 3, and 6 h, the wild-type promoter of the CSE gene increased significantly at 1 h compared to 0 h. By contrast, after the transfected 293T cells were incubated with various concentrations of TNFα for 1 h, the mutant-type promoter activity of the CSE gene decreased significantly compared to the wild-type. These results revealed that the DNA sequence GGGACATTCC on the CSE gene promoter was directly associated with the transcriptional regulation of the CSE gene in Human cells (293T cells) that's were treated with TNFα. This suggests that TNFα affects CSE gene expression, such that vascular endothelial cells respond to TNFα in the blood by regulating CSE expression. The regulatory mechanisms associated with the effects of TNFα on the transcriptional regulation of the CSE gene in HUVECs and the NF-κB pathway warrant further investigation.
Collapse
|
15
|
Ciccone V, Genah S, Morbidelli L. Endothelium as a Source and Target of H 2S to Improve Its Trophism and Function. Antioxidants (Basel) 2021; 10:antiox10030486. [PMID: 33808872 PMCID: PMC8003673 DOI: 10.3390/antiox10030486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium consists of a single layer of squamous endothelial cells (ECs) lining the inner surface of blood vessels. Nowadays, it is no longer considered as a simple barrier between the blood and vessel wall, but a central hub to control blood flow homeostasis and fulfill tissue metabolic demands by furnishing oxygen and nutrients. The endothelium regulates the proper functioning of vessels and microcirculation, in terms of tone control, blood fluidity, and fine tuning of inflammatory and redox reactions within the vessel wall and in surrounding tissues. This multiplicity of effects is due to the ability of ECs to produce, process, and release key modulators. Among these, gasotransmitters such as nitric oxide (NO) and hydrogen sulfide (H2S) are very active molecules constitutively produced by endotheliocytes for the maintenance and control of vascular physiological functions, while their impairment is responsible for endothelial dysfunction and cardiovascular disorders such as hypertension, atherosclerosis, and impaired wound healing and vascularization due to diabetes, infections, and ischemia. Upregulation of H2S producing enzymes and administration of H2S donors can be considered as innovative therapeutic approaches to improve EC biology and function, to revert endothelial dysfunction or to prevent cardiovascular disease progression. This review will focus on the beneficial autocrine/paracrine properties of H2S on ECs and the state of the art on H2S potentiating drugs and tools.
Collapse
|
16
|
Citi V, Martelli A, Gorica E, Brogi S, Testai L, Calderone V. Role of hydrogen sulfide in endothelial dysfunction: Pathophysiology and therapeutic approaches. J Adv Res 2021; 27:99-113. [PMID: 33318870 PMCID: PMC7728589 DOI: 10.1016/j.jare.2020.05.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The vascular endothelium represents a fundamental mechanical and biological barrier for the maintenance of vascular homeostasis along the entire vascular tree. Changes in its integrity are associated to several cardiovascular diseases, including hypertension, atherosclerosis, hyperhomocysteinemia, diabetes, all linked to the peculiar condition named endothelial dysfunction, which is referred to the loss of endothelial physiological functions, comprehending the regulation of vascular relaxation and/or cell redox balance, the inhibition of leukocyte infiltration and the production of NO. Among the endothelium-released vasoactive factors, in the last years hydrogen sulfide has been viewed as one of the main characters involved in the regulation of endothelium functionality, and many studies demonstrated that H2S behaves as a vasoprotective gasotransmitter in those cardiovascular diseases where endothelial dysfunction seems to be the central issue. AIM The role of hydrogen sulfide in endothelial dysfunction-related cardiovascular diseases is discussed in this review. KEY SCIENTIFIC CONCEPTS Possible therapeutic approaches using molecules able to release H2S.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Era Gorica
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| |
Collapse
|
17
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li J, Wen H, Shi T, Zhao Q, Wang Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem 2020; 205:112665. [DOI: 10.1016/j.ejmech.2020.112665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
|
18
|
Pedre B, Dick TP. 3-Mercaptopyruvate sulfurtransferase: an enzyme at the crossroads of sulfane sulfur trafficking. Biol Chem 2020; 402:223-237. [PMID: 33055309 DOI: 10.1515/hsz-2020-0249] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
3-Mercaptopyruvate sulfurtransferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate to generate an enzyme-bound hydropersulfide. Subsequently, MPST transfers the persulfide's outer sulfur atom to proteins or small molecule acceptors. MPST activity is known to be involved in hydrogen sulfide generation, tRNA thiolation, protein urmylation and cyanide detoxification. Tissue-specific changes in MPST expression correlate with ageing and the development of metabolic disease. Deletion and overexpression experiments suggest that MPST contributes to oxidative stress resistance, mitochondrial respiratory function and the regulation of fatty acid metabolism. However, the role and regulation of MPST in the larger physiological context remain to be understood.
