1
|
Almehdi AM, Soliman SSM, El-Shorbagi ANA, Westwell AD, Hamdy R. Design, Synthesis, and Potent Anticancer Activity of Novel Indole-Based Bcl-2 Inhibitors. Int J Mol Sci 2023; 24:14656. [PMID: 37834104 PMCID: PMC10572575 DOI: 10.3390/ijms241914656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 10/15/2023] Open
Abstract
The Bcl-2 family plays a crucial role in regulating cell apoptosis, making it an attractive target for cancer therapy. In this study, a series of indole-based compounds, U1-6, were designed, synthesized, and evaluated for their anticancer activity against Bcl-2-expressing cancer cell lines. The binding affinity, safety profile, cell cycle arrest, and apoptosis effects of the compounds were tested. The designed compounds exhibited potent inhibitory activity at sub-micromolar IC50 concentrations against MCF-7, MDA-MB-231, and A549 cell lines. Notably, U2 and U3 demonstrated the highest activity, particularly against MCF-7 cells. Respectively, both U2 and U3 showed potential BCL-2 inhibition activity with IC50 values of 1.2 ± 0.02 and 11.10 ± 0.07 µM using an ELISA binding assay compared with 0.62 ± 0.01 µM for gossypol, employed as a positive control. Molecular docking analysis suggested stable interactions of compound U2 at the Bcl-2 binding site through hydrogen bonding, pi-pi stacking, and hydrophobic interactions. Furthermore, U2 demonstrated significant induction of apoptosis and cell cycle arrest at the G1/S phase. Importantly, U2 displayed a favourable safety profile on HDF human dermal normal fibroblast cells at 10-fold greater IC50 values compared with MDA-MB-231 cells. These findings underscore the therapeutic potential of compound U2 as a Bcl-2 inhibitor and provide insights into its molecular mechanisms of action.
Collapse
Affiliation(s)
- Ahmed M. Almehdi
- College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | | | - Andrew D. Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff CF10 3NB, UK
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Uthale A, Anantram A, Sulkshane P, Degani M, Teni T. Identification of bicyclic compounds that act as dual inhibitors of Bcl-2 and Mcl-1. Mol Divers 2022:10.1007/s11030-022-10494-6. [PMID: 35909144 DOI: 10.1007/s11030-022-10494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/02/2022] [Indexed: 10/16/2022]
Abstract
Elevated expression of anti-apoptotic proteins, such as Bcl-2 and Mcl-1 contributes to poor prognosis and resistance to current treatment modalities in multiple cancers. Here, we report the design, synthesis and characterization of benzimidazole chalcone and flavonoid scaffold-derived bicyclic compounds targeting both Bcl-2 and Mcl-1 by optimizing the structural differences in the binding sites of both these proteins. Initial docking screen of Bcl-2 and Mcl-1 with pro-apoptotic protein Bim revealed possible hits with optimal binding energies. All the optimized bicyclic compounds were screened for their in vitro cytotoxic activity against two oral cancer cell lines (AW8507 and AW13516) which express high levels of Bcl-2 and Mcl-1. Compound 4d from the benzimidazole chalcone series and compound 6d from the flavonoid series exhibited significant cytotoxic activity (IC50 7.12 μM and 17.18 μM, respectively) against AW13516 cell line. Time Resolved-Fluorescence Resonance Energy Transfer (TR-FRET) analysis further demonstrated that compound 4d and compound 6d could effectively inhibit the Bcl-2 and Mcl-1 proteins by displacing their BH3 binding partners. Both compounds exhibited potent activation of canonical pathway of apoptosis evident from appearance of cleaved Caspase-3 and PARP. Further, treatment of oral cancer cells with the inhibitors induced dissociation of the BH3 only protein Bim from Mcl-1 and Bak from Bcl-2 but failed to release Bax from Bcl-xL thereby confirming the nature of compounds as BH3-mimetics selectively targeting Bcl-2 and Mcl-1. Our study thus identifies bicyclic compounds as promising candidates for anti-apoptotic Bcl-2/Mcl-1 dual inhibitors with a potential for further development.
Collapse
Affiliation(s)
- Abhay Uthale
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Aarti Anantram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Prasad Sulkshane
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Tanuja Teni
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
3
|
New Bioactive Fused Triazolothiadiazoles as Bcl-2-Targeted Anticancer Agents. Int J Mol Sci 2021; 22:ijms222212272. [PMID: 34830153 PMCID: PMC8621373 DOI: 10.3390/ijms222212272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
A series of 3-(6-substituted phenyl-[1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazol-3-yl)-1H-indoles (5a–l) were designed, synthesized and evaluated for anti-apoptotic Bcl-2-inhibitory activity. Synthesis of the target compounds was readily accomplished through a reaction of acyl hydrazide (1) with carbon disulfide in the presence of alcoholic potassium hydroxide to afford the corresponding intermediate potassium thiocarbamate salt (2), which underwent cyclization reaction in the presence of excess hydrazine hydrate to the corresponding triazole thiol (3). Further cyclisation reaction with substituted benzoyl chloride derivatives in the presence of phosphorous oxychloride afforded the final 6-phenyl-indol-3-yl [1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazole compounds (5a–l). The novel series showed selective sub-micromolar IC50 growth-inhibitory activity against Bcl-2-expressing human cancer cell lines. The most potent 6-(2,4-dimethoxyphenyl) substituted analogue (5k) showed selective IC50 values of 0.31–0.7 µM against Bcl-2-expressing cell lines without inhibiting the Bcl-2-negative cell line (Jurkat). ELISA binding affinity assay (interruption of Bcl-2-Bim interaction) showed potent binding affinity for (5k) with an IC50 value of 0.32 µM. Moreover, it fulfils drug likeness criteria as a promising drug candidate.
