1
|
Sartorius K, Wang Y, Sartorius B, Antwi SO, Li X, Chuturgoon A, Yu C, Lu Y, Wang Y. The interactive role of microRNA and other non-coding RNA in hepatitis B (HBV) associated fibrogenesis. Funct Integr Genomics 2025; 25:24. [PMID: 39847120 DOI: 10.1007/s10142-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression. Although extensive research has explained the regulatory role of ncRNA in liver fibrogenesis, most of this research relates to non-CHB etiologies. This review paper outlines the complex interactive regulatory role of microRNA (miRNA) and their interaction with long non-coding RNA (lncRNA), circular RNA (circRNA) and the mainstream epigenetic machinery in CHB induced liver fibrosis. The paper also illustrates some of the difficulties involved in translating candidate ncRNA into approved drugs or diagnostic tools. In conclusion, the important regulatory role of ncRNA in CHB induced liver fibrosis warrants further investigation to exploit their undoubted potential as diagnostic and therapeutic agents.
Collapse
MESH Headings
- Humans
- Liver Cirrhosis/genetics
- Liver Cirrhosis/pathology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/virology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Epigenesis, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/pathology
- Hepatitis B virus/genetics
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Animals
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg, South Africa.
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA.
| | - Yanglong Wang
- Department of General Surgery, Xinyi People's Hospital, Xinyi, Jiangsu, China
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Samuel O Antwi
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA
- Division of Epidemiology Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, AL, USA
| | - Xiaodong Li
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, UKZN, Durban, South Africa
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunjie Lu
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yu Wang
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, 213200, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Zhao H, Mao H. ERRFI1 exacerbates hepatic ischemia reperfusion injury by promoting hepatocyte apoptosis and ferroptosis in a GRB2-dependent manner. Mol Med 2024; 30:82. [PMID: 38862918 PMCID: PMC11167874 DOI: 10.1186/s10020-024-00837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Programmed cell death is an important mechanism for the development of hepatic ischemia and reperfusion (IR) injury, and multiple novel forms of programmed cell death are involved in the pathological process of hepatic IR. ERRFI1 is involved in the regulation of cell apoptosis in myocardial IR. However, the function of ERRFI1 in hepatic IR injury and its modulation of programmed cell death remain largely unknown. METHODS Here, we performed functional and molecular mechanism studies in hepatocyte-specific knockout mice and ERRFI1-silenced hepatocytes to investigate the significance of ERRFI1 in hepatic IR injury. The histological severity of livers, enzyme activities, hepatocyte apoptosis and ferroptosis were determined. RESULTS ERRFI1 expression increased in liver tissues from mice with IR injury and hepatocytes under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Hepatocyte-specific ERRFI1 knockout alleviated IR-induced liver injury in mice by reducing cell apoptosis and ferroptosis. ERRFI1 knockdown reduced apoptotic and ferroptotic hepatocytes induced by OGD/R. Mechanistically, ERRFI1 interacted with GRB2 to maintain its stability by hindering its proteasomal degradation. Overexpression of GRB2 abrogated the effects of ERRFI1 silencing on hepatocyte apoptosis and ferroptosis. CONCLUSIONS Our results revealed that the ERRFI1-GRB2 interaction and GRB2 stability are essential for ERRFI1-regulated hepatic IR injury, indicating that inhibition of ERRFI1 or blockade of the ERRFI1-GRB2 interaction may be potential therapeutic strategies in response to hepatic IR injury.