Collapse
Affiliation(s)
- Brandán Pedre
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120Heidelberg, Germany
| |
Collapse
|
19
|
Testai L, Citi V, Martelli A, Brogi S, Calderone V. Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 2020; 160:105125. [PMID: 32783975 DOI: 10.1016/j.phrs.2020.105125] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the main cause of morbidity and mortality in the Western society and ageing is a relevant non-modifiable risk factor. Morphological and functional alterations at endothelial level represent first events of ageing, inevitably followed by vascular dysfunction and consequent atherosclerosis that deeply influences cardiovascular health. Indeed, myocardial hypertrophy and fibrosis typically occur and contribute to compromise overall cardiac output. As regards the intracellular molecular mechanisms involved in the cardiovascular ageing, an intricate network is emerging, revealing a role for many mediators, including SIRT1/AMPK/PCG1α pathway, anti-oxidants factors (i.e. Nrf-2 and FOXOs) and pro-inflammatory cytokines. Thus, the search for pharmacological and non-pharmacological strategies that can promote a "healthy ageing", in order to slow down age-related machinery, are currently an exciting challenge for the biomedical research. Interestingly, hydrogen sulfide (H2S) has been recently recognized as a new player capable to influence intracellular machinery involved in ageing and then it is view as a potential target for preventing cardiovascular diseases. Therefore, this review is focused on the role of H2S in cardiovascular ageing, and on the evidence of the relationship between progressive decline in endogenous H2S levels and the onset of various cardiovascular age-related diseases.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| |
Collapse
|
20
|
Glorieux G, Gryp T, Perna A. Gut-Derived Metabolites and Their Role in Immune Dysfunction in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12040245. [PMID: 32290429 PMCID: PMC7232434 DOI: 10.3390/toxins12040245] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Several of the uremic toxins, which are difficult to remove by dialysis, originate from the gut bacterial metabolism. This opens opportunities for novel targets trying to decrease circulating levels of these toxins and their pathophysiological effects. The current review focuses on immunomodulatory effects of these toxins both at their side of origin and in the circulation. In the gut end products of the bacterial metabolism such as p-cresol, trimethylamine and H2S affect the intestinal barrier structure and function while in the circulation the related uremic toxins stimulate cells of the immune system. Both conditions contribute to the pro-inflammatory status of patients with chronic kidney disease (CKD). Generation and/or absorption of these toxin precursors could be targeted to decrease plasma levels of their respective uremic toxins and to reduce micro-inflammation in CKD.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Division, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium;
- Correspondence: ; Tel.: +32-9-3324511
| | - Tessa Gryp
- Nephrology Division, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium;
| | - Alessandra Perna
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| |
Collapse
|
21
|
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front Pharmacol 2020; 10:1568. [PMID: 32038245 PMCID: PMC6985156 DOI: 10.3389/fphar.2019.01568] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells are important constituents of blood vessels that play critical roles in cardiovascular homeostasis by regulating blood fluidity and fibrinolysis, vascular tone, angiogenesis, monocyte/leukocyte adhesion, and platelet aggregation. The normal vascular endothelium is taken as a gatekeeper of cardiovascular health, whereas abnormality of vascular endothelium is a major contributor to a plethora of cardiovascular ailments, such as atherosclerosis, aging, hypertension, obesity, and diabetes. Endothelial dysfunction is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and proinflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. The occurrence of endothelial dysfunction disrupts the endothelial barrier permeability that is a part of inflammatory response in the development of cardiovascular diseases. As such, abrogation of endothelial cell activation/inflammation is of clinical relevance. Recently, hydrogen sulfide (H2S), an entry as a gasotransmitter, exerts diverse biological effects through acting on various targeted signaling pathways. Within the cardiovascular system, the formation of H2S is detected in smooth muscle cells, vascular endothelial cells, and cardiomyocytes. Disrupted H2S bioavailability is postulated to be a new indicator for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we will summarize recent advances about the roles of H2S in endothelial cell homeostasis, especially under pathological conditions, and discuss its putative therapeutic applications in endothelial inflammation-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