Collapse
|
4
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
5
|
Inhibitors of anti-apoptotic Bcl-2 family proteins exhibit potent and broad-spectrum anti-mammarenavirus activity via cell cycle arrest at G0/G1 phase. J Virol 2021; 95:e0139921. [PMID: 34586865 PMCID: PMC8610586 DOI: 10.1128/jvi.01399-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Targeting host factors is a promising strategy to develop broad-spectrum antiviral drugs. Drugs targeting anti-apoptotic Bcl-2 family proteins that were originally developed as tumor suppressors have been reported to inhibit multiplication of different types of viruses. However, the mechanisms whereby Bcl-2 inhibitors exert their antiviral activity remain poorly understood. In this study, we have investigated the mechanisms by which obatoclax (OLX) and ABT-737 Bcl-2 inhibitors exhibited a potent antiviral activity against the mammarenavirus lymphocytic choriomeningitis virus (LCMV). OLX and ABT-737 potent anti-LCMV activity was not associated with their proapoptotic properties but rather with their ability to induce cell arrest at the G0/G1 phase. OLX- and ABT-737–mediated inhibition of Bcl-2 correlated with reduced expression levels of thymidine kinase 1 (TK1), cyclin A2 (CCNA2), and cyclin B1 (CCNB1) cell cycle regulators. In addition, small interfering RNA (siRNA)–mediated knockdown of TK1, CCNA2, and CCNB1 resulted in reduced levels of LCMV multiplication. The antiviral activity exerted by Bcl-2 inhibitors correlated with reduced levels of viral RNA synthesis at early times of infection. Importantly, ABT-737 exhibited moderate efficacy in a mouse model of LCMV infection, and Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS–CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals. IMPORTANCE Antiapoptotic Bcl-2 inhibitors have been shown to exert potent antiviral activities against various types of viruses via mechanisms that are currently poorly understood. This study has revealed that Bcl-2 inhibitors’ mediation of cell cycle arrest at the G0/G1 phase, rather than their proapoptotic activity, plays a critical role in blocking mammarenavirus multiplication in cultured cells. In addition, we show that Bcl-2 inhibitor ABT-737 exhibited moderate antimammarenavirus activity in vivo and that Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals.
Collapse
|
6
|
Kim YJ, Witwit H, Cubitt B, de la Torre JC. Inhibitors of anti-apoptotic Bcl-2 family proteins exhibit potent and broad-spectrum anti-mammarenavirus activity via cell cycle arrest at G0/G1 phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34426809 DOI: 10.1101/2021.08.16.456587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting host factors is a promising strategy to develop broad-spectrum antiviral drugs. Drugs targeting anti-apoptotic Bcl-2 family proteins that were originally developed as tumor suppressors have been reported to inhibit multiplication of different types of viruses. However, the mechanisms whereby Bcl-2 inhibitors exert their antiviral activity remain poorly understood. In this study, we have investigated the mechanisms by which obatoclax (OLX) and ABT-737 Bcl-2 inhibitors exhibited a potent antiviral activity against the mammarenavirus lymphocytic choriomeningitis virus (LCMV). OLX and ABT-737 potent anti-LCMV activity was not associated with their pro-apoptotic properties, but rather their ability of inducing cell arrest at G0/G1 phase. OLX and ABT-737 mediated inhibition of Bcl-2 correlated with reduced expression levels of thymidine kinase 1 (TK1), cyclin A2 (CCNA2), and cyclin B1 (CCNB1) cell cycle regulators. In addition, siRNA-mediated knock down of TK1, CCNA2, and CCNB1 resulted in reduced levels of LCMV multiplication. The antiviral activity exerted by Bcl-2 inhibitors correlated with reduced levels of viral RNA synthesis at early times of infection. Importantly, ABT-737 exhibited moderate efficacy in a mouse model of LCMV infection, and Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and SARS-CoV-2. Our results suggest that Bcl-2 inhibitors, actively being explored as anti-cancer therapeutics, might be repositioned as broad-spectrum antivirals. IMPORTANCE Anti-apoptotic Bcl-2 inhibitors have been shown to exert potent antiviral activities against various types of viruses via mechanisms that are currently poorly understood. This study has revealed that Bcl-2 inhibitors mediated cell cycle arrest at the G0/G1 phase, rather than their pro-apoptotic activity, plays a critical role in blocking mammarenavirus multiplication in cultured cells. In addition, we show that Bcl-2 inhibitor ABT-737 exhibited moderate anti-mammarenavirus activity in vivo , and that Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and SARS-CoV-2. Our results suggest that Bcl-2 inhibitors, actively being explored as anti-cancer therapeutics, might be repositioned as broad-spectrum antivirals.