Collapse
Affiliation(s)
- Hang Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street Guta District, Jinzhou, 121000, Liaoning, China
| | - Huizi Mao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street Guta District, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
3
|
Huang Y, Zhao H, Shi X, Liu J, Lin JM, Ma Q, Jiang S, Pu W, Ma Y, Liu J, Wu W, Wang J, Liu Q. GRB2 serves as a viable target against skin fibrosis in systemic sclerosis by regulating endothelial cell apoptosis. J Dermatol Sci 2023; 111:109-119. [PMID: 37661474 DOI: 10.1016/j.jdermsci.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 07/02/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Systemic Sclerosis (SSc) is an autoimmune disease characterized by vascular and immune system dysfunction, along with tissue fibrosis. Our previous study found GRB2 was downregulated by salvianolic acid B, a small molecule drug that attenuated skin fibrosis of SSc. OBJECTIVES Here we aim to investigate the role of GRB2 in SSc. METHODS The microarray data of SSc skin biopsies in Caucasians were obtained from the Gene Expression Omnibus (GEO) database. The expression of GRB2 was further detected in Chinese SSc and healthy controls. Bleomycin (BLM)-induced skin fibrosis mice were used to explore how GRB2 downregulation affected fibrosis. The apoptosis of EA.hy926 endothelial cells was induced by H2O2 and apoptosis ratio was measured by flow cytometric. Transcriptome and phosphoproteomic analyses were performed to explore the regulated pathway. RESULTS The expression of GRB2 was significantly enhanced in SSc patient skin, 1.51-fold in Caucasians and 1.40-fold in Chinese. Double immunofluorescence staining showed the endothelial cells of SSc patient's skin highly expressed GRB2. The in vivo study revealed that GRB2 knockdown alleviated skin fibrosis and apoptosis of endothelial cells in BLM mouse skin. The in vitro study showed that GRB2 downregulation inhibited the apoptosis of EA.hy926 and protected them from H2O2-induced hyperpermeability. Moreover, transcriptome and phosphoproteomic analysis suggested the focal adhesion pathway was enriched in GRB2 siRNA transfected endothelial cells. CONCLUSIONS Our results demonstrated GRB2 highly expressed in endothelial cells of SSc skin, and inhibiting GRB2 could effectively attenuate BLM-induced skin fibrosis and endothelial cell apoptosis. GRB2 is expected to be a new therapeutic target for SSc.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Nanjing Intellectual Property Protection Center, Nanjing, China
| | - Xiangguang Shi
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jui-Ming Lin
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Qianqian Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianlan Liu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Wenyu Wu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Department of Dermatology, Jing' an District Central Hospital, Shanghai, China.
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, China.
| | - Qingmei Liu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Hu L, Yang K, Mai X, Wei J, Ma C. Depleted HDAC3 attenuates hyperuricemia-induced renal interstitial fibrosis via miR-19b-3p/SF3B3 axis. Cell Cycle 2022; 21:450-461. [PMID: 35025700 PMCID: PMC8942505 DOI: 10.1080/15384101.2021.1989899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dysfunctional histone deacetylases (HDACs) elicit unrestrained fibrosis and damage to organs. With regard to the link between HDACs and fibrosis, this research is practiced to decipher the concrete mechanism of HDAC3 in hyperuricemia (HN)-induced renal interstitial fibrosis (RIF) from microRNA-19b-3p/splicing factor 3b subunit 3 (miR-19b-3p/SF3B3) axis.The HN model was established on rats to induce RIF by oral administration of adenine and potassium oxalate. HN rats were injected with miR-19b-3p- or HDAC3-related vectors to figure out their effects on RIF through detecting 24-h urine protein, uric acid (UA), blood urea nitrogen (BUN) and serum creatinine (Scr) contents and α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1) and fibronectin (FN) contents in renal tissues and observing pathological damages and RIF index of renal tissues. HDAC3, miR-19b-3p and SF3B3 expression in renal tissues were tested, along with their interactions.Elevated HDAC3 and SF3B3 and reduced miR-19b-3p were displayed in renal tissues of HN rats. Suppressed HDAC3 or promoted miR-19b-3p relieved HN-induced RIF, as reflected by their inhibitory effects on 24 h urine protein, UA, BUN, Scr, α-SMA, TGF-β1, and FN contents and RIF index and their ameliorated effects on pathological damages of renal tissues. HDAC3 bound to the promoter of miR-19b-3p to regulate SF3B3. MiR-19b-3p depletion abrogated down-regulated HDAC3-induced effects on HN-induced RIF.It is delineated that depressed HDAC3 relives HN-induced RIF through restoring miR-19b-3p and knocking down SF3B3, replenishing the references for RIF curing.