22
|
Melo ISF, Rodrigues FF, Costa SOAM, Braga AV, Morais MÍ, Vaz JA, Neto LS, Galvão I, Modolo LV, Amaral FA, Oliveira RB, de Fátima Â, Coelho MM, Machado RR. 4-Methylbenzenecarbothioamide, a hydrogen sulfide donor, inhibits tumor necrosis factor-α and CXCL1 production and exhibits activity in models of pain and inflammation. Eur J Pharmacol 2019; 856:172404. [PMID: 31132352 DOI: 10.1016/j.ejphar.2019.172404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The gasotransmitter hydrogen sulfide (H2S) is known to regulate many pathophysiological processes. Preclinical assays have demonstrated that H2S donors exhibit anti-inflammatory and antinociceptive activities, characterized by reduction of inflammatory mediators production, leukocytes recruitment, edema and mechanical allodynia. In the present study, the effects induced by 4-methylbenzenecarbothioamide (4-MBC) in models of pain and inflammation in mice, the mechanisms mediating such effects and the H2S-releasing property of this compound were evaluated. 4-MBC spontaneously released H2S in vitro in the absence of organic thiols. Intraperitoneal (i.p.) administration of 4-MBC (100 or 150 mg/kg) reduced the second phase of the nociceptive response induced by formaldehyde and induced a long lasting inhibitory effect on carrageenan mechanical allodynia. 4-MBC antiallodynic effect was not affected by previous administration of naltrexone or glibenclamide. 4-MBC (50, 100 or 150 mg/kg, i.p.) induced a long lasting inhibitory effect on paw edema induced by carrageenan. The highest dose (150 mg/kg, i.p.) of 4-MBC inhibited tumor necrosis factor-α and CXCL1 production and myeloperoxidase activity induced by carrageenan. Mechanical allodynia and paw edema induced by carrageenan were not inhibited by the 4-MBC oxo analogue (p-toluamide). In summary, 4-MBC, an H2S releasing thiobenzamide, exhibits antinociceptive and anti-inflammatory activities. These activities may be due to reduced cytokine and chemokine production and neutrophil recruitment. The H2S releasing property is likely essential for 4-MBC activity. Our results indicate that 4-MBC may represent a useful pharmacological tool to investigate the biological roles of H2S.
Collapse
Affiliation(s)
- Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Sarah O A M Costa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Alysson Vinícius Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Marcela Ísis Morais
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Jéssica A Vaz
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo S Neto
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Izabela Galvão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renata B Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
23
|
Guan H, Zhang A, Li P, Xia L, Guo F. ESIPT Fluorescence Probe Based on Double-Switch Recognition Mechanism for Selective and Rapid Detection of Hydrogen Sulfide in Living Cells. ACS OMEGA 2019; 4:9113-9119. [PMID: 31459999 PMCID: PMC6648457 DOI: 10.1021/acsomega.9b00934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 05/11/2023]
Abstract
A novel fluorescence probe, HBTSeSe, was designed and synthesized for the detection of H2S with a double-switch mechanism of a broken diselenide bond followed by thiolysis of ether. Then, 2-(2'-hydroxyphenyl)benzothiazole (HBT) was released as fluorophore, which has large Stokes shift based on the excited state intramolecular proton transfer process. The probe responded selectively and rapidly to H2S, with the fluorescence increased by 47-fold immediately after the addition of H2S. HBTSeSe was able to detect H2S in the cytoplasm, specifically in cell imaging experiments. The results also showed that H2S was produced in the immune response of RAW264.7 cells activated by phorbol-12-myristate-13-acetate.