Collapse
|
7
|
Nagy MI, Darwish KM, Kishk SM, Tantawy MA, Nasr AM, Qushawy M, Swidan SA, Mostafa SM, Salama I. Design, Synthesis, Anticancer Activity, and Solid Lipid Nanoparticle Formulation of Indole- and Benzimidazole-Based Compounds as Pro-Apoptotic Agents Targeting Bcl-2 Protein. Pharmaceuticals (Basel) 2021; 14:ph14020113. [PMID: 33535550 PMCID: PMC7912796 DOI: 10.3390/ph14020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer is a multifactorial disease necessitating identification of novel targets for its treatment. Inhibition of Bcl-2 for triggered pro-apoptotic signaling is considered a promising strategy for cancer treatment. Within the current work, we aimed to design and synthesize a new series of benzimidazole- and indole-based derivatives as inhibitors of Bcl-2 protein. The market pan-Bcl-2 inhibitor, obatoclax, was the lead framework compound for adopted structural modifications. The obatoclax’s pyrrolylmethine linker was replaced with straight alkylamine or carboxyhydrazine methylene linkers providing the new compounds. This strategy permitted improved structural flexibility of synthesized compounds adopting favored maneuvers for better fitting at the Bcl-2 major hydrophobic pocket. Anti-cancer activity of the synthesized compounds was further investigated through MTT-cytotoxic assay, cell cycle analysis, RT-PCR, ELISA and DNA fragmentation. Cytotoxic results showed compounds 8a, 8b and 8c with promising cytotoxicity against MDA-MB-231/breast cancer cells (IC50 = 12.69 ± 0.84 to 12.83 ± 3.50 µM), while 8a and 8c depicted noticeable activities against A549/lung adenocarcinoma cells (IC50 = 23.05 ± 1.45 and 11.63 ± 2.57 µM, respectively). The signaling Bcl-2 inhibition pathway was confirmed by molecular docking where significant docking energies and interactions with key Bcl-2 pocket residues were depicted. Moreover, the top active compound, 8b, showed significant upregulated expression levels of pro-apoptotic/anti-apoptotic of genes; Bax, Bcl-2, caspase-3, -8, and -9 through RT-PCR assay. Improving the compound’s pharmaceutical profile was undertaken by introducing 8b within drug-solid/lipid nanoparticle formulation prepared by hot melting homogenization technique and evaluated for encapsulation efficiency, particle size, and zeta potential. Significant improvement was seen at the compound’s cytotoxic activity. In conclusion, 8b is introduced as a promising anti-cancer lead candidate that worth future fine-tuned lead optimization and development studies while exploring its potentiality through in-vivo preclinical investigation.
Collapse
Affiliation(s)
- Manar I. Nagy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Safaa M. Kishk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Mohamed A. Tantawy
- National Research Center, Hormones Department, Medical Research Division, Dokki, Giza 12622, Egypt;
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt;
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Shady A. Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt;
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Samia M. Mostafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
| | - Ismail Salama
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.I.N.); (K.M.D.); (S.M.K.); (S.M.M.)
- Correspondence: ; Tel.: +20-102-225-7643
| |
Collapse
|
8
|
Wang L, Han H, Dong L, Wang Z, Qin Y. Function of p21 and its therapeutic effects in esophageal cancer. Oncol Lett 2020; 21:136. [PMID: 33552255 PMCID: PMC7798030 DOI: 10.3892/ol.2020.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the eighth most common type of cancer worldwide and ranks sixth among the causes of cancer-related mortality. Due to the high mortality rate and poor treatment efficacy for EC, millions of individuals succumb to this disease; thus, the identification of novel treatment targets is of utmost importance and urgency. In recent years, there have been advances if therapies targeting cell cycle regulators. p21 is a type of cell cycle regulator that plays a dual role in tumor cells, as it can not only regulate the cell cycle, induce apoptosis and inhibit cell proliferation, but can also protect cells from apoptosis. It has been found that p21 often exerts a tumor-suppressive effect on EC, which provides a basis for its use as a treatment target for EC. Therefore, the aim of the present study was to review the function of p21 and its potential value as a therapeutic target for EC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lin Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
9
|
Zhang S, Yu J, Sun BF, Hou GZ, Yu ZJ, Luo H. MicroRNA-92a Targets SERTAD3 and Regulates the Growth, Invasion, and Migration of Prostate Cancer Cells via the P53 Pathway. Onco Targets Ther 2020; 13:5495-5514. [PMID: 32606766 PMCID: PMC7298502 DOI: 10.2147/ott.s249168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Background The miR-17-92 cluster, consisting of six mature miRNAs including miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a, plays a key role in the tumorigenesis and development of various cancers. The dysregulation of the cluster correlates with the biological mechanism of tumor growth and metastasis in vivo. However, the relationship between miR-17-92 cluster and malignancy of prostate cancer remains unclear, and its regulatory mechanism is worth investigating for controlling the proliferation and invasion of prostate cancer. Materials and Methods The expressions of miR-17-92 cluster members were measured using real-time quantitative RT-PCR. WB and real-time quantitative RT-PCR were used to detect the expression of SERTAD3, p38, p21, p53 protein levels and transcription levels. Cell proliferation and apoptosis were evaluated using cell proliferation assay, EdU and Hoechst assay, colony formation experiment and flow cytometry analyses. Cell migration and invasion were determined via transwell assays. The TargetScan, miRDB, starBase databases and luciferase reporter assays were used to confirm the target gene of miR-92a. Results The relative expression of miR-92a was threefold higher in the metastatic PC-3 cells compared with the non-metastatic LNCaP cells. Down-regulation of miR-92a in PC-3 cells led to the inhibition of cell proliferation, migration, and invasion, while its overexpression in LNCaP cells resulted in the promotion of cell proliferation, migration, and invasion. The role of SERTAD3 in prostate cancer can be alleviated by miR-92a inhibitor. Conclusion SERTAD3 was the direct target gene of miR-92a in prostate cancer cells; inhibition of SERTAD3-dependent miR-92a alleviated the growth, invasion, and migration of prostate cancer cells by regulating the expression of the key genes of the p53 pathway, including p38, p53 and p21. These results suggested that targeting SERTAD3 by the induction of overexpression of miR-92a may be a treatment option in prostate cancer.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, People's Republic of China