Collapse
Affiliation(s)
- Langtao Hu
- Department of Nephrology, Hainan General Hospital, Haikou, China.,Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Kai Yang
- Department of Nephrology, Hainan General Hospital, Haikou, China.,Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xing Mai
- Department of Nephrology, Hainan General Hospital, Haikou, China.,Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital, Haikou, China.,Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Chunyang Ma
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
5
|
Xie X, Dou CY, Zhou Y, Zhou Q, Tang HB. MicroRNA-503 Targets Mothers Against Decapentaplegic Homolog 7 Enhancing Hepatic Stellate Cell Activation and Hepatic Fibrosis. Dig Dis Sci 2021; 66:1928-1939. [PMID: 32648079 DOI: 10.1007/s10620-020-06460-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The hyper-accumulation of extracellular matrix (ECM) is the leading cause of hepatic fibrosis, and TGF-β-induced activation of hepatic stellate cells (HSCs) is the central event of hepatic fibrosis pathogenesis. The deregulation and dysfunction of miRNAs in hepatic fibrosis have been reported previously. AIMS To identify miRNA(s) playing a role in HSC activation and the underlying mechanism. METHODS We analyzed online microarray expression datasets from Gene Expression Omnibus (GEO) for differentially expressed miRNAs in hepatic fibrosis-related disease liver tissues, examined the specific effects of the candidate miRNA on TGF-β-induced HSC activation, and screened for the targets of the candidate miRNA in the TGF-β/SMAD signaling. Then, the predicted miRNA-mRNA binding, the specific effects of the target mRNA, and the dynamic effects of miRNA and mRNA on TGF-β-induced HSC activation were investigated. RESULTS The miR-503 expression was upregulated in TGF-β-activated HSCs. miR-503 overexpression enhanced, while miR-503 inhibition attenuated TGF-β-induced HSC proliferation and ECM accumulation in HSCs. miR-503 targeted SMAD7 to inhibit SMAD7 expression. SMAD7 knockdown also aggravated TGF-β-induced HSC proliferation and ECM accumulation in HSCs. The effects of miR-503 overexpression on TGF-β-induced HSC activation were partially reversed by SMAD7 overexpression. In CCl4-induced hepatic fibrosis model in rats, miR-503 overexpression aggravated, whereas SMAD7 overexpression improved CCl4-induced fibrotic changes in rats' liver tissues. The effects of miR-503 overexpression on CCl4-induced fibrotic changes were partially reversed by SMAD7 overexpression. CONCLUSION miR-503 acts on HSC activation and hepatic fibrosis through SMAD7. The miR-503/SMAD7 axis enhances HSC activation and hepatic fibrosis through the TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Xia Xie
- Department of Infectious Diseases, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Cheng-Yun Dou
- Department of Infectious Diseases, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Yu Zhou
- Department of Pathology, The Second Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Quan Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Hai-Bo Tang
- Department of Infectious Diseases, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
6
|
Shi X, Liu Q, Zhao H, Lu J, Huang Y, Ma Y, Xia J, Liu M, Tu W, Jin L, Wang J, Zhao Y, Wu W. Increased expression of GAB1 promotes inflammation and fibrosis in systemic sclerosis. Exp Dermatol 2020; 28:1313-1320. [PMID: 31505074 DOI: 10.1111/exd.14033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease mainly characterized by persistent inflammation and fibrosis. The receptor tyrosine kinase (RTK) signal pathway plays an important role in the process of SSc, and Grb2-associated binding protein (GAB) is crucial in activating RTK signalling. A previous study found elevated levels of GAB1 in bleomycin (BLM)-induced fibrotic lungs, but the effects of GAB1 in SSc remain unclear. Our aim was to investigate whether GAB1 was dysregulated and its potential role in SSc. Compared with healthy donors, we found GAB1 expression was 1.6-fold higher in peripheral blood mononuclear cells (PBMC), 2.5-fold higher in CD4 + T cells, and 2-fold higher in skin from of SSc patients (P < .01). At the same time, the levels of type one collagen (COLI) were also significantly increased (1.8-fold higher) in SSc skin. Additionally, BLM-induced SSc mice showed mRNA levels of Gab1 2-fold higher than saline-treated controls, and Gab1 expression correlated positively with collagen content. A further in vitro study showed silencing of GAB1 suppressed inflammatory gene expression in TNF-α induced fibroblasts. Additionally, GAB1 deficiency prominently inhibited cell proliferation and reduced COLI protein levels in TGF-β induced fibroblasts. Taken together, these data suggest that GAB1 has a relatively high expression rate in SSc, and knockdown of GAB1 may attenuate SSc by stimulating inflammatory and fibrotic processes.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingjing Xia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| |
Collapse
|
7
|
Critical role of estrogen in the progression of chronic liver diseases. Hepatobiliary Pancreat Dis Int 2020; 19:429-434. [PMID: 32299655 DOI: 10.1016/j.hbpd.2020.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Estrogens regulate sexual function and also have a significant role in various pathophysiological processes. Estrogens have a non-reproductive role as the modulators of the immune system, growth, neuronal function, and metabolism. Estrogen receptors are expressed in the liver and their impaired expression and function are implicated with obesity and liver associated metabolic dysfunctions. The purpose of the current review is to discuss the disparity role of estrogens on several forms of liver diseases. DATA SOURCES A comprehensive search in PubMed and EMBASE was conducted using the keywords "estrogens and liver diseases", "estradiol and liver diseases", "hormones and liver diseases", "endocrine function in liver diseases", and "female hormones in liver diseases". Relevant papers published before September 30, 2019 were included. RESULTS The present review confirms the imperative role of estrogen in various forms of chronic liver diseases. Estrogens play a key role in maintaining homeostasis and make the liver less susceptible to several forms of chronic liver diseases in healthy premenopausal individuals. In contrast, clinical studies also showed increased estrogen levels with chronic liver diseases. CONCLUSIONS Several studies reported the protective role of estrogens in chronic liver diseases and this has been widely accepted and confirmed in experimental studies using ovariectomized rat models. However, in a few clinical studies, increased estrogen levels are also implicated in chronic liver diseases. Therefore, further studies are warranted at molecular level to explore the role of estrogen in various forms of chronic liver diseases.