Collapse
Affiliation(s)
- Hongwei Guan
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Food and Environment, Dalian University of Technology, Panjin 124000, P. R. China
| | - Aixia Zhang
- Department
of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Peng Li
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences
(CAS), Dalian 116023, P. R. China
| | - Lixin Xia
- Department
of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Feng Guo
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Food and Environment, Dalian University of Technology, Panjin 124000, P. R. China
| |
Collapse
|
24
|
Brown AP, Arias-Rodriguez L, Yee MC, Tobler M, Kelley JL. Concordant Changes in Gene Expression and Nucleotides Underlie Independent Adaptation to Hydrogen-Sulfide-Rich Environments. Genome Biol Evol 2018; 10:2867-2881. [PMID: 30215710 PMCID: PMC6225894 DOI: 10.1093/gbe/evy198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/23/2022] Open
Abstract
The colonization of novel environments often involves changes in gene expression, protein coding sequence, or both. Studies of how populations adapt to novel conditions, however, often focus on only one of these two processes, potentially missing out on the relative importance of different parts of the evolutionary process. In this study, our objectives were 1) to better understand the qualitative concordance between conclusions drawn from analyses of differential expression and changes in genic sequence and 2) to quantitatively test whether differentially expressed genes were enriched for sites putatively under positive selection within gene regions. To achieve this, we compared populations of fish (Poecilia mexicana) that have independently adapted to hydrogen-sulfide-rich environments in southern Mexico to adjacent populations residing in nonsulfidic waters. Specifically, we used RNA-sequencing data to compare both gene expression and DNA sequence differences between populations. Analyzing these two different data types led to similar conclusions about which biochemical pathways (sulfide detoxification and cellular respiration) were involved in adaptation to sulfidic environments. Additionally, we found a greater overlap between genes putatively under selection and differentially expressed genes than expected by chance. We conclude that considering both differential expression and changes in DNA sequence led to a more comprehensive understanding of how these populations adapted to extreme environmental conditions. Our results imply that changes in both gene expression and DNA sequence-sometimes at the same loci-may be involved in adaptation.
Collapse
Affiliation(s)
- Anthony P Brown
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA 99164
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Muh-Ching Yee
- Stanford Functional Genomics Facility, CCSR 0120, Stanford, CA 94305
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, 100 Dairy Road, Pullman, WA 99164
| |
Collapse
|
25
|
Zhang D, Wang X, Tian X, Zhang L, Yang G, Tao Y, Liang C, Li K, Yu X, Tang X, Tang C, Zhou J, Kong W, Du J, Huang Y, Jin H. The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sulfide Pathway in the Endothelial Cell Inflammation. Front Immunol 2018; 9:882. [PMID: 29760703 PMCID: PMC5936987 DOI: 10.3389/fimmu.2018.00882] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 02/04/2023] Open
Abstract
Endogenous hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as important regulators to control endothelial cell function and protect endothelial cell against various injuries. In our present study, we aimed to investigate the effect of endogenous H2S on the SO2 generation in the endothelial cells and explore its significance in the endothelial inflammation in vitro and in vivo. The human umbilical vein endothelial cell (HUVEC) line (EA.hy926), primary HUVECs, primary rat pulmonary artery endothelial cells (RPAECs), and purified aspartate aminotransferase (AAT) protein from pig heart were used for in vitro experiments. A