| | - Bao-Fei Sun
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Gui-Zhong Hou
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China
| | - Zi-Jiang Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China
| | - Heng Luo
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People's Republic of China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, People's Republic of China
| |
Collapse
|
10
|
Opydo-Chanek M, Cichoń I, Rak A, Kołaczkowska E, Mazur L. The pan-Bcl-2 inhibitor obatoclax promotes differentiation and apoptosis of acute myeloid leukemia cells. Invest New Drugs 2020; 38:1664-1676. [PMID: 32367199 PMCID: PMC7575496 DOI: 10.1007/s10637-020-00931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
One of the key features of acute myeloid leukemia (AML) is the arrest of differentiation at the early progenitor stage of myelopoiesis. Therefore, the identification of new agents that could overcome this differentiation block and force leukemic cells to enter the apoptotic pathway is essential for the development of new treatment strategies in AML. Regarding this, herein we report the pro-differentiation activity of the pan-Bcl-2 inhibitor, obatoclax. Obatoclax promoted differentiation of human AML HL-60 cells and triggered their apoptosis in a dose- and time-dependent manner. Importantly, obatoclax-induced apoptosis was associated with leukemic cell differentiation. Moreover, decreased expression of Bcl-2 protein was observed in obatoclax-treated HL-60 cells. Furthermore, differentiation of these cells was accompanied by the loss of their proliferative capacity, as shown by G0/G1 cell cycle arrest. Taken together, these findings indicate that the anti-AML effects of obatoclax involve not only the induction of apoptosis but also differentiation of leukemic cells. Therefore, obatoclax represents a promising treatment for AML that warrants further exploration.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Iwona Cichoń
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Elżbieta Kołaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Lidia Mazur
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
11
|
Pervushin NV, Senichkin VV, Zhivotovsky B, Kopeina GS. Mcl-1 as a "barrier" in cancer treatment: Can we target it now? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:23-55. [PMID: 32247581 DOI: 10.1016/bs.ircmb.2020.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last two decades, the study of Mcl-1, an anti-apoptotic member of the Bcl-2 family, attracted researchers due to its important role in cancer cell survival and tumor development. The significance of Mcl-1 protein in resistance to chemotherapeutics makes it an attractive target in cancer therapy. Here, we discuss the diverse possibilities for indirect Mcl-1 inhibition through its downregulation, for example, via targeting for proteasomal degradation or blockage of translation and transcription. We also provide an overview of the direct blocking of protein-protein interactions with pro-apoptotic Bcl-2 family proteins, including examples of the most promising regulators of Mcl-1 and selective BH3-mimetics, which at present are under clinical evaluation. Moreover, several approaches for the co-targeting of Mcl-1 and other proteins (e.g., CDKs) are also presented. In addition, we highlight the broad spectrum of problems that accompanied the discovery and development of effective Mcl-1 inhibitors.
Collapse
Affiliation(s)
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
12
|
Jiménez-Guerrero R, Gasca J, Flores ML, Pérez-Valderrama B, Tejera-Parrado C, Medina R, Tortolero M, Romero F, Japón MA, Sáez C. Obatoclax and Paclitaxel Synergistically Induce Apoptosis and Overcome Paclitaxel Resistance in Urothelial Cancer Cells. Cancers (Basel) 2018; 10:cancers10120490. [PMID: 30563080 PMCID: PMC6316685 DOI: 10.3390/cancers10120490] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel is a treatment option for advanced or metastatic bladder cancer after the failure of first-line cisplatin and gemcitabine, although resistance limits its clinical benefits. Mcl-1 is an anti-apoptotic protein that promotes resistance to paclitaxel in different tumors. Obatoclax, a BH3 mimetic of the Bcl-2 family of proteins, antagonizes Mcl-1 and hence may reverse paclitaxel resistance in Mcl-1-overexpressing tumors. In this study, paclitaxel-sensitive 5637 and -resistant HT1197 bladder cancer cells were treated with paclitaxel, obatoclax, or combinations of both. Apoptosis, cell cycle, and autophagy were measured by Western blot, flow cytometry, and fluorescence microscopy. Moreover, Mcl-1 expression was analyzed by immunohistochemistry in bladder carcinoma tissues. Our results confirmed that paclitaxel alone induced Mcl-1 downregulation and apoptosis in 5637, but not in HT1197 cells; however, combinations of obatoclax and paclitaxel sensitized HT1197 cells to the treatment. In obatoclax-treated 5637 and obatoclax + paclitaxel-treated HT1197 cells, the blockade of the autophagic flux correlated with apoptosis and was associated with caspase-dependent cleavage of beclin-1. Obatoclax alone delayed the cell cycle in 5637, but not in HT1197 cells, whereas combinations of both retarded the cell cycle and reduced mitotic slippage. In conclusion, obatoclax sensitizes HT1197 cells to paclitaxel-induced apoptosis through the blockade of the autophagic flux and effects on the cell cycle. Furthermore, Mcl-1 is overexpressed in many invasive bladder carcinomas, and it is related to tumor progression, so Mcl-1 expression may be of predictive value in bladder cancer.