Collapse
|
8
|
Ge S, Wu X, Xiong Y, Xie J, Liu F, Zhang W, Yang L, Zhang S, Lai L, Huang J, Li M, Yu YQ. HMGB1 Inhibits HNF1A to Modulate Liver Fibrogenesis via p65/miR-146b Signaling. DNA Cell Biol 2020; 39:1711-1722. [PMID: 32833553 DOI: 10.1089/dna.2019.5330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High mobility group box 1 (HMGB1) is essential for the pathogenesis of liver injury and liver fibrosis. We previously revealed that miR-146b promotes hepatic stellate cells (HSCs) activation and proliferation. Nevertheless, the potential mechanisms are still unknown. Herein, HMGB1 increased HSCs proliferation and COL1A1 and α-SMA protein levels. However, the knockdown of miR-146b inhibited HSCs proliferation and COL1A1 and α-SMA protein levels induced via HMGB1 treatment. miR-146b was upregulated by HMGB1 and miR-146b targeted hepatocyte nuclear factor 1A (HNF1A) 3'-untranslated region (3'UTR) to modulate its expression negatively. Further, we confirmed that HMGB1 might elicit miR-146b expression via p65 within HSCs. Knockdown or block of HMGB1 relieved the CCl4-induced liver fibrosis. In fibrotic liver tissues, miR-146b expression was positively correlated with p65 mRNA, but HNF1A mRNA was inversely correlated with p65, and miR-146b expression. In summary, our findings suggest that HMGB1/p65/miR-146b/HNF1A signaling exerts a crucial effect on liver fibrogenesis via the regulation of HSC function.
Collapse
Affiliation(s)
- Shanfei Ge
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoping Wu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Xiong
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Xie
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Liu
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenfeng Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lixia Yang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Song Zhang
- Department of Infectious Disease, ShangRao People's Hospital, ShangRao, Jiangxi, China
| | - Lingling Lai
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiansheng Huang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ming Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan-Qing Yu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Dong Z, Li S, Si L, Ma R, Bao L, Bo A. Identification lncRNA LOC102551149/miR-23a-5p pathway in hepatic fibrosis. Eur J Clin Invest 2020; 50:e13243. [PMID: 32306379 DOI: 10.1111/eci.13243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hepatic fibrosis is a worldwide incurable disease; due to the complex and unclear mechanism, there lack the effective therapeutic targets. However, the mechanism of miR-23a-5p underling this pathological process is largely not clear. The purpose of this study was to investigate the role of miR-23a-5p in hepatic fibrosis and HSC activation. METHODS The content of miR-23a-5p in hepatic fibrosis induced by N-nitrosodimethylamine (NDMA) and HSC activation induced by platelet-derived growth factor (PDGF) was detected by qRT-PCR. H&E staining, Masson staining and Shear wave electrography (SWE) were used to detect the degree of hepatic fibrosis. Immunohistochemistry staining, qRT-PCR and Western blot detect the related markers of liver fibrosis or HSC activation, as well as the related pathway genes and proteins. Dual-luciferase reporter system verifies the interaction between miR-23a-5p with PTEN or miR-23a-5p with lncRNA LOC102551149 in HSC-T6. siRNA and miRNA mimic transfer to HSC-T6 to detect the function of lncRNA LOC102551149 and miR-23a-5p on HSC activation. RESULTS After hepatic fibrosis and HSC activation happened, the expression of miR-23a-5p was up-regulated, whereas anti-miR-23a-5p can alleviate hepatic fibrosis and HSC activation. Further research shows miR-23a-5p can target PTEN and degrade it, causing activation of PI3K/Akt/mTOR/Snail pathway. lncRNA LOC102551149 can be used as a competition endogenous RNA (ceRNA) targeting miR-23a-5p through base pairing, and siRNA LOC102551149 or exogenous miR-23a-5p can induce HSC activation through PI3K/Akt/mTOR/Snail pathway. CONCLUSION We demonstrate mechanism pathway of miR-23a-5p on hepatic fibrosis and HSC activation, which may develop a therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Sha Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lengge Si
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Ruilian Ma
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Agula Bo
- Baotou Medical College, Baotou, China
| |
Collapse
|
10
|
Sun F, Zhuang Y, Zhu H, Wu H, Li D, Zhan L, Yang W, Yuan Y, Xie Y, Yang S, Luo S, Jiang W, Zhang J, Pan Z, Lu Y. LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction. J Mol Cell Cardiol 2019; 133:188-198. [DOI: 10.1016/j.yjmcc.2019.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/30/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
|
11
|
Sun Z, Xue S, Xu H, Hu X, Chen S, Yang Z, Yang Y, Ouyang J, Cui H. Effects of NSUN2 deficiency on the mRNA 5-methylcytosine modification and gene expression profile in HEK293 cells. Epigenomics 2018; 11:439-453. [PMID: 30526041 DOI: 10.2217/epi-2018-0169] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To study the biological function of NSUN2 in regulating gene expression and cell proliferation. MATERIALS & METHODS The NSUN2 gene was knocked down in HEK293 cells via CRISPR/Cas9 system. mRNA m5C modification and gene expression were assessed using RNA-BisSeq and RNA-Seq. RESULTS NSUN2 deficiency could inhibit proliferation and migration of HEK293 cells. A total of 1185 differentially methylated genes and 790 differentially expressed genes were identified. Bioinformatics analysis revealed that the differentially methylated genes were mainly involved in regulating gene expression. Some pathways associated with cell proliferation were significantly enriched by the differentially expressed genes. Additionally, GRB2 and CD44 may be key regulators in NSUN2-mediated cell proliferation. CONCLUSION These findings help to elucidate the molecular mechanisms by which NSUN2 affects cell proliferation, migration and other cell phenotypes.
