1
|
Wallace RG, Rochfort KD, Barabas P, Curtis TM, Uehara H, Ambati BK, Cummins PM. COMP-Ang1: Therapeutic potential of an engineered Angiopoietin-1 variant. Vascul Pharmacol 2021; 141:106919. [PMID: 34583025 DOI: 10.1016/j.vph.2021.106919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023]
Abstract
The Angiopoietin-1/2 system is an opportune target for therapeutic intervention in a wide range of vascular pathologies, particularly through its association with endothelium. The complex multi-domain structure of native human Angiopoietin-1 has hindered its widespread applicability as a therapeutic agent, prompting the search for alternative approaches to mimicking the Ang1:Tie2 signalling axis; a system with highly complex patterns of regulation involving multiple structurally similar molecules. An engineered variant, Cartilage Oligomeric Matrix Protein - Angiopoietin-1 (COMP-Ang1), has been demonstrated to overcome the limitations of the native molecule and activate the Tie2 pathway with several fold greater potency than Ang1, both in vitro and in vivo. The therapeutic efficacy of COMP-Ang1, at both the vascular and systemic levels, is evident from multiple studies. Beneficial impacts on skeletal muscle regeneration, wound healing and angiogenesis have been reported alongside renoprotective, anti-hypertensive and anti-inflammatory effects. COMP-Ang1 has also demonstrated synergy with other compounds to heighten bone repair, has been leveraged for potential use as a co-therapeutic for enhanced targeted cancer treatment, and has received considerable attention as an anti-leakage agent for microvascular diseases like diabetic retinopathy. This review examines the vascular Angiopoietin:Tie2 signalling mechanism, evaluates the potential therapeutic merits of engineered COMP-Ang1 in both vascular and systemic contexts, and addresses the inherent translational challenges in moving this potential therapeutic from bench-to-bedside.
Collapse
Affiliation(s)
- Robert G Wallace
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | - Keith D Rochfort
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, UK
| | - Timothy M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queens' University Belfast, Northern Ireland, UK
| | | | | | - Philip M Cummins
- School of Biotechnology, Dublin City University, Dublin, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
2
|
Carnosic acid attenuates cartilage degeneration through induction of heme oxygenase-1 in human articular chondrocytes. Eur J Pharmacol 2018; 830:1-8. [PMID: 29678719 DOI: 10.1016/j.ejphar.2018.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
Osteoarthritis (OA) is common age-associated disease, and associated with joint pain, mobility limitations and compromised overall quality of life. OA treatment is currently limited to pain management and joint arthroplasty at end stage disease. Oxidative damage to cartilage extracellular matrix and cells is an important mechanism in joint aging and OA pathogenesis. Evidence from in vitro and in vivo models of OA suggests that pharmaceuticals and natural compounds with antioxidant properties reduce expression of mediators of OA pathogenesis and OA severity in animal models. Among the signaling pathways that control cellular protective mechanisms against oxygen radical damage is heme oxygenase-1 (HO-1). We recently report HO-1 reduced OA severity in a mouse model. This led to the hypothesis that compounds that increase HO-1 expression have therapeutic potential in OA. Carnosic acid (CA), a natural diterpene with oxidant activity, is prevents cartilage degeneration though induction of HO-1. CA induced HO-1 and miR-140 expression in human articular chondrocytes, and cartilage degeneration was attenuated by CA treatment. Induced HO-1 by CA was in part associated with downregulation via miR-140 binding to 3'UTR of BTB and CNC homology 1 (BACH1). These findings suggest that CA attenuates cartilage degradation through HO-1 upregulation and has potential as a supplement for OA prevention.
Collapse
|
3
|
Zhang HL, Yue ZP, Zhang L, Yang ZQ, Geng S, Wang K, Yu HF, Guo B. Expression and regulation of Angiopoietins and their receptor Tie-2 in sika deer antler. Anim Cells Syst (Seoul) 2017; 21:177-184. [PMID: 30460067 PMCID: PMC6138322 DOI: 10.1080/19768354.2017.1317023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/11/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
The cartilage vascularization and chondrocyte survival are essential for endochondral ossification which occurs in the process of antler growth. Angiopoietins (Ang) is a family of major angiogenic growth factors and involved in regulating the vascularization. However, the expression and regulation of Angs in the antler are still unknown. The aim of this study is to localize the expression of Ang-1, Ang-2 and their receptor Tie-2 in sika deer antler using in situ hybridization and focused on analyzing the regulation of testosterone, estrogen, all-trans-retinoic acid (ATRA) and 9cRA on their expression in antler chondrocytes. The results showed that Ang-1, Ang-2 and Tie-2 were highly expressed in antler chondrocytes. Administration of testosterone to antler chondrocytes led to a notable increase in the expression of Ang-1 and Tie-2, and a reduction in the expression of Ang-2. The similar result was also observed after estrogen treatment. In contrast, ATRA and 9cRA could inhibit the expression of Ang-1 in antler chondrocytes and heighten the expression of Ang-2. Simultaneously, ATRA could downregulate the expression of Tie-2 in antler chondrocytes at 12 and 24 h, while 9cRA upregulate the expression of Tie-2 at 3 and 6 h. Collectively, Ang-1, Ang-2 and Tie-2 are expressed in antler chondrocytes and their expression can be affected by testosterone, estrogen, ATRA and 9cRA.