rat model of monocrotaline (MCT)-induced pulmonary vascular inflammation was used for in vivo experiments. We found that endogenous H2S deficiency caused by cystathionine-γ-lyase (CSE) knockdown increased endogenous SO2 level in endothelial cells and enhanced the enzymatic activity of AAT, a major SO2 synthesis enzyme, without affecting the expressions of AAT1 and AAT2. While H2S donor could reverse the CSE knockdown-induced increase in the endogenous SO2 level and AAT activity. Moreover, H2S donor directly inhibited the activity of purified AAT protein, which was reversed by a thiol reductant DTT. Mechanistically, H2S donor sulfhydrated the purified AAT1/2 protein and rescued the decrease in the sulfhydration of AAT1/2 protein in the CSE knockdown endothelial cells. Furthermore, an AAT inhibitor l-aspartate-β-hydroxamate (HDX), which blocked the upregulation of endogenous SO2/AAT generation induced by CSE knockdown, aggravated CSE knockdown-activated nuclear factor-κB pathway in the endothelial cells and its downstream inflammatory factors including ICAM-1, TNF-α, and IL-6. In in vivo experiment, H2S donor restored the deficiency of endogenous H2S production induced by MCT, and reversed the upregulation of endogenous SO2/AAT pathway via sulfhydrating AAT1 and AAT2. In accordance with the results of the in vitro experiment, HDX exacerbated the pulmonary vascular inflammation induced by the broken endogenous H2S production in MCT-treated rat. In conclusion, for the first time, the present study showed that H2S inhibited endogenous SO2 generation by inactivating AAT via the sulfhydration of AAT1/2; and the increased endogenous SO2 generation might play a compensatory role when H2S/CSE pathway was downregulated, thereby exerting protective effects in endothelial inflammatory responses in vitro and in vivo.
Collapse
Affiliation(s)
- Da Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Guosheng Yang
- Animal Center, Peking University First Hospital, Beijing, China
| | - Yinghong Tao
- Animal Center, Peking University First Hospital, Beijing, China
| | - Chen Liang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
26
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:toxins10010033. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β2-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Chun-Mei J, Wu C, Guo-Liang M, Yue G, Ning C, Ji Y. Production of endogenous hydrogen sulfide in human gingival tissue. Arch Oral Biol 2016; 74:108-113. [PMID: 27930932 DOI: 10.1016/j.archoralbio.2016.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/28/2016] [Accepted: 11/27/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endogenous hydrogen sulfide (H2S) has recently been shown to play an important role in inflammation, but the role of endogenous H2S in the human gingival tissue is unknown. The aim of this study was to investigate whether gingiva had enzymes for H2S synthesis, and whether the effect of these enzymes for H2S production changed with periodontal inflammation. DESIGN Gingival tissues were collected from patients undergoing periodontal operation including gingivitis, moderate chronic periodontitis, severe chronic periodontitis and normal controls. RT-PCR and western blotting were performed to measure mRNA and protein levels of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) for H2S production. Immunohistochemistry was carried out to detect the location of the enzymes. H2S levels and synthesis in gingival tissue were evaluated with modified methylene blue method. RESULTS The mRNA and protein of CBS and CSE were both expressed in human gingiva and raised significantly in moderate and severe periodontitis compared of that in healthy control. CBS, but not CSE, increased in gingivitis (p<0.05). However, there was no significant difference of H2S level and synthesis among these groups (p>0.05). CONCLUSIONS Both CBS and CSE were expressed in human gingival tissue. The mRNA and protein levels of CBS and CSE were up-regulated in periodontitis.