Collapse
Affiliation(s)
- Zhen Sun
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Songlei Xue
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Hui Xu
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Xuming Hu
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Shihao Chen
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Zhe Yang
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Yu Yang
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Juan Ouyang
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Hengmi Cui
- Institute of Epigenetics & Epigenomics & College of Animal Science & Technology, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.,Jiangsu Co-Innovation Center for Prevention & Control of Important Animal Infectious Diseases & Zoonoses, Yangzhou 225009, PR China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| |
Collapse
|
12
|
Kumar P, Raeman R, Chopyk DM, Smith T, Verma K, Liu Y, Anania FA. Adiponectin inhibits hepatic stellate cell activation by targeting the PTEN/AKT pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3537-3545. [PMID: 30293572 PMCID: PMC6529190 DOI: 10.1016/j.bbadis.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
Adiponectin inhibits hepatic stellate cell (HSC) activation and subsequent development of liver fibrosis via multiple mechanisms. Phosphatase and tensin homolog deletion 10 (PTEN) plays a crucial role in suppression of HSC activation, but its regulation by adiponectin is not fully understood. Here, we investigated the effect of adiponectin on PTEN in LX-2 cells, a human cell line and examined the underlying molecular mechanisms involved in adiponectin-mediated upregulation of PTEN activity during fibrosis. PTEN expression was found to be significantly reduced in the livers of mice treated with CCl4, whereas its expression was rescued by adiponectin treatment. The DNA methylation proteins DNMT1, DNMT3A, and DNMT3B are all highly expressed in activated primary HSCs compared to quiescent HSCs, and thus represent additional regulatory targets during liver fibrogenesis. Expression of DNMT proteins was significantly induced in the presence of fibrotic stimuli; however, only DNMT3B expression was reduced in the presence of adiponectin. Adiponectin-induced suppression of DNMT3B was found to be mediated by enhanced miR-29b expression. Furthermore, PTEN expression was significantly increased by overexpression of miR-29b, whereas its expression was markedly reduced by a miR-29b inhibitor in LX-2 cells. These findings suggest that adiponectin-induced upregulation of miR-29b can suppress DNMT3B transcription in LX-2 cells, thus resulting in reduced methylation of PTEN CpG islands and ultimately suppressing the PI3K/AKT pathway. Together, these data suggest a possible new explanation for the inhibitory effect of adiponectin on HSC activation and liver fibrogenesis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA.
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Kiran Verma
- Labratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Kim J. MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology. BMB Rep 2018; 51:65-72. [PMID: 29353599 PMCID: PMC5836559 DOI: 10.5483/bmbrep.2018.51.2.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Indexed: 12/22/2022] Open
Abstract
The endothelial to mesenchymal transition (EndMT) is a newly recognized, fundamental biological process involved in development and tissue regeneration, as well as pathological processes such as the complications of diabetes, fibrosis and pulmonary arterial hypertension. The EndMT process is tightly controlled by diverse signaling networks, similar to the epithelial to mesenchymal transition. Accumulating evidence suggests that microRNAs (miRNAs) are key regulators of this network, with the capacity to target multiple messenger RNAs involved in the EndMT process as well as in the regulation of disease progression. Thus, it is highly important to understand the molecular basis of miRNA control of EndMT. This review highlights the current fund of knowledge regarding the known links between miRNAs and the EndMT process, with a focus on the mechanism that regulates associated signaling pathways and discusses the potential for the EndMT as a therapeutic target to treat many diseases.
