1
|
Tan B, Yang G, Su L, Zhou J, Wu Y, Liang C, Lai Y. MiR-125b targeted regulation of MKNK2 inhibits multiple myeloma proliferation and invasion. Am J Transl Res 2024; 16:3366-3375. [PMID: 39114709 PMCID: PMC11301515 DOI: 10.62347/qwgs2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND An increasing number of studies demonstrate that abnormal miRNA expression contributes to the advancement of many tumors. Nonetheless, the potential role of miR-125b in multiple myeloma (MM) remains unknown. OBJECTIVES To explore the potential effects and mechanism of miR-125b in MM. METHODS Real-time quantitative PCR was used to measure the expression levels of miR-125b and MKNK2 in a variety of MM samples. Colony formation and cell counting Kit-8 (CCK-8) assays were used to assess cell proliferation, the transwell assay was used to evaluate the cell invasion capability, and dual luciferase reporter gene assay and Western blot were used to examine the interaction between miR-125b and MKNK2. RESULTS The levels of miR-125b were higher in MM tissue samples, alongside increased expression of MKNK2. There was a negative correlation between MKNK2 and miR-125b expression in MM tissues. MKNK2 was identified as a direct target gene of miR-125b in MM cells. Overexpression of miR-125b suppressed MM cell growth, colony formation, and invasion. In addition, MKNK2 was found to mediate the effects of miR-125b on cell proliferation, colony formation, and invasion in MM. CONCLUSIONS miR-125b acts as a suppressive factor in multiple myeloma and can affect the malignant behavior of MM by regulating the expression of MKNK2.
Collapse
Affiliation(s)
- Binbin Tan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Gaohui Yang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Liangyan Su
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Jicheng Zhou
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Yinying Wu
- Department of Blood Transfusion, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Chunfeng Liang
- Department of Blood Transfusion, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, China
| |
Collapse
|
2
|
Sinomenine Inhibits Vasculogenic Mimicry and Migration of Breast Cancer Side Population Cells via Regulating miR-340-5p/SIAH2 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4914005. [PMID: 35309179 PMCID: PMC8926463 DOI: 10.1155/2022/4914005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/29/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia and its induced vasculogenic mimicry (VM) formation, which both closely related with stem-like side population (SP) cells, are the main culprits leading to tumor invasion and metastasis. Sinomenine exhibits excellent anticancer activity in breast cancer, but whether and how it affects hypoxia-triggered VM formation in breast cancer SP cells remains unclear. In this study, breast cancer SP cells were sorted from MDA-MB-231 cells and cultured with sinomenine under hypoxic conditions. Sinomenine obviously repressed the migration and VM formation of breast cancer SP cells. Through downregulating SIAH2 and HIF-1α, sinomenine can inhibit epithelial-mesenchymal transition process of breast cancer SP cells. SIAH2 was identified as a target of miR-340-5p and was downregulated by it, and sinomenine can upregulate miR-340-5p. Hypoxia-induced downregulation of miR-340-5p and activation of SIAH2/HIF-1α pathway can be both counteracted by the sinomenine. Moreover, miR-340-5p inhibition and SIAH2 overexpression can partly counteract the anticancer effects of sinomenine. Taken together, sinomenine inhibits hypoxia-caused VM formation and metastasis of breast cancer SP cells by regulating the miR-340-5p/SIAH2 axis.
Collapse
|
3
|
Isca C, Piacentini F, Mastrolia I, Masciale V, Caggia F, Toss A, Piombino C, Moscetti L, Barbolini M, Maur M, Dominici M, Omarini C. Circulating and Intracellular miRNAs as Prognostic and Predictive Factors in HER2-Positive Early Breast Cancer Treated with Neoadjuvant Chemotherapy: A Review of the Literature. Cancers (Basel) 2021; 13:cancers13194894. [PMID: 34638377 PMCID: PMC8508299 DOI: 10.3390/cancers13194894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that can act as both oncogene and tumor suppressors. Deregulated miRNA expression has been detected in human cancers, including breast cancer (BC). Considering their important roles in tumorigenesis, miRNAs have been investigated as potential prognostic and diagnostic biomarkers. Neoadjuvant setting is an optimal model to investigate in vivo the mechanism of treatment resistance. In the management of human epidermal growth factor receptor-2 (HER2)-positive early BC, the anti-HER2-targeted therapies have drastically changed the survival outcomes. Despite this, growing drug resistance due to the pressure of therapy is relatively frequent. In the present review, we focused on the main miRNAs involved in HER2-positive BC tumorigenesis and discussed the recent evidence on their predictive and prognostic value.
Collapse
Affiliation(s)
- Chrystel Isca
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Federico Piacentini
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Federica Caggia
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Angela Toss
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Claudia Piombino
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Luca Moscetti
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
| | - Monica Barbolini
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Michela Maur
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
| | - Massimo Dominici
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Claudia Omarini
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
- Correspondence: ; Tel.: +39-059-4222845
| |
Collapse
|
4
|
Wang J, Da C, Su Y, Song R, Bai Z. MKNK2 enhances chemoresistance of ovarian cancer by suppressing autophagy via miR-125b. Biochem Biophys Res Commun 2021; 556:31-38. [PMID: 33836345 DOI: 10.1016/j.bbrc.2021.02.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
Chemoresistance is a major cause for high mortality and poor survival in patients with ovarian cancer. Changes of cellular autophagy is associated with tumor cell chemoresistance. MAP kinase interacting serine/threonine kinase 2 (MKNK2) belongs to the protein kinase superfamily mediating cell cycle, apoptosis and angiogenesis. However, its effects on chemoresistance during ovarian cancer development remain unclear. In this study, we found that MKNK2 expression levels were markedly up-regulated in chemoresistant ovarian cancer cells compared with the sensitive cells. In addition, significantly increased expression of MKNK2 was detected in clinical ovarian cancer tissues, particularly in tumor samples from patients with drug resistance, and high MKNK2 expression is closely associated with poor prognosis. Our in vitro experiments subsequently showed that MKNK2 knockdown markedly reduced the proliferation of chemoresistant ovarian cancer cells, which was confirmed in SKOV3/DDP xenograft mouse models. Importantly, MKNK2 knockdown considerably induced autophagy in ovarian cancer cells with drug resistance, which was involved in the suppression of cell proliferation. Of note, we showed that miR-125b directly targeted MKNK2, and a negative correlation was observed between the expression of them in clinical tumor tissues. MKNK2 silence also increased miR-125b expression levels in drug-resistant ovarian cancer cells. Intriguingly, MKNK2 knockdown-suppressed cell proliferation and -induced autophagy were almost abrogated by miR-125b inhibition in chemoresistant ovarian cancer cells. Together, these findings demonstrated that MNKN2 is responsible for chemoresistance in ovarian cancer through modulating autophagy by targeting miR-125b, which may be a promising therapeutic target to develop strategies against ovarian cancer with drug resistance.