Collapse
Affiliation(s)
- Hong-Liang Zhang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lu Zhang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Shuang Geng
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Kai Wang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hai-Fan Yu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
4
|
Beraudi A, Bianconi E, Catalani S, Canaider S, De Pasquale D, Apostoli P, Bordini B, Stea S, Toni A, Facchin F. In vivo response of heme-oxygenase-1 to metal ions released from metal-on-metal hip prostheses. Mol Med Rep 2016; 14:474-80. [PMID: 27176599 DOI: 10.3892/mmr.2016.5245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/20/2016] [Indexed: 11/06/2022] Open
Abstract
Metal ion release and accumulation is considered to be a factor responsible for the high failure rates of metal-on-metal (MoM) hip implants. Numerous studies have associated the presence of these ions, besides other factors, including a hypoxia‑like response and changes in pH due to metal corrosion leading to the induction of the oxidative stress response. The aim of the present study was to verify whether, in patients with a MoM hip prosthesis, mRNA and protein expression of HMOX‑1 was modulated by the presence of metal ions and whether patients without prostheses exhibit a different expression pattern of this enzyme. The study was conducted on 22 matched pairs of patients with and without prostheses, for a total of 44 samples. Ion dosage was determined using inductively coupled plasma mass spectrometry equipped with dynamic cell reaction. HMOX‑1 gene expression was quantified by reverse transcription-quantitative polymerase chain reaction and HMOX‑1 protein expression was analyzed using an enzyme-linked immunosorbent assay. The results demonstrated that although there were significant differences in the metallic ion concentrations amongst the two groups of patients, there was no correlation between circulating levels of cobalt (Co) and chromium (Cr), and HMOX‑1 gene and protein expression. Additionally, there was no significant difference in the protein expression levels of HMOX‑1 between the two groups. In conclusion, it was demonstrated that circulating Co and Cr ions released by articular prosthetics do not induce an increase in HMOX‑1 mRNA and protein expression at least 3.5 years after the implant insertion. The present study suggests that involvement of HMOX‑1 may be excluded from future studies and suggests that other antioxidant enzymes, including superoxide dismutase, glutathione peroxidase and reductase should be investigated.
Collapse
Affiliation(s)
- Alina Beraudi
- Medical Technology Laboratory, Rizzoli RIT Department ‑ Research, Innovation and Technology, Rizzoli Orthopaedic Institute, I‑40136 Bologna, Italy
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, I‑40136 Bologna, Italy
| | - Simona Catalani
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, I‑25100 Brescia, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, I‑40136 Bologna, Italy
| | - Dalila De Pasquale
- Medical Technology Laboratory, Rizzoli RIT Department ‑ Research, Innovation and Technology, Rizzoli Orthopaedic Institute, I‑40136 Bologna, Italy
| | - Pietro Apostoli
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, I‑25100 Brescia, Italy
| | - Barbara Bordini
- Medical Technology Laboratory, Rizzoli RIT Department ‑ Research, Innovation and Technology, Rizzoli Orthopaedic Institute, I‑40136 Bologna, Italy
| | - Susanna Stea
- Medical Technology Laboratory, Rizzoli RIT Department ‑ Research, Innovation and Technology, Rizzoli Orthopaedic Institute, I‑40136 Bologna, Italy
| | - Aldo Toni
- Medical Technology Laboratory, Rizzoli RIT Department ‑ Research, Innovation and Technology, Rizzoli Orthopaedic Institute, I‑40136 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, I‑40136 Bologna, Italy
| |
Collapse
|
5
|
Lim SS, Kook SH, Lee JC. COMP-Ang1 enhances DNA synthesis and cell cycle progression in human periodontal ligament cells via Tie2-mediated phosphorylation of PI3K/Akt and MAPKs. Mol Cell Biochem 2016; 416:157-68. [DOI: 10.1007/s11010-016-2704-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
|
6
|
Guo H, Fang W, Chen G, Xu J, Li C, Feng Y, Li Y, Long X. Upregulation of proangiogenic factors expression in the synovium of temporomandibular joint condylar hyperplasia. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121:e65-71. [DOI: 10.1016/j.oooo.2015.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 12/30/2022]
|