Collapse
Affiliation(s)
- Jongmin Kim
- Cellular Heterogeneity Research Center (CHRC), Research Institute of Women's Health (RIWH), and Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
14
|
Yang SJ, Wang J, Xu J, Bai Y, Guo ZJ. miR-93‑mediated collagen expression in stress urinary incontinence via calpain-2. Mol Med Rep 2017; 17:624-629. [PMID: 29115452 DOI: 10.3892/mmr.2017.7910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the expression and mechanism of microRNA (miR)‑93 in collagen expression in stress urinary incontinence (SUI). Vaginal tissue, primary fibroblasts and SUI primary fibroblasts were obtained to detect the expression of miR‑93, interstitial collagenase (MMP1), collagen I and calpain‑2. Reverse transcription‑quantitative polymerase chain reaction analysis was performed to detect the levels of miR‑93 and MMP1. Western blotting was used to evaluate the protein levels of calpain‑2, MMP1 and collagen I. MMP1 and hydroxyproline levels in the supernatant were measured by ELISA. The association between miR‑93 and calpain‑2 was investigated by luciferase reporter assays. The expression of miR‑93 and collagen I was significantly downregulated in the SUI group, while the expression of calpain‑2 and MMP1 was significantly upregulated. ELISA analysis demonstrated that the MMP1 level increased and the hydroxyproline level decreased in the SUI group. Additionally, calpain‑2 was identified to be a target of miR‑93, and miR‑93 was able to negatively regulate the expression of calpain‑2. Restoration of calpain‑2 in miR‑93‑overexpresseing SUI primary fibroblasts reversed the alteration in hydroxyproline expression, indicating that calpain‑2 was negatively associated with collagen expression. The results of the present study suggested that miR‑93 regulated MMP1 and collagen I expression in fibroblasts via calpain‑2. miR‑93 mediated collagen expression in stress urinary incontinence via calpain‑2.
Collapse
Affiliation(s)
- Shi-Jie Yang
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jie Xu
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yun Bai
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhao-Jun Guo
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
15
|
MiR-200a modulates TGF-β1-induced endothelial-to-mesenchymal shift via suppression of GRB2 in HAECs. Biomed Pharmacother 2017; 95:215-222. [DOI: 10.1016/j.biopha.2017.07.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
|
16
|
Ge S, Xiong Y, Wu X, Xie J, Liu F, He J, Xiang T, Cheng N, Lai L, Zhong Y. Role of growth factor receptor-bound 2 in CCl 4-induced hepatic fibrosis. Biomed Pharmacother 2017; 92:942-951. [PMID: 28618656 DOI: 10.1016/j.biopha.2017.05.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/28/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Growth Factor Receptor-bound 2 (GRB2) plays a crucial role in regulation of cellular function including proliferation and differentiation, and we previously identified GRB2 as promoting HSCs (HSCs) proliferation. However, the underlying mechanisms that are involving in the regulation of GRB2 in hepatic fibrogenesis remain unknown. METHODS In the present study, we tested the function of GRB2 in hepatic fibrosis. Hepatic fibrosis was induced by subcutaneous CCl4 administration at a dose of 3mL/kg in rats. The rat HSC cell line HSC-T6 were cultured for proliferation investigation by CCK-8 and BrdU incorporation method. The levels of GRB2, HMGB1, PI3K/AKT, COL1A1 and α-SMA were analyzed by western blot or real-time PCR. RESULTS showed that the expression of GRB2 and HMGB1 was obviously increased in liver tissues of hepatic fibrosis rats accompanied by up-regulation of COL1A1 and α-SMA. In cultured HSCs, application of exogenous HMGB1 induced cell proliferation and cell proliferation rate concomitantly with up-regulation of GRB2 expression and PI3K/AKT phosphorylation. The effects of HMGB1-induced proliferation of HSCs and up-regulation of COL1A1 and α-SMA were abolished by GRB2 siRNA. HMGB1-induced proliferation of HSCs and up-regulation of COL1A1 and α-SMA was reversed in the presence of LY294002, an inhibitor of PI3K inhibitor. CONCLUSIONS These findings suggest that GRB2 plays an important role in CCl4-induced hepatic fibrosis by regulating HSCs' function, and up-regulation of GRB2 induced by HMGB1 is mediated via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shanfei Ge
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Ying Xiong
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaoping Wu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Jianping Xie
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fei Liu
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jinni He
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Tianxing Xiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Lingling Lai
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yuanbin Zhong
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
17
|