Collapse
Affiliation(s)
- Jing Wang
- Department of Clinical Medicine, Xingtai Medical College, Xingtai, Hubei, 054000, China
| | - Chaoling Da
- Department of Clinical Medicine, Xingtai Medical College, Xingtai, Hubei, 054000, China
| | - Ye Su
- Department of Clinical Medicine, Xingtai Medical College, Xingtai, Hubei, 054000, China
| | - Ruijia Song
- Department of Clinical Medicine, Xingtai Medical College, Xingtai, Hubei, 054000, China
| | - Zhifeng Bai
- Department of Clinical Medicine, Xingtai Medical College, Xingtai, Hubei, 054000, China.
| |
Collapse
|
5
|
Dong B, Li S, Zhu S, Yi M, Luo S, Wu K. MiRNA-mediated EMT and CSCs in cancer chemoresistance. Exp Hematol Oncol 2021; 10:12. [PMID: 33579377 PMCID: PMC7881653 DOI: 10.1186/s40164-021-00206-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a small group of cancer cells, which contribute to tumorigenesis and cancer progression. Cancer cells undergoing epithelial-to-mesenchymal transition (EMT) acquire the chemoresistant ability, which is regarded as an important feature of CSCs. Thus, there emerges an opinion that the generation of CSCs is considered to be driven by EMT. In this complex process, microRNAs (miRNAs) are found to play a key role. In order to overcome the drug resistance, inhibiting EMT as well as CSCs phenotype seem feasible. Thereinto, regulating the EMT- or CSCs-associated miRNAs is a crucial approach. Herein, we conduct this review to elaborate on the complicated interplay between EMT and CSCs in cancer chemoresistance, which is modulated by miRNAs. In addition, we elucidate the therapeutic strategy to overcome drug resistance through targeting EMT and CSCs.
Collapse
Affiliation(s)
- Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
6
|
Peng B, Theng PY, Le MTN. Essential functions of miR-125b in cancer. Cell Prolif 2020; 54:e12913. [PMID: 33332677 PMCID: PMC7848968 DOI: 10.1111/cpr.12913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNAs that silence target mRNAs, and compelling evidence suggests that they play an essential role in the pathogenesis of human diseases, especially cancer. miR-125b, which is the mammalian orthologue of the first discovered miRNA lin-4 in Caenorhabditis elegans, is one of the most important miRNAs that regulate various physiological and pathological processes. The role of miR-125b in many types of cancer has been well established, and so here we review the current knowledge of how miR-125b is deregulated in different types of cancer; its oncogenic and/or tumour-suppressive roles in tumourigenesis and cancer progression; and its regulation with regard to treatment response, all of which are underlined in multiple studies. The emerging information that elucidates the essential functions of miR-125b might help support its potentiality as a diagnostic and prognostic biomarker as well as an effective therapeutic tool against cancer.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Poh Ying Theng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
7
|
Khalife H, Skafi N, Fayyad-Kazan M, Badran B. MicroRNAs in breast cancer: New maestros defining the melody. Cancer Genet 2020; 246-247:18-40. [PMID: 32805688 DOI: 10.1016/j.cancergen.2020.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs, short non-coding single-stranded RNAs, are important regulators and gatekeepers of the coding genes in the human genome. MicroRNAs are highly conserved among species and expressed in different tissues and cell types. They are involved in almost all the biological processes as apoptosis, proliferation, cell cycle arrest and differentiation. Playing all these roles, it is not surprising that the deregulation of the microRNA profile causes a number of diseases including cancer. Breast cancer, the most commonly diagnosed malignancy in women, accounts for the highest cancer-related deaths worldwide. Different microRNAs were shown to be up or down regulated in breast cancer. MicroRNAs can function as oncogenes or tumor suppressors according to their targets. In this review, the most common microRNAs implicated in breast cancer are fully illustrated with their targets. Besides, the review highlights the effect of exosomal microRNA on breast cancer and the effect of microRNAs on drug and therapies resistance as well as the miRNA-based therapeutic strategies used until today.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Najwa Skafi
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
8
|
Matuszyk J, Klopotowska D. miR‐125b lowers sensitivity to apoptosis following mitotic arrest: Implications for breast cancer therapy. J Cell Physiol 2020; 235:6335-6344. [DOI: 10.1002/jcp.29610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences 12 R. Weigla Street 53‐114 Wroclaw Poland
| | - Dagmara Klopotowska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences 12 R. Weigla Street 53‐114 Wroclaw Poland
| |
Collapse
|
9
|
Prabhu KS, Raza A, Karedath T, Raza SS, Fathima H, Ahmed EI, Kuttikrishnan S, Therachiyil L, Kulinski M, Dermime S, Junejo K, Steinhoff M, Uddin S. Non-Coding RNAs as Regulators and Markers for Targeting of Breast Cancer and Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12020351. [PMID: 32033146 PMCID: PMC7072613 DOI: 10.3390/cancers12020351] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is regarded as a heterogeneous and complicated disease that remains the prime focus in the domain of public health concern. Next-generation sequencing technologies provided a new perspective dimension to non-coding RNAs, which were initially considered to be transcriptional noise or a product generated from erroneous transcription. Even though understanding of biological and molecular functions of noncoding RNA remains enigmatic, researchers have established the pivotal role of these RNAs in governing a plethora of biological phenomena that includes cancer-associated cellular processes such as proliferation, invasion, migration, apoptosis, and stemness. In addition to this, the transmission of microRNAs and long non-coding RNAs was identified as a source of communication to breast cancer cells either locally or systemically. The present review provides in-depth information with an aim at discovering the fundamental potential of non-coding RNAs, by providing knowledge of biogenesis and functional roles of micro RNA and long non-coding RNAs in breast cancer and breast cancer stem cells, as either oncogenic drivers or tumor suppressors. Furthermore, non-coding RNAs and their potential role as diagnostic and therapeutic moieties have also been summarized.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Correspondence: ; Tel.: +974-4439-0966
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | | | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India;
| | - Hamna Fathima
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar; (A.R.); (S.D.)