Collapse
Affiliation(s)
- Jiang Chun-Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Meng Guo-Liang
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Gu Yue
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chen Ning
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Yong Ji
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Weber GJ, Pushpakumar S, Tyagi SC, Sen U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol Res 2016; 113:300-312. [PMID: 27602985 DOI: 10.1016/j.phrs.2016.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
Over the past several years, hydrogen sulfide (H2S) has been shown to be an important player in a variety of physiological functions, including neuromodulation, vasodilation, oxidant regulation, inflammation, and angiogenesis. H2S is synthesized primarily through metabolic processes from the amino acid cysteine and homocysteine in various organ systems including neuronal, cardiovascular, gastrointestinal, and kidney. Derangement of cysteine and homocysteine metabolism and clearance, particularly in the renal vasculature, leads to H2S biosynthesis deregulation causing or contributing to existing high blood pressure. While a variety of environmental influences, such as diet can have an effect on H2S regulation and function, genetic factors, and more recently epigenetics, also have a vital role in H2S regulation and function, and therefore disease initiation and progression. In addition, new research into the role of gut microbiota in the development of hypertension has highlighted the need to further explore these microorganisms and how they influence the levels of H2S throughout the body and possibly exploiting microbiota for use of hypertension treatment. In this review, we summarize recent advances in the field of hypertension research emphasizing renal contribution and how H2S physiology can be exploited as a possible therapeutic strategy to ameliorate kidney dysfunction as well as to control blood pressure.
Collapse
Affiliation(s)
- Gregory J Weber
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States.
| |
Collapse
|
29
|
Hong-Brown LQ, Brown CR, Navaratnarajah M, Lang CH. Adamts1 mediates ethanol-induced alterations in collagen and elastin via a FoxO1-sestrin3-AMPK signaling cascade in myocytes. J Cell Biochem 2016; 116:91-101. [PMID: 25142777 DOI: 10.1002/jcb.24945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022]
Abstract
A variety of stressors including alcohol (EtOH) are known to induce collagen production and fibrotic diseases. Matrix metalloproteinases (MMP) play an important role in regulating fibrosis, but little is known regarding the relationship between EtOH and MMPs. In addition, the signaling cascades involved in this process have not been elucidated. We have identified the MMP Adamts1 as a target of EtOH regulation. To characterize the function of Adamts1, we examined EtOH-induced alterations in collagen I and elastin protein levels in C2C12 myocytes. Incubation of myocytes with 100 mM EtOH decreased elastin and increased collagen content, respectively, and these changes were associated with increased O-GLcNAc modification of Adamts1. Conversely, silencing of Adamts1 by siRNA blocked the adverse effects of EtOH on collagen and elastin levels. Similar results were obtained after treatment with a pharmacological inhibitor of MMP. Changes in collagen were due, at least in part, to a decreased interaction of Adamts1 with its endogenous inhibitor TIMP3. The AMPK inhibitor compound C blocked the EtOH-induced stimulation of collagen and O-GLcNAc Adamts1 protein. Changes in AMPK appear linked to FoxO1, since inhibition of FoxO1 blocked the effects of EtOH on AMPK phosphorylation and O-GLcNAc levels. These FoxO-dependent modifications were associated with an upregulation of the FoxO1 transcription target sestrin 3, as well as increased binding of sestrin 3 with AMPK. Collectively, these data indicate that EtOH regulates the collagen I and elastin content in an Adamts1-dependent manner in myocytes. Furthermore, Adamts1 appears to be controlled by the FoxO1-sestrin 3-AMPK signaling cascade.
Collapse
Affiliation(s)
- Ly Q Hong-Brown
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, 17033, USA
| | | | | | | |
Collapse
|
30
|
Hydrogen sulfide in cancer: Friend or foe? Nitric Oxide 2015; 50:38-45. [PMID: 26297862 DOI: 10.1016/j.niox.2015.08.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/26/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is the third gaseous signaling molecule that plays important roles in cancer biological processes. Recent studies indicate that H2S has both pro-cancer and anti-cancer effects. Endogenous H2S can exert pro-cancer functions through induction of angiogenesis regulation of mitochondrial bioenergetics, acceleration of cell cycle progression, and anti-apoptosis mechanisms. Thus, the inhibition of the production of H2S in cancer cells may be a new cancer treatment strategy. In contrast to the pro-cancer effect of H2S, relatively high concentrations of exogenous H2S could suppress the growth of cancer cells by inducing uncontrolled intracellular acidification, inducing cell cycle arrest, and promoting apoptosis. Therefore, H2S donors and H2S-releasing hybrids could be designed and developed as novel anti-cancer drugs. In this review, the production and metabolism of H2S in cancer cells are summarized and the role and mechanism of H2S in cancer development and progression are further discussed.