Schoepp M, Ströse AJ, Haier J. Dysregulation of miRNA Expression in Cancer Associated Fibroblasts (CAFs) and Its Consequences on the Tumor Microenvironment. Cancers (Basel) 2017; 9:cancers9060054. [PMID: 28538690 PMCID: PMC5483873 DOI: 10.3390/cancers9060054] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment, including cancer-associated fibroblasts (CAF), has developed as an important target for understanding tumor progression, clinical prognosis and treatment responses of cancer. Cancer cells appear to transform normal fibroblasts (NF) into CAFs involving direct cell-cell communication and epigenetic regulations. This review summarizes the current understanding on miR involvement in cancer cell—tumor environment/stroma communication, transformation of NFs into CAFs, their involved targets and signaling pathways in these interactions; and clinical relevance of CAF-related miR expression profiles. There is evidence that miRs have very similar roles in activating hepatic (HSC) and pancreatic stellate cells (PSC) as part of precancerous fibrotic diseases. In summary, deregulated miRs affect various intracellular functional complexes, such as transcriptional factors, extracellular matrix, cytoskeleton, EMT/MET regulation, soluble factors, tyrosine kinase and G-protein signaling, apoptosis and cell cycle & differentiation, but also formation and composition of the extracellular microenvironment. These processes result in the clinical appearance of desmoplasia involving CAFs and fibrosis characterized by deregulated stellate cells. In addition, modulated release of soluble factors can act as (auto)activating feedback loop for transition of NFs into their pathological counterparts. Furthermore, epigenetic communication between CAFs and cancer cells may confer to cancer specific functional readouts and transition of NF. MiR related epigenetic regulation with many similarities should be considered as key factor in development of cancer and fibrosis specific environment.
Collapse
Affiliation(s)
- Maren Schoepp
- Comprehensive Cancer Center Münster (CCCM), University Hospital Münster, 48149 Münster, Germany.
| | - Anda Jana Ströse
- Nordakademie University of Applied Sciences, Köllner Chaussee 11, 25337 Elmshorn, Germany.
| | - Jörg Haier
- Nordakademie University of Applied Sciences, Köllner Chaussee 11, 25337 Elmshorn, Germany.
| |
Collapse
|
18
|
Huang T, Yin L, Wu J, Gu JJ, Wu JZ, Chen D, Yu HL, Ding K, Zhang N, Du MY, Qian LX, Lu ZW, He X. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-κB axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:188. [PMID: 27919278 PMCID: PMC5139034 DOI: 10.1186/s13046-016-0465-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC) is among the most common squamous cell carcinoma in South China and Southeast Asia. Radiotherapy is the primary treatment for NPC. However, radioresistance acts as a significant factor that limits the efficacy of radiotherapy for NPC patients. Growing evidence supports that microRNAs (miRNAs) play an important role in radiation response. Methods Real-time quantitative PCR was used to analyze the expression of miR-19b-3p in NPC cell lines and NP69. miR-19b-3p expression profiles in NPC tissues were obtained from the Gene Expression Omnibus database. The effect of miR-19b-3p on radiosensitivity was evaluated by cell viability assays, colony formation assays and in vivo experiment. Apoptosis and cell cycle were examined by flow cytometry. Luciferase reporter assay was used to assess the target genes of miR-19b-3p. Expression of target proteins and downstream molecules were analyzed by Western blot. Results miR-19b-3p was upregulated in NPC and served as an independent predictor for reduced patient survival. Radioresponse assays showed that miR-19b-3p overexpression resulted in decreased sensitivity to irradiation, whereas miR-19b-3p downregulation resulted in increased sensitivity to irradiation in vitro. Moreover, miR-19b-3p decreased the sensitivity of NPC cells to irradiation in vivo. Luciferase reporter assay confirmed that TNFAIP3 was a direct target gene of miR-19b-3p. Knockdown of TNFAIP3 reduced sensitivity to irradiation, whereas upregulation of TNFAIP3 expression reversed the inhibitory effects of miR-19b-3p on NPC cell radiosensitivity. Mechanistically, we found that miR-19b-3p increased NPC cell radioresistance by activating the TNFAIP3/ NF-κB axis. Conclusions miR-19b-3p contributes to the radioresistance of NPC by activating the TNFAIP3/ NF-κB axis. miR-19b-3p is a determinant of NPC radioresponse and may serve as a potential therapeutic target in NPC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0465-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teng Huang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Li Yin
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.,Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jing Wu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.,Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jia-Jia Gu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.,Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jian-Zhong Wu
- Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Dan Chen
- Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Hong-Liang Yu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.,Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Kai Ding
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Nan Zhang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Ming-Yu Du
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Lu-Xi Qian
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Zhi-Wei Lu
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China
| | - Xia He
- The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu, China. .,Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, 42 Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
19
|
MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways. Int J Mol Sci 2016; 17:ijms17071076. [PMID: 27399683 PMCID: PMC4964452 DOI: 10.3390/ijms17071076] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway.