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology, Weill Cornell Medicine, Qatar Foundation, Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (H.F.); (E.I.A.); (S.K.); (L.T.); (M.K.); (M.S.); (S.U.)
| |
Collapse
|
10
|
Clinical Theragnostic Relationship between Drug-Resistance Specific miRNA Expressions, Chemotherapeutic Resistance, and Sensitivity in Breast Cancer: A Systematic Review and Meta-Analysis. Cells 2019; 8:cells8101250. [PMID: 31615089 PMCID: PMC6830093 DOI: 10.3390/cells8101250] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
Awareness of breast cancer has been increasing due to early detection, but the advanced disease has limited treatment options. There has been growing evidence on the role of miRNAs involved in regulating the resistance in several cancers. We performed a comprehensive systematic review and meta-analysis on the role of miRNAs in influencing the chemoresistance and sensitivity of breast cancer. A bibliographic search was performed in PubMed and Science Direct based on the search strategy, and studies published until December 2018 were retrieved. The eligible studies were included based on the selection criteria, and a detailed systematic review and meta-analysis were performed based on PRISMA guidelines. A random-effects model was utilised to evaluate the combined effect size of the obtained hazard ratio and 95% confidence intervals from the eligible studies. Publication bias was assessed with Cochran’s Q test, I2 statistic, Orwin and Classic fail-safe N test, Begg and Mazumdar rank correlation test, Duval and Tweedie trim and fill calculation and the Egger’s bias indicator. A total of 4584 potential studies were screened. Of these, 85 articles were eligible for our systematic review and meta-analysis. In the 85 studies, 188 different miRNAs were studied, of which 96 were upregulated, 87 were downregulated and 5 were not involved in regulation. Overall, 24 drugs were used for treatment, with doxorubicin being prominently reported in 15 studies followed by Paclitaxel in 11 studies, and 5 drugs were used in combinations. We found only two significant HR values from the studies (miR-125b and miR-4443) and our meta-analysis results yielded a combined HR value of 0.748 with a 95% confidence interval of 0.508–1.100; p-value of 0.140. In conclusion, our results suggest there are different miRNAs involved in the regulation of chemoresistance through diverse drug genetic targets. These biomarkers play a crucial role in guiding the effective diagnostic and prognostic efficiency of breast cancer. The screening of miRNAs as a theragnostic biomarker must be brought into regular practice for all diseases. We anticipate that our study serves as a reference in framing future studies and clinical trials for utilising miRNAs and their respective drug targets.
Collapse
|
11
|
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol 2019; 235:790-803. [PMID: 31286518 DOI: 10.1002/jcp.29044] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jafar Karami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourramezan
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
12
|
Yang W, Yang X, Wang X, Gu J, Zhou D, Wang Y, Yin B, Guo J, Zhou M. Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR-7 sponge to down-regulate REGγ. J Cell Mol Med 2019; 23:4921-4932. [PMID: 31245927 PMCID: PMC6652952 DOI: 10.1111/jcmm.14305] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/10/2018] [Accepted: 03/25/2019] [Indexed: 12/18/2022] Open
Abstract
In our study, we aimed to investigate the role of CDR1as during competitive inhibition of miR‐7 in the regulation of cisplatin chemosensitivity in breast cancer via regulating REGγ. RT‐qPCR was applied to detect the expression of CDR1as and miR‐7 in breast cancer tissues, breast cancer cell lines and corresponding drug‐resistant cell lines. The correlation between CDR1as and miR‐7 and between miR‐7 and REGγ was evaluated. MCF‐7‐R and MDA‐MB‐231‐R cells were selected followed by transfection of a series of mimics, inhibitors or siRNA. The effect of CDR1as on the half maximal inhibitor concentration (IC50), cisplatin sensitivity and cell apoptosis was also analysed. Furthermore, a subcutaneous xenograft nude mouse model was established to further confirm the effect of CDR1as on the chemosensitivity of breast cancer to cisplatin in vivo. Immunohistochemical staining was conducted to test the Ki‐67 expression in nude mice. A positive correlation was found between the drug resistance and CDR1as expression in breast cancer. CDR1as could increase the resistance of breast cancer cells to cisplatin. miR‐7 expression was low, while REGγ was highly expressed in MCF‐7‐R and MDA‐MB‐231‐R cells. CDR1as competitively inhibited miR‐7 and up‐regulated REGγ. Overexpression of miR‐7 could reverse the enhanced sensitivity of silenced CDR1as to drug‐resistant breast cancer cells. Additionally, in vivo experiments demonstrated that CDR1as mediated breast cancer occurrence and its sensitivity to cisplatin. Silencing CDR1as decreased Ki‐67 expression. Silencing CDR1as may inhibit the expression of REGγ by removing the competitive inhibitory effect on miR‐7 and thus enhancing the sensitivity of drug‐resistant breast cancer cells.
Collapse
Affiliation(s)
- Wei Yang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Xiaojuan Yang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Xuedong Wang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Juan Gu
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Daoping Zhou
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Oncology, The Second People's Hospital of Anhui Province, Hefei, China
| | - Yueping Wang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Oncology, The Second People's Hospital of Anhui Province, Hefei, China.,Department of Biology, College of Arts & Science, Massachusetts University, Boston, MA
| | - Bin Yin
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Jianmin Guo
- Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Guangdong Lewwin Pharmaceutical Research Institute Co. Ltd, Guangzhou, China
| | - Ming Zhou
- Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
13
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
14
|
Kim C, Go EJ, Kim A. Recurrence prediction using microRNA expression in hormone receptor positive breast cancer during tamoxifen treatment. Biomarkers 2018; 23:804-811. [PMID: 30010434 DOI: 10.1080/1354750x.2018.1499131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE To identify miRNAs associated with distant recurrence during tamoxifen treatment and build a recurrence prediction model. MATERIALS AND METHODS We measured the expression of five miRNAs (miR-134, miR-125b-5P, miRNA-30a, miR-10a-5p and miR-222). A total of 176 tumour tissues from 176 patients who had hormone receptor positive breast cancer with tamoxifen treatment were used to measure miRNA expression using quantitative real-time PCR (qRT-PCR). RESULTS The five miRNAs were all up-regulated in distant recurrence cases within 5 years after surgery and during tamoxifen treatment. Kaplan-Meier survival analyses based on expression cut-offs determined by receiver characteristics curves (ROC) showed that high expression of miR-134, miR-125b-5P, miRNA-30a, miR-10a-5p and miR-222 were significantly (log-rank p-value =0.006, p-value <0.0001, p-value <0.0001, p-value <0.0001 and p-value <0.0001, respectively) associated with short relapse-free time. Our results were used to build a combined 3 miRNAs expression model. It could be used to categorize high-risk subset of patients with short relapse-free survival (AUC =0.891, p-value <0.0001). CONCLUSIONS Distant recurrence during tamoxifen treatment of hormone positive breast cancer might be affected by tamoxifen resistance related miRNAs. Such distant recurrence can be predicted using miRNA measurement.