Collapse
Affiliation(s)
- Rocío Jiménez-Guerrero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | - Jessica Gasca
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | - M Luz Flores
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | | | - Cristina Tejera-Parrado
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | - Rafael Medina
- Department of Urology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain.
| | - María Tortolero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain.
| | - Francisco Romero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain.
| | - Miguel A Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
- Department of Pathology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain.
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
- Department of Pathology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain.
| |
Collapse
|
13
|
Kanbara K, Otsuki Y, Watanabe M, Yokoe S, Mori Y, Asahi M, Neo M. GABA B receptor regulates proliferation in the high-grade chondrosarcoma cell line OUMS-27 via apoptotic pathways. BMC Cancer 2018. [PMID: 29514603 PMCID: PMC5842535 DOI: 10.1186/s12885-018-4149-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-grade chondrosarcoma, which has a high incidence of local recurrence and pulmonary metastasis despite surgical resection, is associated with poor prognosis. Therefore, new and effective adjuvant therapies are urgently required for this disease. Gamma-aminobutyric acid (GABA), which acts as a neurotrophic factor during nervous system development, is related to the proliferation and migration of certain cancer cells. The GABAergic system, which is composed of GABA, the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), and GABA receptors, has an important function in nerve growth and development of neural crest. Therefore, the GABAergic system may play important functional roles in the proliferation of chondrosarcoma cells, which are derived from neural crest cells. We examined the anti-tumor effects of the GABAergic system on a chondrosarcoma cell line. METHODS We evaluated the underlying mechanisms of the anti-tumor effects of the GABAergic system, such as the involvement of different signaling pathways, apoptosis, and cell cycle arrest, in the high-grade chondrosarcoma cell line OUMS-27. In addition, we performed whole-cell patch-clamp recordings for Ca2+ currents and evaluated the changes in intracellular Ca2+ concentration via Ca2+ channels, which are related to the GABAB receptor in high-grade chondrosarcoma cells. RESULTS The GABAB receptor antagonist CGP had anti-tumor effects on high-grade chondrosarcoma cells in a dose-dependent manner. The activities of caspase 3 and caspase 9 were significantly elevated in CGP-treated cells compared to in untreated cells. The activity of caspase 8 did not differ significantly between untreated cells and CGP-treated cells. However, caspase 8 tended to be up-regulated in CGP-treated cells. The GABAB receptor antagonist exhibited anti-tumor effects at the G1/S cell cycle checkpoint and induced apoptosis via dual inhibition of the PI3/Akt/mTOR and MAPK signaling pathways. Furthermore, the changes in intracellular Ca2+ via GABAB receptor-related Ca2+ channels inhibited the proliferation of high-grade chondrosarcoma cells by inducing and modulating apoptotic pathways. CONCLUSIONS The GABAB receptor antagonist may improve the prognosis of high-grade chondrosarcoma by exerting anti-tumor effects via different signaling pathways, apoptosis, cell cycle arrest, and Ca2+ channels in high-grade chondrosarcoma cells.
Collapse
Affiliation(s)
- Kiyoto Kanbara
- Department of Orthopedics, Osaka Medical College Takatsuki, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoshinori Otsuki
- President of Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Masahito Watanabe
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Asahigaoka, Kashihara, Osaka, Japan
| | - Syunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Yoshiaki Mori
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Asahigaoka, Kashihara, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedics, Osaka Medical College Takatsuki, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
14
|
ABT-263 induces G 1/G 0-phase arrest, apoptosis and autophagy in human esophageal cancer cells in vitro. Acta Pharmacol Sin 2017; 38:1632-1641. [PMID: 28713162 DOI: 10.1038/aps.2017.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
Both the anti- and pro-apoptotic members of the Bcl-2 family are regulated by a conserved Bcl-2 homology (BH3) domain. ABT-263 (Navitoclax), a novel BH3 mimetic and orally bioavailable Bcl-2 family inhibitor with high affinity for Bcl-xL, Bcl-2 and Bcl-w has entered clinical trials for cancer treatment. But the anticancer mechanisms of ABT-263 have not been fully elucidated. In this study we investigated the effects of ABT-263 on human esophageal cancer cells in vitro and to explore its anticancer mechanisms. Treatment with ABT-263 dose-dependently suppressed the viability of 3 human esophageal cancer cells with IC50 values of 10.7±1.4, 7.1±1.5 and 8.2±1.6 μmol/L, in EC109, HKESC-2 and CaES-17 cells, respectively. ABT-263 (5-20 μmol/L) dose-dependently induced G1/G0-phase arrest in the 3 cancer cell lines and induced apoptosis evidenced by increased the Annexin V-positive cell population and elevated levels of cleaved caspase 3, cleaved caspase 9 and PARP. We further demonstrated that ABT-263 treatment markedly increased the expression of p21Waf1/Cip1 and decreased the expression of cyclin D1 and phospho-Rb (retinoblastoma tumor suppressor protein) (Ser780) proteins that contributed to the G1/G0-phase arrest. Knockdown of p21Waf1/Cip1 attenuated ABT-263-induced G1/G0-phase arrest. Moreover, ABT-263 treatment enhanced pro-survival autophagy, shown as the increased LC3-II levels and decreased p62 levels, which counteracted its anticancer activity. Our results suggest that ABT-263 exerts cytostatic and cytotoxic effects on human esophageal cancer cells in vitro and enhances pro-survival autophagy, which counteracts its anticancer activity.