Collapse
|
31
|
Poussin C, Laurent A, Peitsch MC, Hoeng J, De Leon H. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte–Endothelial Cell Adhesion. Toxicol Sci 2015; 147:370-85. [DOI: 10.1093/toxsci/kfv137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
32
|
Impact of the uremic milieu on the osteogenic potential of mesenchymal stem cells. PLoS One 2015; 10:e0116468. [PMID: 25635832 PMCID: PMC4312090 DOI: 10.1371/journal.pone.0116468] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/09/2014] [Indexed: 01/04/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogenesis, play a role in the balance of bone formation and resorption, but their functioning in uremia has not been well defined. To study the effects of the uremic milieu on osteogenic properties, we applied an in vitro assay culturing hMSCs in osteogenic medium supplemented with serum from healthy donors and from uremic patients on hemodialysis. Compared to control, serum from uremic patients induces, in hMSC cultures, a modification of several key regulators of bone remodeling, in particular a reduction of the ratio Receptor Activator of Nuclear factor Kappa B Receptor (RANKL) over osteoprotegerin, indicating an adaptive response of the system to favor osteogenesis over osteoclastosis. However, the levels of osteopontin, osteocalcin, and collagen type I, are increased in cell medium, while BMP-2, and alizarin red staining were decreased, pointing to a reduction of bone formation favoring resorption. Selected uremic toxins, such as p-cresylsulfate, p-cresylglucuronide, parathyroid hormone, indoxyl sulfate, asymmetric dimethylarginine, homocysteine, were able to mimic some of the effects of whole serum from uremic patients. Serum from cinacalcet-treated patients antagonizes these effects. Hydrogen sulfide (H2S) donors as well as hemodialysis treatment are able to induce beneficial effects. In conclusion, bone modifications in uremia are influenced by the capability of the uremic milieu to alter hMSC osteogenic differentiation. Cinacalcet, H2S donors and a hemodialysis session can ameliorate the hampered calcium deposition.
Collapse
|
33
|
Abstract
The physiological and biomedical importance of hydrogen sulfide (H2S) has been fully recognized in the cardiovascular system as well as in the rest of the body. In blood vessels, cystathionine γ-lyase (CSE) is a major H2S-producing enzyme expressed in both smooth muscle and endothelium as well as periadventitial adipose tissues. Regulation of H2S production from CSE is controlled by a complex integration of transcriptional, posttranscriptional, and posttranslational mechanisms in blood vessels. In smooth muscle cells, H2S regulates cell apoptosis, phenotypic switch, relaxation and contraction, and calcification. In endothelial cells, H2S controls cell proliferation, cellular senescence, oxidative stress, inflammation, etc. H2S interacts with nitric oxide and acts as an endothelium-derived relaxing factor and an endothelium-derived hyperpolarizing factor. H2S generated from periadventitial adipose tissues acts as an adipocyte-derived relaxing factor and modulates the vascular tone. Extensive evidence has demonstrated the beneficial roles of the CSE/H2S system in various blood vessel diseases, such as hypertension, atherosclerosis, and aortic aneurysm. The important roles signaling in the cardiovascular system merit further intensive and extensive investigation. H2S-releasing agents and CSE activators will find their great applications in the prevention and treatment of blood vessel-related disorders.
Collapse
Affiliation(s)
- Guangdong Yang
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada
| | | |
Collapse
|
34
|
Song P, Zou MH. Redox regulation of endothelial cell fate. Cell Mol Life Sci 2014; 71:3219-39. [PMID: 24633153 DOI: 10.1007/s00018-014-1598-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions.