Collapse
Affiliation(s)
- Chungyeul Kim
- a Department of Pathology , College of Medicine, Korea University , Seoul , Korea
| | - Eun Jin Go
- a Department of Pathology , College of Medicine, Korea University , Seoul , Korea
| | - Aeree Kim
- a Department of Pathology , College of Medicine, Korea University , Seoul , Korea
| |
Collapse
|
15
|
Mehta P, Novak C, Raghavan S, Ward M, Mehta G. Self-Renewal and CSCs In Vitro Enrichment: Growth as Floating Spheres. Methods Mol Biol 2018; 1692:61-75. [PMID: 28986887 DOI: 10.1007/978-1-4939-7401-6_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSC) are a vital component to the progression and reoccurrence of cancers, making them a primary target of study for both fundamental understanding of cancer biology and the development of effective and targeted treatments. CSCs reside in a complex 3D microenvironment, and the 3D spheroids are an indispensable tool in tumor biology due to their 3D structure and replication of the tumor microenvironment. Within this chapter the methodology for CSC isolation, suspension culture in hanging drop model, and characterization assays for CSC are described. First, the methodology for identifying and isolating CSCs from patient tumors, ascites, or cancer cell lines is described through the use of FACS analysis. Next, a detailed description of 3D hanging drop model for generating CSC spheroids is provided, followed by maintenance and monitoring techniques for extended 3D culture. Analysis methods are described for the quantification of CSC spheroid proliferation and viability tracking, throughout culture by on-plate alamarBlue fluorescence. Additional viability assays are described utilizing confocal microscopy with Live/Dead Viability/Cytotoxicity Kit. The characterization of CSCs populations within spheroids is described through FACS analysis. Further, an immunohistochemistry procedure is described for cell-cell and cell-matrix interaction assessment. Finally, several notes and tips for successful experiments with 3D CSC spheroids on the hanging drop model are provided. These methods are not only applicable to CSCs within a variety of tumor cell types, for not only understanding the fundamental tumor biology, but also for drug screening and development of preclinical chemotherapeutic strategies.
Collapse
Affiliation(s)
- Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2800, USA
| | - Caymen Novak
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109-2800, USA
| | - Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2800, USA
| | - Maria Ward
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2800, USA
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-2800, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109-2800, USA.
- Department of Macromolecular Science and Engineering, University of Michigan, North Campus Research Complex (NCRC), 2800 Plymouth Road, Building 28, Room 3044W, Ann Arbor, 48109-2800, MI, USA.
| |
Collapse
|
16
|
Li HY, Liang JL, Kuo YL, Lee HH, Calkins MJ, Chang HT, Lin FC, Chen YC, Hsu TI, Hsiao M, Ger LP, Lu PJ. miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Res 2017; 19:133. [PMID: 29258605 PMCID: PMC5738224 DOI: 10.1186/s13058-017-0918-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) lacks both early detection biomarkers and viable targeted therapeutics. Moreover, chemotherapy only produces 20–30% pathologic complete response. Because miRNAs are frequently dysregulated in breast cancer and have broad tissue effects, individual or combinations of circulating miRNAs may serve as ideal diagnostic, predictive or prognostic biomarkers, as well as therapeutic targets. Understanding the role and mechanism of dysregulated miRNAs in TNBC may help to develop novel diagnostic and prognostic strategy for TNBC patients. Methods The miRNA array profiles of 1299 breast cancer patients were collected from the Metabric database and subjected to analysis of the altered miRNAs between TNBC and non-TNBC. In Student’s t-test and Kaplan-Meier analysis, four upregulated miRNAs correlated with poor survival in TNBC but not in non-TNBC. Four miRNAs were manipulated in multiple cell lines to investigate their functional role in carcinogenesis. From these results, we studied miR-105 and miR-93-3p in greater detail. The level of miR-105 and miR-93-3p were evaluated in 25 breast cancer tumor tissues. In addition, the diagnostic utility of circulating miR-105 and miR-93-3p were examined in 12 normal and 118 breast cancer plasma samples by ROC curve construction. Results miR-105 and miR-93-3p were upregulated and correlated with poor survival in TNBC patients. Both miR-105 and miR-93-3p were found to activate Wnt/β-catenin signaling by downregulation of SFPR1. By this action, stemness, chemoresistance, and metastasis were promoted. Importantly, the combination of circulating miR-105/93-3p may serve as a powerful biomarker for TNBC, even in early-stage disease. Conclusions miR-105/93-3p activates Wnt/β-catenin signaling by downregulating SFRP1 and thereby promotes stemness, chemoresistance, and metastasis in TNBC cells. Most importantly, combined circulating miR-105/93-3p levels represent a prime candidate for development into a diagnostic biomarker for both early- and late-stage TNBC. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0918-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao-Yi Li
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Lin Liang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of General Surgery, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Yao-Lung Kuo
- Department of General Surgery, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Hsien Lee
- Department of General Surgery, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Forn-Chia Lin
- Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yu-Chia Chen
- Division of General Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tai-I Hsu
- Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Orthopedics, E-DA Hospital, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Clinical Medicine Research, National Cheng Kung University Hospital, Tainan, Taiwan. .,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Fan X, Chen W, Fu Z, Zeng L, Yin Y, Yuan H. MicroRNAs, a subpopulation of regulators, are involved in breast cancer progression through regulating breast cancer stem cells. Oncol Lett 2017; 14:5069-5076. [PMID: 29142594 DOI: 10.3892/ol.2017.6867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs; also known as tumor-initiating cells) are essential effectors of tumor progression due to their self-renewal capacity, differentiation potential, tumorigenic ability and resistance to chemotherapy, all of which contribute to cancer relapse, metastasis and a poor prognosis. Breast cancer stem cells (BCSCs) have been identified to be involved in the processes of BC initiation, growth and recurrence. MicroRNAs (miRNAs) are a class of non-coding small RNAs of 19-23 nucleotides in length that regulate gene expression at the post-transcriptional level through various mechanisms, and serve critical roles in cancer progression. miRNAs have been demonstrated to elicit effects on BCSCs characteristics via the targeting of oncogenes or tumor suppressor genes. The present study focused on the effect of miRNAs on BCSC, including BCSC formation, self-renewal and differentiation, by which miRNAs may inhibit BCSC invasion and metastasis, modulate clonogenicity and tumorigenicity of BCSCs as well as regulate chemotherapy resistance to BC. Through an improved understanding of the association between BCSCs and miRNAs, a novel and safer therapeutic target for BC may be identified.