Collapse
|
15
|
Cheng Y, Qiao Z, Dang C, Zhou B, Li S, Zhang W, Jiang J, Song Y, Zhang J, Diao D. p38 predicts depression and poor outcome in esophageal cancer. Oncol Lett 2017; 14:7241-7249. [PMID: 29344159 PMCID: PMC5754885 DOI: 10.3892/ol.2017.7129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/09/2017] [Indexed: 01/12/2023] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) signaling has been implicated in the cancer development and progression. However, the precise mechanism of this association remains unknown. The aim of the present study was to evaluate the association between p38 and cancer progression, including investigations into the effects on cell proliferation, resistance to thalidomide, indoleamine 2,3-dioxygenase (IDO) expression and prognosis in patients with esophageal cancer. The present retrospective study included patients with stage I–III esophageal cancer. A total of 228 patients with esophageal cancer were recruited to analyze the expression of phosphorylated (p)-p38 and IDO in tumor, and normal tissues through immunohistochemistry. Depression status was measured using the Zung Self-Rating Depression Scale. P38 cDNA was transfected into esophageal cancer cells to assess tumor cell viability, sensitivity to thalidomide treatment and IDO gene expression. Western blotting and flow cytometry was used to analyze protein expression alterations, and apoptosis in esophageal cancer cells. P-p38 protein was expressed in 68.9% of cancer tissues, and was significantly associated with depressive symptoms, tumor recurrence and poor survival of patients. In vitro experiments revealed that the expression of p-p38 induced esophageal cancer Eca-109 and TE-1 cell viability, and resistance to thalidomide treatment, as well as in the expression of IDO without the application of lipopolysaccharides. Further follow-up of patients revealed that depression was also an independent factor for early recurrence and overall survival rate. Altered p38 MAPK expression was associated with poor outcome in patients with esophageal cancer. p38 may be a potential biomarker for the prediction of depressive symptoms and prognosis in patients with esophageal cancer.
Collapse
Affiliation(s)
- Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Zhe Qiao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Bin Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Yongchun Song
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Dongmei Diao
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Opydo-Chanek M, Gonzalo O, Marzo I. Multifaceted anticancer activity of BH3 mimetics: Current evidence and future prospects. Biochem Pharmacol 2017; 136:12-23. [PMID: 28288819 DOI: 10.1016/j.bcp.2017.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
BH3 mimetics are a novel class of anticancer agents designed to specifically target pro-survival proteins of the Bcl-2 family. Like endogenous BH3-only proteins, BH3 mimetics competitively bind to surface hydrophobic grooves of pro-survival Bcl-2 family members, counteracting their protective effects and thus facilitating apoptosis in cancer cells. Among the small-molecule BH3 mimetics identified, ABT-737 and its analogs, obatoclax as well as gossypol derivatives are the best characterized. The anticancer potential of these compounds applied as a single agent or in combination with chemotherapeutic drugs is currently being evaluated in preclinical studies and in clinical trials. In spite of promising results, the actual mechanisms of their anticancer action remain to be identified. Findings from preclinical studies point to additional activities of BH3 mimetics in cancer cells that are not connected with apoptosis induction. These off-target effects involve induction of autophagy and necrotic cell death as well as modulation of the cell cycle and multiple cell signaling pathways. For the optimization and clinical implementation of BH3 mimetics, a detailed understanding of their role as inhibitors of the pro-survival Bcl-2 proteins, but also of their possible additional effects is required. This review summarizes the most representative BH3 mimetic compounds with emphasis on their off-target effects. Based on the present knowledge on the multifaceted effects of BH3 mimetics on cancer cells, the commentary outlines the potential pitfalls and highlights the considerable promise for cancer treatment with BH3 mimetics.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology, Jagiellonian University in Kraków, Poland.