Collapse
|
20
|
Wen M, Men R, Liu X, Yang L. Involvement of miR-30c in hepatic stellate cell activation through the repression of plasminogen activator inhibitor-1. Life Sci 2016; 155:21-8. [DOI: 10.1016/j.lfs.2016.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
|
21
|
Zhong C, Wang K, Liu Y, Lv D, Zheng B, Zhou Q, Sun Q, Chen P, Ding S, Xu Y, Huang H. miR-19b controls cardiac fibroblast proliferation and migration. J Cell Mol Med 2016; 20:1191-7. [PMID: 27061862 PMCID: PMC4882982 DOI: 10.1111/jcmm.12858] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiac fibrosis is a fundamental constituent of a variety of cardiac dysfunction, making it a leading cause of death worldwide. However, no effective treatment for cardiac fibrosis is available. Therefore, novel therapeutics for cardiac fibrosis are highly needed. Recently, miR‐19b has been found to be able to protect hydrogen peroxide (H2O2)‐induced apoptosis and improve cell survival in H9C2 cardiomyocytes, while down‐regulation of miR‐19b had opposite effects, indicating that increasing miR‐19b may be a new therapeutic strategy for attenuating cellular apoptosis during myocardial ischaemia–reperfusion injury. However, considering the fact that microRNAs might exert a cell‐specific role, it is highly interesting to determine the role of miR‐19b in cardiac fibroblasts. Here, we found that miR‐19b was able to promote cardiac fibroblast proliferation and migration. However, miR‐19b mimics and inhibitors did not modulate the expression level of collagen I. Pten was identified as a target gene of miR‐19b, which was responsible for the effect of miR‐19b in controlling cardiac fibroblast proliferation and migration. Our data suggest that the role of miR‐19b is cell specific, and systemic miR‐19b targeting in cardiac remodelling might be problematic. Therefore, it is highly needed and also urgent to investigate the role of miR‐19b in cardiac remodelling in vivo.
Collapse
Affiliation(s)
- Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Kun Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Ying Liu
- Department of Cardiology, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongchao Lv
- School of Life Science, Shanghai University, Shanghai, China
| | - Bo Zheng
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
| | - Qiulian Zhou
- School of Life Science, Shanghai University, Shanghai, China
| | - Qi Sun
- School of Life Science, Shanghai University, Shanghai, China
| | - Ping Chen
- School of Life Science, Shanghai University, Shanghai, China
| | - Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Yiming Xu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| |
Collapse
|
22
|
Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis. J Clin Med 2016; 5:jcm5030038. [PMID: 26999230 PMCID: PMC4810109 DOI: 10.3390/jcm5030038] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis.
Collapse
|
23
|
Li N. Low Expression of Mir-137 Predicts Poor Prognosis in Cutaneous Melanoma Patients. Med Sci Monit 2016; 22:140-4. [PMID: 26763596 PMCID: PMC4716707 DOI: 10.12659/msm.895207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The present study aimed to measure miR-137 expression in patients with cutaneous melanoma (CM) and to estimate the correlation of miR-137 expression and the prognosis of CM patients. MATERIAL/METHODS The expression level of miR-137 was assayed by quantitative real-time PCR (qRT-PCR) and presented as mean ±SD. Chi-square was used to evaluate the relationship between miR-137 expression and clinical characteristics. We used a Kaplan-Meier survival curve to determine the overall survival rate of CM patients. Moreover, the correlation between miR-137 expression and the prognosis of CM patients was confirmed by Cox regression analysis. RESULTS The relative expression of miR-137 in CM tissue was 1.59±0.43, while that in paired normal tissue was 2.41±0.54, which was significantly higher. Chi-square analysis showed statistical significance between miR-137 expression and clinical characteristics such as TNM stage, ulcer, and occurrence site (P<0.05). However, no association was found between miR-137 expression and age, sex, or family history (P>0.05). According to the survival curve outcome, patients with low miR-137 expression showed relatively higher mortality (P=0.000) and multivariate analysis verified that low expression of miR-137 predicted poor prognosis of CM patients (HR=8.531, 95% CI=2.950-24.668, P=0.000). CONCLUSIONS Compared with paired normal tissues, miR-137 expression was lower in CM tissues. Patients with low miR-137 expression had higher mortality than those with high miR-137 expression, suggesting that low miR-137 expression indicated poor prognosis for CM patients.
Collapse
Affiliation(s)
- Nan Li
- Corresponding Author: Nan Li, e-mail:
| |
Collapse
|