Collapse
Affiliation(s)
- Xuemei Fan
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Lihua Zeng
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Yongmei Yin
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongyan Yuan
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
18
|
The “good-cop bad-cop” TGF-beta role in breast cancer modulated by non-coding RNAs. Biochim Biophys Acta Gen Subj 2017; 1861:1661-1675. [DOI: 10.1016/j.bbagen.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
|
19
|
Liu B, Su F, Chen M, Li Y, Qi X, Xiao J, Li X, Liu X, Liang W, Zhang Y, Zhang J. Serum miR-21 and miR-125b as markers predicting neoadjuvant chemotherapy response and prognosis in stage II/III breast cancer. Hum Pathol 2017; 64:44-52. [PMID: 28412211 DOI: 10.1016/j.humpath.2017.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/12/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
The predictive value of serum miRNAs (ser-miRNA) for the response to neoadjuvant chemotherapy (NCT) and the prognosis of breast cancer patients were investigated in the current study. The study included 118 stage II/III breast cancer patients and 30 healthy adult women. Peripheral blood was drawn from participants before the start (baseline [BL]), at the end of the second cycle (first evaluation during NCT [FEN]), and at the end of NCT (second evaluation during NCT [SEN]). The expression of ser-miRNAs was examined by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and their association with chemotherapy response and prognosis was analyzed. MiR-19a, miR-21, miR-125b, miR-155, miR-205, and miR-373 were significantly up-regulated in the serum of breast cancer patients at BL, miR-451 was significantly down-regulated, and miR-122 was unchanged compared with the levels in healthy women. The expression of ser-miR-125b and the changes of ser-miR-21 expression during NCT were associated with chemotherapy response and disease-free survival (DFS). In chemotherapy responders, ser-miR-125b expression was lower than that of non-responders at BL, FEN, and SEN, and ser-miR-21 levels decreased from BL to FEN and from BL to SEN. Survival analysis showed that patients with lower ser-miR-125b expression at BL, FEN, and SEN had favorable DFS, and those with decreased ser-miR-21 expression from BL to FEN and from BL to SEN had better DFS. In conclusion, ser-miR-21 and ser-miR-125b were identified as novel, noninvasive predictive markers for NCT response and prognosis in breast cancer.
Collapse
Affiliation(s)
- Baoquan Liu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Mingwei Chen
- Department of Anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Yue Li
- Department of General Surgery, The Second Clinical Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Xiuying Qi
- Department of Anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Jianbing Xiao
- Department of Anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Xuemei Li
- Department of Anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Xiangchen Liu
- Department of General Surgery, The Second Clinical Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Wenlong Liang
- Department of General Surgery, The Second Clinical Hospital, Harbin Medical University, Harbin, 150081, PR China
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, 150081, PR China.
| | - Jianguo Zhang
- Department of General Surgery, The Second Clinical Hospital, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
20
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
21
|
Yuan TZ, Zhang HH, Lin XL, Yu JX, Yang QX, Liang Y, Deng J, Huang LJ, Zhang XP. microRNA-125b reverses the multidrug resistance of nasopharyngeal carcinoma cells via targeting of Bcl-2. Mol Med Rep 2017; 15:2223-2228. [PMID: 28260044 DOI: 10.3892/mmr.2017.6233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) is a major clinical obstacle in the successful treatment of patients with metastatic nasopharyngeal carcinoma (NPC). Results from previous studies suggest that microRNAs (miRNA) may be involved in promoting MDR in multiple cancer types. However, the role of miR‑125b in modulating the MDR of NPC is elusive. In the present study, miR‑125b expression in cisplatin (DDP) ‑resistant CNE2 cells (CNE2/DDP) was compared with parental counterparts, using reverse transcription‑quantitative polymerase chain reaction. A >3‑fold reduction in miR‑125b expression levels was observed in CNE2/DDP cells compared with parental CNE2 cells. Ectopic expression of miR‑125b by transfecting CNE2/DDP cells with miR-125b mimics, increased DDP‑induced cytotoxicity, apoptosis and chemosensitivity. By contrast, suppression of miR-125b by transfecting CNE2 cells with miR‑125b inhibitors, reduced DDP‑induced cytotoxicity and apoptosis, and facilitated cisplatin resistance. The results suggest that miR‑125b may regulate the sensitivity of NPC cells to DDP by modulating the expression levels of antiapoptotic factor B-cell CLL/lymphoma 2. Collectively, the results of the present study highlight miR‑125b as a potential therapeutic target for reversing MDR in NPC.
Collapse
Affiliation(s)
- Tai-Ze Yuan
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Huan-Huan Zhang
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiao-Ling Lin
- Department of Gynecology, Cancer Center of Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jin-Xiu Yu
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Qiu-Xiang Yang
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yin Liang
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jin Deng
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Lai-Ji Huang
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiu-Ping Zhang
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
22
|
Luo Y, Wang X, Niu W, Wang H, Wen Q, Fan S, Zhao R, Li Z, Xiong W, Peng S, Zeng Z, Li X, Li G, Tan M, Zhou M. Elevated microRNA-125b levels predict a worse prognosis in HER2-positive breast cancer patients. Oncol Lett 2016; 13:867-874. [PMID: 28356971 DOI: 10.3892/ol.2016.5482] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/07/2016] [Indexed: 12/15/2022] Open
Abstract
Breast cancer, the second most common cancer worldwide, is the leading cause of cancer-associated mortality in women, accounting for ~15% of all cancer-associated mortalities in women. The development, local invasion and metastasis of breast cancer are associated with the dysregulation and mutation of numerous genes and epigenetic mechanisms, including coding RNA and non-coding RNA, such as microRNAs (miRs/miRNAs). Previous studies have shown a dual-faced role of miR-125b in breast cancer. In the present study, a total of 221 paraffin-embedded breast cancer and 49 paraffin-embedded non-cancerous breast tissue samples were collected. In situ hybridization was used to analyze the expression of miR-125b in the breast cancer tissues. Spearman's rank correlation analysis was used to analyze the expression correlation between miR-125b and human epidermal growth factor 2 (HER2). The overall survival estimates over time were calculated using the Kaplan-Meier method with log-rank test. It was found that miR-125b expression was significantly increased in the breast cancer tissues compared with that in the non-cancerous tissues, and high miR-125b expression indicated a poor prognosis in the breast cancer patients. In addition, miR-125b expression was positively correlated with HER2, but not with progesterone receptor and estrogen receptor. Notably, high miR-125b expression was significantly correlated with tumor size and Tumor-Node-Metastasis stage in the HER2-positive breast cancer patients, along with a poor prognosis. The present study provides clinical data to confirm the oncogenic potential of miR-125b, particularly in HER2-positive human breast cancer. Thus, identification of miR-125b may be a potential molecular biomarker for the prediction of clinical outcomes in breast cancer patients, particularly HER2-positive cases that will receive paclitaxel-based neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Yanwei Luo
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China; Department of Transfusion, The Third Xiang-Ya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xinye Wang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Weihong Niu