| | - Oscar Gonzalo
- Department of Biochemistry, Molecular and Cell Biology, IIS, University of Zaragoza, Spain
| | - Isabel Marzo
- Department of Biochemistry, Molecular and Cell Biology, IIS, University of Zaragoza, Spain
| |
Collapse
|
17
|
Wei WJ, Sun ZK, Shen CT, Song HJ, Zhang XY, Qiu ZL, Luo QY. Obatoclax and LY3009120 Efficiently Overcome Vemurafenib Resistance in Differentiated Thyroid Cancer. Am J Cancer Res 2017; 7:987-1001. [PMID: 28382170 PMCID: PMC5381260 DOI: 10.7150/thno.17322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/31/2016] [Indexed: 12/11/2022] Open
Abstract
Although the prognosis of differentiated thyroid cancer (DTC) is relatively good, 30-40% of patients with distant metastases develop resistance to radioactive iodine therapy due to tumor dedifferentiation. For DTC patients harboring BRAFV600E mutation, Vemurafenib, a BRAF kinase inhibitor, has dramatically changed the therapeutic landscape, but side effects and drug resistance often lead to termination of the single agent treatment. In the present study, we showed that either LY3009120 or Obatoclax (GX15-070) efficiently inhibited cell cycle progression and induced massive death of DTC cells. We established that BRAF/CRAF dimerization was an underlying mechanism for Vemurafenib resistance. LY3009120, the newly discovered pan-RAF inhibitor, successfully overcame Vemurafenib resistance and suppressed the growth of DTC cells in vitro and in vivo. We also observed that expression of anti-apoptotic Bcl-2 increased substantially following BRAF inhibitor treatment in Vemurafenib-resistant K1 cells, and both Obatoclax and LY3009120 efficiently induced apoptosis of these resistant cells. Specifically, Obatoclax exerted its anti-cancer activity by inducing loss of mitochondrial membrane potential (ΔΨm), dysfunction of mitochondrial respiration, reduction of cellular glycolysis, autophagy, neutralization of lysosomes, and caspase-related apoptosis. Furthermore, the cancer killing effects of LY3009120 and Obatoclax extended to two more Vemurafenib-resistant DTC cell lines, KTC-1 and BCPAP. Taken together, our results highlighted the potential value of LY3009120 for both Vemurafenib-sensitive and -resistant DTC and provided evidence for the combination therapy using Vemurafenib and Obatoclax for radioiodine-refractory DTC.
Collapse
|
18
|
Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells. Int J Mol Sci 2016; 18:ijms18010044. [PMID: 28035994 PMCID: PMC5297679 DOI: 10.3390/ijms18010044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G1-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G1-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.
Collapse
|
19
|
Malacrida A, Maggioni D, Cassetti A, Nicolini G, Cavaletti G, Miloso M. Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells. Nutr Cancer 2016; 68:1161-70. [PMID: 27618152 DOI: 10.1080/01635581.2016.1208830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer is a leading cause of death worldwide. Despite therapeutic improvements, some cancers are still untreatable. Recently there has been an increasing interest in the use of natural substances for cancer prevention and treatment. Hibiscus sabdariffa (HS) is a plant, belonging to Malvaceae family, widespread in South Asia and Central Africa. HS extract (HSE) used in folk medicine, gained researchers' interest thanks to its antioxidant, anti-inflammatory, and chemopreventive properties. In the present study, we initially assessed HSE effect on a panel of human tumor cell lines. Then we focused our study on the following that are most sensitive to HSE action cell lines: Multiple Myeloma (MM) cells (RPMI 8226) and Oral Squamous Cell Carcinoma (OSCC) cells (SCC-25). In both RPMI 8226 and SCC-25 cells, HSE impaired cell growth, exerted a reversible cytostatic effect, and reduced cell motility and invasiveness. We evaluated the involvement of MAPKs ERK1/2 and p38 in HSE effects by using specific inhibitors, U0126 and SB203580, respectively. For both SCC-25 and RPMI 8226, HSE cytostatic effect depends on p38 activation, whereas ERK1/2 modulation is crucial for cell motility and invasiveness. Our results suggest that HSE may be a potential therapeutic agent against MM and OSCC.
Collapse
Affiliation(s)
- Alessio Malacrida
- a School of Medicine and Surgery, University of Milan-Bicocca , Monza , Italy.,b Experimental Neurology Unit, University of Milano-Bicocca , Monza , Italy.,c PhD Program in Neuroscience, University of Milano-Bicocca , Monza , Italy
| | - Daniele Maggioni
- a School of Medicine and Surgery, University of Milan-Bicocca , Monza , Italy.,b Experimental Neurology Unit, University of Milano-Bicocca , Monza , Italy
| | - Arianna Cassetti
- d CREA Research Unit for Floriculture and Ornamental Species , Sanremo , Italy
| | - Gabriella Nicolini
- a School of Medicine and Surgery, University of Milan-Bicocca , Monza , Italy.,b Experimental Neurology Unit, University of Milano-Bicocca , Monza , Italy
| | - Guido Cavaletti
- a School of Medicine and Surgery, University of Milan-Bicocca , Monza , Italy.,b Experimental Neurology Unit, University of Milano-Bicocca , Monza , Italy
| | - Mariarosaria Miloso
- a School of Medicine and Surgery, University of Milan-Bicocca , Monza , Italy.,b Experimental Neurology Unit, University of Milano-Bicocca , Monza , Italy
| |
Collapse
|
20
|
Opydo-Chanek M, Mazur L. Comparison of in vitro antileukemic activity of obatoclax and ABT-737. Tumour Biol 2016; 37:10839-49. [PMID: 26880588 PMCID: PMC4999481 DOI: 10.1007/s13277-016-4943-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023] Open
Abstract