Collapse
Affiliation(s)
- Ping Song
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L Young Blvd., Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
35
|
Jankowski J, Westhof T, Vaziri ND, Ingrosso D, Perna AF. Gases as Uremic Toxins: Is There Something in the Air? Semin Nephrol 2014; 34:135-50. [DOI: 10.1016/j.semnephrol.2014.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Simabuco FM, Kawahara R, Yokoo S, Granato DC, Miguel L, Agostini M, Aragão AZB, Domingues RR, Flores IL, Macedo CCS, Della Coletta R, Graner E, Paes Leme AF. ADAM17 mediates OSCC development in an orthotopic murine model. Mol Cancer 2014; 13:24. [PMID: 24495306 PMCID: PMC3928084 DOI: 10.1186/1476-4598-13-24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/03/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND ADAM17 is one of the main sheddases of the cells and it is responsible for the cleavage and the release of ectodomains of important signaling molecules, such as EGFR ligands. Despite the known crosstalk between ADAM17 and EGFR, which has been considered a promising targeted therapy in oral squamous cell carcinoma (OSCC), the role of ADAM17 in OSCC development is not clear. METHOD In this study the effect of overexpressing ADAM17 in cell migration, viability, adhesion and proliferation was comprehensively appraised in vitro. In addition, the tumor size, tumor proliferative activity, tumor collagenase activity and MS-based proteomics of tumor tissues have been evaluated by injecting tumorigenic squamous carcinoma cells (SCC-9) overexpressing ADAM17 in immunodeficient mice. RESULTS The proteomic analysis has effectively identified a total of 2,194 proteins in control and tumor tissues. Among these, 110 proteins have been down-regulated and 90 have been up-regulated in tumor tissues. Biological network analysis has uncovered that overexpression of ADAM17 regulates Erk pathway in OSCC and further indicates proteins regulated by the overexpression of ADAM17 in the respective pathway. These results are also supported by the evidences of higher viability, migration, adhesion and proliferation in SCC-9 or A431 cells in vitro along with the increase of tumor size and proliferative activity and higher tissue collagenase activity as an outcome of ADAM17 overexpression. CONCLUSION These findings contribute to understand the role of ADAM17 in oral cancer development and as a potential therapeutic target in oral cancer. In addition, our study also provides the basis for the development of novel and refined OSCC-targeting approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Adriana Franco Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas 13083-970, Brazil.
| |
Collapse
|
37
|
Zhao H, Chan SJ, Ng YK, Wong PTH. Brain 3-Mercaptopyruvate Sulfurtransferase (3MST): Cellular Localization and Downregulation after Acute Stroke. PLoS One 2013; 8:e67322. [PMID: 23805308 PMCID: PMC3689812 DOI: 10.1371/journal.pone.0067322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
3-Mercaptopyruvate sulfurtransferase (3MST) is an important enzyme for the synthesis of hydrogen sulfide (H2S) in the brain. We present here data that indicate an exclusively localization of 3MST in astrocytes. Regional distribution of 3MST activities is even and unremarkable. Following permanent middle cerebral artery occlusion (pMCAO), 3MST was down-regulated in both the cortex and striatum, but not in the corpus collosum. It appears that the down-regulation of astrocytic 3MST persisted in the presence of astrocytic proliferation due to gliosis. Our observations indicate that 3MST is probably not responsible for the increased production of H2S following pMCAO. Therefore, cystathionine β-synthase (CBS), the alternative H2S producing enzyme in the CNS, remains as a more likely potential therapeutic target than 3MST in the treatment of acute stroke through inhibition of H2S production.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore,Singapore, Singapore
| | - Su-Jing Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore,Singapore, Singapore
| | - Yee-Kong Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore,Singapore, Singapore
| | - Peter T.-H. Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore,Singapore, Singapore
- * E-mail:
| |
Collapse
|