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Heran Wang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Songqing Fan
- Department of Pathology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ran Zhao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Zheng Li
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Wei Xiong
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Shuping Peng
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Zhaoyang Zeng
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Xiaoling Li
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ming Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
23
|
Pan Y, Zhang J, Fu H, Shen L. miR-144 functions as a tumor suppressor in breast cancer through inhibiting ZEB1/2-mediated epithelial mesenchymal transition process. Onco Targets Ther 2016; 9:6247-6255. [PMID: 27785072 PMCID: PMC5067005 DOI: 10.2147/ott.s103650] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Local invasion, metastasis, and chemotherapy resistance are the obstacles for treatment of breast cancer. In this study, we aim to investigate the role of miR-144 in breast cancer. We demonstrate that the expression of miR-144 is downregulated in breast cancer and cell lines, and lower miR-144 expression is associated with poor differentiation, higher clinical stage, and lymph node metastasis in patients with breast cancer. The rescue of miR-144 expression is able to inhibit the cell proliferation and the ability of cell migration and invasion. In addition, we show that miR-144 can directly target at 3′-untranslation region of zinc finger E-box-binding homeobox 1 and 2, that is, ZEB1 and ZEB2, and regulate their expression at transcriptional and translational levels. Moreover, we also demonstrate that ectopic expression of miR-144 can inhibit the process of epithelial mesenchymal transition in MCF-7 and MDA-MB-231 cells. Thus, we here demonstrate that miR-144 functions as a tumor suppressor in breast cancer at least partly through inhibiting ZEB1/2-mediated epithelial mesenchymal transition process. Our findings indicate that the miR-144-ZEB1/2 signaling could represent a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Yuliang Pan
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Huiqun Fu
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Liangfang Shen
- Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
24
|
Hong L, Pan F, Jiang H, Zhang L, Liu Y, Cai C, Hua C, Luo X, Sun J, Chen Z. miR-125b inhibited epithelial-mesenchymal transition of triple-negative breast cancer by targeting MAP2K7. Onco Targets Ther 2016; 9:2639-48. [PMID: 27226726 PMCID: PMC4863692 DOI: 10.2147/ott.s102713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in diverse biological processes and are emerging as key regulators of tumorigenesis and tumor progression. Among the differentially expressed miRNAs in breast cancer, miR-125b was revealed to be deregulated and associated with poor prognosis and chemoresistance in triple-negative breast cancer (TNBC), but the mechanism is still unknown. In our study, we showed downregulated expression of miR-125b in TNBC tissues and decreased migration and invasion in miR-125b-expressing Hs578T cells. MAP2K7 was then detected to be a novel target of miR-125b, and downregulation of MAP2K7 by miR-125b was similar to transient knockdown of MAP2K7 which hindered epithelial–mesenchymal transition (EMT) of Hs578T cells. Upregulation of MAP2K7 in miR-125b-overexpressing Hs578T cells partly rescued the migration and invasion suppression of miR-125b. Furthermore, MAP2K7 was overexpressed in TNBC samples compared with normal tissues and negatively correlated with miR-125b expression. In light of these findings, miR-125b emerged as a tumor suppressor in TNBC by targeting MAP2K7 to inhibit EMT.
Collapse
Affiliation(s)
- Liquan Hong
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Feng Pan
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huifen Jiang
- Zhejiang Provincial Tumor Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lahong Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuhua Liu
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chengsong Cai
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chunzhen Hua
- Zhejiang Provincial Children's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xian Luo
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinhua Sun
- Technology Department, Hangzhou Joingenome Diagnostics, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhaojun Chen
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
25
|
Yang Q, Wang Y, Lu X, Zhao Z, Zhu L, Chen S, Wu Q, Chen C, Wang Z. MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget 2016; 6:3268-79. [PMID: 25605244 PMCID: PMC4413652 DOI: 10.18632/oncotarget.3065] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/14/2014] [Indexed: 01/09/2023] Open
Abstract
Emerging evidence has demonstrated that microRNAs (miRNA) play a critical role in chemotherapy-induced epithelial-mesenchymal transition (EMT) in breast cancer. However, the underlying mechanism of chemotherapy-mediated EMT has not been fully understood. To address this concern, we explored the role of miR-125b in regulation of EMT in stable paclitaxel-resistant (PR) breast cancer cells, namely MCF-7 PR and SKBR3 PR, which have displayed mesenchymal features. Our results illustrated that miR-125b was significantly downregulated in PR cells. Moreover, ectopic expression of miR-125b by its mimics reversed the phenotype of EMT in PR cells. Furthermore, we found that miR-125b governed PR-mediate EMT partly due to governing its target Sema4C. More importantly, overexpression of miR-125b or depletion of Sema4C sensitized PR cells to paclitaxel. These findings suggest that up-regulation of miR-125b or targeting Sema4C could serve as novel approaches to reverse chemotherapy resistance in breast cancers.
Collapse
Affiliation(s)
- Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, China
| | - Yangyang Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui, China
| | - Xiaohui Lu
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui, China
| | - Zunlan Zhao
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui, China
| | - Lihua Zhu
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui, China
| | - Sulian Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, China
| | - Zhiwei Wang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Tang XY, Zheng W, Ding M, Guo KJ, Yuan F, Feng H, Deng B, Sun W, Hou Y, Gao L. miR-125b acts as a tumor suppressor in chondrosarcoma cells by the sensitization to doxorubicin through direct targeting the ErbB2-regulated glucose metabolism. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:571-83. [PMID: 26966351 PMCID: PMC4771406 DOI: 10.2147/dddt.s90530] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chondrosarcoma is the second most common type of primary bone malignancy in the United States after osteosarcoma. Surgical resections of these tumors are the only effective treatment to chondrosarcoma patients due to their resistance to conventional chemo- and radiotherapy. In this study, miR-125b was found to perform its tumor-suppressor function to inhibit glucose metabolism via the direct targeting of oncogene, ErbB2. We report miR-125b was downregulated in both chondrosarcoma patient samples and cell lines. The total 20 Asian chondrosarcoma patients showed significantly downregulated miR-125b expression compared with normal tissues. Meanwhile, miR-125 was downregulated in chondrosarcoma cells and doxorubicin resistant cells. Overexpression of miR-125 enhanced the sensitivity of both parental and doxorubicin resistant cells to doxorubicin through direct targeting on the ErbB2-mediated upregulation of glycolysis in chondrosarcoma cells. Moreover, restoration of the expression of ErbB2 and glucose metabolic enzymes in miR-125 pretransfected cells recovered the susceptibility to doxorubicin. Our study will provide a novel aspect on the overcoming chemoresistance in human chondrosarcoma cells and may help in the development of therapeutic strategies for the treatments of patients.