Obatoclax and ABT-737 belong to a new class of anticancer agents known as BH3-mimetics. These agents antagonize the anti-apoptotic members of Bcl-2 family. The Bcl-2 proteins modulate sensitivity of many types of cancer cells to chemotherapy. Therefore, the objective of the present study was to examine and compare the antileukemic activity of obatoclax and ABT-737 applied alone, and in combination with anticancer agent, mafosfamide and daunorubicin. The in vitro cytotoxic effects of the tested agents on human leukemia cells were determined using the spectrophotometric MTT test, Coulter electrical impedance method, flow cytometry annexin V-fluorescein/propidium iodide assay, and light microscopy technique. The combination index analysis was used to quantify the extent of agent interactions. BH3 mimetics significantly decreased the leukemia cell viability and synergistically enhanced the cytotoxic effects induced by mafosfamide and daunorubicin. Obatoclax affected the cell viability to a greater degree than did ABT-737. In addition, various patterns of temporary changes in the cell volume and count, and in the frequency of leukemia cells undergoing apoptosis, were found 24 and 48 h after the tested agent application. ABT-737 combined with anticancer agents induced apoptosis more effectively than obatoclax when given in the same combination regimen. The results of the present study point to the different antileukemic activities of obatoclax and ABT-737, when applied alone, and in combination with anticancer agents. A better understanding of the exact mechanisms of BH3 mimetic action is of key importance for their optional use in cancer therapy.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Lidia Mazur
- Department of Experimental Hematology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
21
|
New derivative of 2-(2,4-dihydroxyphenyl)thieno-1,3-thiazin-4-one (BChTT) elicits antiproliferative effect via p38-mediated cell cycle arrest in cancer cells. Bioorg Med Chem 2016; 24:1356-61. [PMID: 26897091 DOI: 10.1016/j.bmc.2016.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/19/2016] [Accepted: 02/05/2016] [Indexed: 12/27/2022]
Abstract
2-(2,4-Dihydroxyphenyl)thieno-1,3-thiazin-4-ones are a group of new compounds with potential anticancer activity. This type of derivatives was poorly investigated in the area of synthesis and biological activities. In the present study the antiproliferative action of the most active derivative BChTT was described. The aim of biological evaluation was to investigate the ability of the compound to inhibit cancer cell proliferation and identify mechanism involved in its action on the molecular level. BChTT inhibited the proliferation of lung cancer A549, colon cancer HT-29 and glioma C6 cells in the concentration-dependent manner. It was not toxic to normal cells including skin fibroblasts, hepatocytes and oligodendrocytes in the antiproliferative concentrations. BChTT decreased the DNA synthesis in the treated cancer cells and induced cell cycle arrest in the G0/G1 phase. Moreover, the ability of the compound to activate p38 kinase and decrease cyclin D1 expression was estimated. Participation of p38 kinase in the antiproliferative action of the compound was confirmed by the analysis of BChTT activity in the cells with the p38 silenced gene. The obtained results may suggest the ability of the tested derivative to inhibit cancer cells proliferation by induction of p38-mediated cyclin D1 downregulation.
Collapse
|
22
|
The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization. PLoS One 2016; 11:e0150696. [PMID: 26950068 PMCID: PMC4780728 DOI: 10.1371/journal.pone.0150696] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022] Open
Abstract
Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that lysosomal alkalinization contributes to the cytotoxic activity of obatoclax.
Collapse
|
23
|
Brown JR, Tesar B, Yu L, Werner L, Takebe N, Mikler E, Reynolds HM, Thompson C, Fisher DC, Neuberg D, Freedman AS. Obatoclax in combination with fludarabine and rituximab is well-tolerated and shows promising clinical activity in relapsed chronic lymphocytic leukemia. Leuk Lymphoma 2015; 56:3336-42. [PMID: 25971907 DOI: 10.3109/10428194.2015.1048441] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obatoclax is a small molecule mimetic of the BH3 domain of BCL-2 family proteins. This phase 1 study combining obatoclax with FR was undertaken in chronic lymphocytic leukemia (CLL) patients relapsed after at least one prior therapy. Obatoclax was given as a 3-h infusion on days 1 and 3 and escalated through three dose levels, with standard dose FR days 1-5. Thirteen patients were enrolled, with a median of two prior therapies. One dose-limiting toxicity (DLT) of a 2-week treatment delay for persistent grade 2-3 neutropenia was observed at the highest obatoclax dose (20 mg/m2), but no maximum tolerated dose (MTD) was reached. The overall response rate (ORR) was 85%, with 15% complete responses (CRs) by NCI-96 criteria and 54% by IWCLL 2008 criteria. Median time to progression was 20 months. It is concluded that obatoclax can be safely administered to relapsed CLL patients in combination with FR and shows promising clinical activity.
Collapse
Affiliation(s)
- Jennifer R Brown
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Bethany Tesar
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Lijian Yu
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Lillian Werner
- b Department of Biostatistics and Computational Biology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Naoko Takebe
- d Investigational Drug Branch, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Evgeny Mikler
- a Department of Medical Oncology , Boston , MA , USA
| | | | | | - David C Fisher
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Donna Neuberg
- b Department of Biostatistics and Computational Biology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - A S Freedman
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
24
|
D'Anna C, Cigna D, Costanzo G, Ferraro M, Siena L, Vitulo P, Gjomarkaj M, Pace E. Cigarette smoke alters cell cycle and induces inflammation in lung fibroblasts. Life Sci 2015; 126:10-8. [DOI: 10.1016/j.lfs.2015.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
|