Collapse
Affiliation(s)
- Xian-ye Tang
- Department of Orthopedic, The First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China; Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Wei Zheng
- Department of Orthopedic, The First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China; Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Min Ding
- Department of Emergency Trauma Surgery, East Hospital Affiliated to Tongji University
| | - Kai-jin Guo
- Department of Orthopedic, The First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China; Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Feng Yuan
- Department of Orthopedic, The First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hu Feng
- Department of Orthopedic, The First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bin Deng
- Department of Orthopedic, The First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Sun
- Department of Orthopedic, The First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Hou
- Department of Orthopedic, Changzheng Hospital, Shanghai, People's Republic of China
| | - Lu Gao
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, People's Republic of China; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Ning MS, Andl T. Concise review: custodians of the transcriptome: how microRNAs guard stemness in squamous epithelia. Stem Cells 2016; 33:1047-54. [PMID: 25524325 DOI: 10.1002/stem.1922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
At the core of every dynamic epithelium resides a population of carefully regulated stem cells ensuring its maintenance and balance. The complex mammalian epidermis is no exception to this rule. The last decade has delivered a wealth of knowledge regarding the biology of adult stem cells, but questions still remain regarding the intricate details of their function and maintenance. To help address these gaps, we turn to the small, single-stranded RNA molecules known as microRNAs. Since their discovery, microRNAs have provided us with novel insights and ground-breaking impulses to enhance our understanding of the biological sciences. Due to their unique role in post-transcriptional regulation, microRNAs are essential to cutaneous biology as well as the epidermal stem cell. By serving as buffers to balance between epithelial stemness, proliferation, and differentiation, microRNAs play essential roles in the maintenance of cutaneous stem cells and their transition out of the stem cell compartment. Following an updated overview of microRNA biology, we summarize the current knowledge of the role of microRNAs in cutaneous stem cells, focusing on three major players that have dominated the recent literature: miR-205, miR-203, and miR-125b. We then review clinical applications, discussing the potential of microRNAs as therapeutic targets in regenerative and oncological stem cell-based medicine.
Collapse
Affiliation(s)
- Matthew S Ning
- Division of Dermatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
28
|
Morphine promotes cancer stem cell properties, contributing to chemoresistance in breast cancer. Oncotarget 2016; 6:3963-76. [PMID: 25686831 PMCID: PMC4414166 DOI: 10.18632/oncotarget.2894] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023] Open
Abstract
Morphine is an opioid analgesic drug commonly used for pain relief in cancer patients. Here, we report that morphine enhances the mammosphere forming capacity and increases the expression of stemness-related transcription factors Oct4, Sox2 and Nanog. Treatment with morphine leads to enrichment of a side population fraction in MCF-7 cells and the CD44+/CD24−/low population in BT549 cells. Consistently, morphine activates Wnt/β-catenin signaling to induce epithelial to mesenchymal transition and promotes metastasis. Moreover, morphine decreases the sensitivity of traditional anti-cancer drugs in breast cancer cells. Nalmefene, an antagonist of morphine, reverses morphine-induced cancer stem cell properties and chemoresistance in breast cancer. In addition, nalmefene abolishes morphine enhancing tumorigenesis in a NOD/SCID mouse model. In conclusion, our findings demonstrate that morphine contributes to chemoresistance via expanding the population of cancer stem cells and promotes tumor growth, thereby revealing a novel role of morphine and providing some new guides in clinical use of morphine.
Collapse
|
29
|
Podolski-Renić A, Milošević Z, Dinić J, Stanković T, Banković J, Pešić M. Mutual regulation and targeting of multidrug resistance and cancer stem phenotype. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00391e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeting stemness mechanisms leads to the suppression of ABC transporter activity and elimination of CSCs.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Zorica Milošević
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Jelena Dinić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Tijana Stanković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Jasna Banković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| |
Collapse
|
30
|
Nandy SB, Gangwani L, Nahleh Z, Subramani R, Arumugam A, de la Rosa JM, Lakshmanaswamy R. Recurrence and metastasis of breast cancer is influenced by ovarian hormone's effect on breast cancer stem cells. Future Oncol 2015; 11:983-95. [PMID: 25760978 DOI: 10.2217/fon.14.301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) have recently attracted great interest because of their emerging role in initiation, progression and metastasis, combined with their intrinsic resistance to chemotherapy and radiation therapy. CSCs and its interaction with hormones in breast cancer are currently being investigated with the aim of uncovering the molecular mechanisms by which they evade conventional treatment regimens. In this review, we discuss recent experimental data and new perspectives in the area of steroid hormones and their cross-talk with breast CSCs. We have covered literature associated with biomarkers, hormone receptors and hormone responsive signaling pathways in breast CSC. In addition, we also discuss the role of miRNAs in hormone mediated regulation of breast CSCs.
Collapse
Affiliation(s)
- Sushmita Bose Nandy
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Shi L, Chen ZG, Wu LL, Zheng JJ, Yang JR, Chen XF, Chen ZQ, Liu CL, Chi SY, Zheng JY, Huang HX, Lin XY, Zheng F. miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev 2015; 15:10439-44. [PMID: 25556489 DOI: 10.7314/apjcp.2014.15.23.10439] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many chemotherapeutic agents have been successfully used to treat hepatocellular carcinoma (HCC); however, the development of chemoresistance in liver cancer cells usually results in a relapse and worsening of prognosis. It has been demonstrated that DNA methylation and histone modification play crucial roles in chemotherapy resistance. Currently, extensive research has shown that there is another potential mechanism of gene expression control, which is mediated through the function of short noncoding RNAs, especially for microRNAs (miRNAs), but little is known about their roles in cancer cell drug resistance. In present study, by taking advantage of miRNA effects on the resistance of human hepatocellular carcinoma cells line to cisplatin, it has been demonstrated that miR-340 were significantly downregulated whereas Nrf2 was upregulated in HepG2/ CDDP (cisplatin) cells, compared with parental HepG2 cells. Bioinformatics analysis and luciferase assays of Nrf2-3'-untranslated region-based reporter constructor indicated that Nrf2 was the direct target gene of miR- 340, miR-340 mimics suppressing Nrf2-dependent antioxidant pathway and enhancing the sensitivity of HepG2/ CDDP cells to cisplatin. Interestingly, transfection with miR-340 mimics combined with miR-340 inhibitors reactivated the Nrf2 related pathway and restored the resistance of HepG2/CDDP cells to CDDP. Collectively, the results first suggested that lower expression of miR-340 is involved in the development of CDDP resistance in hepatocellular carcinoma cell line, at least partly due to regulating Nrf2-dependent antioxidant pathway.
Collapse
Affiliation(s)
- Liang Shi
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China E-mail : ,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Maqbool R, Rashid R, Ismail R, Niaz S, Chowdri NA, Hussain MU. The carboxy-terminal domain of connexin 43 (CT-Cx43) modulates the expression of p53 by altering miR-125b expression in low-grade human breast cancers. Cell Oncol (Dordr) 2015; 38:443-51. [PMID: 26335100 DOI: 10.1007/s13402-015-0240-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Connexin 43 (Cx43) is a widely expressed gap junction protein. It can also regulate various gap-junction independent processes, including cellular proliferation. The latter regulatory functions have been attributed to its carboxy-terminal domain, CT-Cx43. CT-Cx43 has been found to be expressed independent of full-length Cx43 in various cell types. Its nuclear localization has additionally raised the possibility that it may regulate the expression of particular genes, including miRNAs, known play a role in the regulation of cellular proliferation. Here, we set out to uncover the molecular mechanism(s) underlying CT-Cx43 mediated gene (de-)regulation in human breast cancer. METHODS Western blotting and quantitative real time PCR were carried to assess the expression of CT-Cx43 and miR-125b in a panel of 60 primary human breast cancer tissues and its paired normal adjacent tissues. In addition, CT-Cx43 was exogenously expressed in the breast cancer-derived cell line MCF-7 and its effect on the expression of miR-125b and its downstream target p53 were evaluated, as well as its effect on cellular proliferation and death using MTT and LDH assays, respectively. RESULTS We found that CT-Cx43, but not full-length Cx43, was down-regulated in low grade human breast cancers. In addition, we found that the tumor suppressor protein p53 exhibited a decreased expression in the CT-Cx43 down-regulated samples. Interestingly, we found that miR-125b, a negative regulator of p53, exhibited an inverse expression relationship with CT-Cx43 in the breast cancer samples tested. This inverse relationship was confirmed by exogenous expression of CT-Cx43 in MCF-7 cells. In addition, we found that CT-Cx43 up-regulation and subsequent miR-125b down-regulation resulted in a decreased proliferation of MCF-7 cells. CONCLUSIONS Our data suggest a mechanism by which CT-Cx43 may regulate cell proliferation. Targeting of CT-Cx43 and/or miR-125b may be instrumental for therapeutic intervention in human breast cancer.
Collapse
Affiliation(s)
- Raihana Maqbool
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Rabiya Rashid
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Rehana Ismail
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Saif Niaz
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Nisar Ahmad Chowdri
- Department of General and Minimal Invasive Surgery, SKIMS, Srinagar, Soura, India
| | - Mahboob Ul Hussain
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
33
|
Huang J, Li H, Ren G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int J Oncol 2015. [PMID: 26202679 DOI: 10.3892/ijo.2015.3084] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in women worldwide. Insensitivity of tumor cells to drug therapies is an essential reason arousing such high mortality. Epithelial-mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. It is well known that EMT plays an important role in breast cancer progression. Recently, mounting evidence has demonstrated involvement of EMT in antagonizing chemotherapy in breast cancer. Here, we discuss the biological significance and clinical implications of these findings, with an emphasis on novel approaches that effectively target EMT to increase the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Jing Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
34
|
MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res 2015; 97:104-21. [DOI: 10.1016/j.phrs.2015.04.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 12/19/2022]
|
35
|
Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Semin Cancer Biol 2015; 31:16-27. [DOI: 10.1016/j.semcancer.2014.06.004] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022]
|
36
|
Sevinc ED, Egeli U, Cecener G, Tezcan G, Tunca B, Gokgoz S, Tasdelen I, Tolunay S, Evrensel T. Association of miR-1266 with Recurrence/Metastasis Potential in Estrogen Receptor Positive Breast Cancer Patients. Asian Pac J Cancer Prev 2015; 16:291-7. [DOI: 10.7314/apjcp.2015.16.1.291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Wang A, Chen L, Li C, Zhu Y. Heterogeneity in cancer stem cells. Cancer Lett 2015; 357:63-68. [DOI: 10.1016/j.canlet.2014.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023]
|
38
|
Robertson NM, Yigit MV. The role of microRNA in resistance to breast cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:823-33. [DOI: 10.1002/wrna.1248] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022]
Affiliation(s)
| | - Mehmet V. Yigit
- Department of Chemistry and RNA Institute; University at Albany, SUNY; Albany NY USA
| |
Collapse
|
39
|
Huang S, Chen L. MiR-888 regulates side population properties and cancer metastasis in breast cancer cells. Biochem Biophys Res Commun 2014; 450:1234-40. [PMID: 24845571 DOI: 10.1016/j.bbrc.2014.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022]
Abstract
Cancer stem cells (CSCs) have recently been reported to possess properties related to cancer metastasis. However, the mechanism by which microRNAs (miRNAs) regulate these properties remains unclear. This study aims to investigate a correlation between miRNAs and the side population (SP) of human breast cancer cell line MCF-7 with CSC properties. miR-888 was found in our previous study to be up-regulated in SP cells and predicted to target E-Cadherin directly, indicating a potential role in maintaining SP properties and regulating the epithelial-mesenchymal transition (EMT) and cancer metastasis. After the over-expression of miR-888 in MCF-7 cells and knock-down of its expression in SP cells, we found that miR-888 played a role in maintaining CSC-related properties. Next, miR-888 was found to regulate the EMT process by targeting related gene expression. Lastly, MCF-7 cells over-expressing miR-888 exhibited a significant reduction in their ability to adhere to the extracellular matrix and an increased potential for migration and invasion, whereas knock-down of miR-888 expression in SP cells reversed these trends. In conclusion, miR-888 maintains SP properties and regulates EMT and metastasis in MCF-7 cells, potentially by targeting E-Cadherin expression.
Collapse
Affiliation(s)
- Shengjian Huang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
40
|
Huang S, Cai M, Zheng Y, Zhou L, Wang Q, Chen L. miR-888 in MCF-7 Side Population Sphere Cells Directly Targets E-cadherin. J Genet Genomics 2014; 41:35-42. [DOI: 10.1016/j.jgg.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 12/16/2022]
|
41
|
Pope SM, Lässer C. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. J Extracell Vesicles 2013; 2:22484. [PMID: 24363837 PMCID: PMC3862870 DOI: 10.3402/jev.v2i0.22484] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Until recently thought to be of little significance unless occurring during pregnancy, Toxoplasma gondii infection of human hosts is now known to play a larger role in mental health and is a growing concern in the health care community. We sought to elucidate a possible mechanism by which Toxoplasma infection may cause some of the behavioural pathology now associated with infection. We hypothesized that exosomes may be playing a role. METHODS We utilized electron microscopy to detect the presence and size of extracellular vesicles in the supernatants of Toxoplasma-infected human foreskin fibroblasts (HFF). We then utilized microarray analysis to discern mRNA and miRNA content of the vesicles isolated from supernatants of Toxoplasma-infected (Toxo) and serum-starved (SS) HFF. RESULTS We recovered extracellular vesicles with a size consistent with exosomes that we called exosome-like vesicles (ELVs) from the supernatants of SS and Toxo cultures. The mRNA and miRNA content of these ELVs was highly regulated creating specific and unique expression profiles comparing Toxo ELVs, SS ELVs and RNA isolated from whole cell homogenates. Interestingly, among the most enriched mRNA isolated from ELVs of Toxo cells are 4 specific mRNA species that have been described in the literature as having neurologic activity: Rab-13, eukaryotic translation elongation factor 1 alpha 1, thymosin beta 4 and LLP homolog. In addition, miRNA species uniquely expressed in Toxo ELVs include miR-23b, a well-known regulator of IL-17. CONCLUSION While the production of ELVs containing mRNAs that modify behaviour are consistent with reported Toxoplasma pathology, the mechanism of enrichment and ultimate in vivo effect of these mRNA and miRNA containing ELVs remains to be investigated.
Collapse
Affiliation(s)
- Samuel M Pope
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis IN, USA
| | - Cecilia Lässer
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|