1
|
Stiffel VM, Rundle CH, Sheng MHC, Das S, Lau KHW. A Novel EphA4 Signaling-Based Therapeutic Strategy for Osteoarthritis in Mice. J Bone Miner Res 2022; 37:660-674. [PMID: 34989027 PMCID: PMC9018473 DOI: 10.1002/jbmr.4500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Abstract
This study took advantage of the recent discovery that the EphA4 signaling has anti-catabolic effects on osteoclasts/macrophages/synoviocytes but pro-anabolic effects on articular chondrocytes and sought to develop an EphA4 signaling-based therapeutic strategy for osteoarthritis (OA) using a mouse model of OA/posttraumatic OA (PTOA). The injured joint of C57BL/6J mice received biweekly intraarticular injections of a soluble EphA4-binding ligand (EfnA4-fc) at 1 day after the tibial plateau injury or at 5 weeks post-injury. The animals were euthanized 5 weeks later. The injured right and contralateral uninjured left joints were analyzed for hallmarks of OA by histology. Relative severity was determined by a modified Mankin OA scoring system and serum COMP and CTX-II levels. Tibial plateau injury caused more severe OA in Epha4 null mice than in wild-type (WT) littermates, suggesting a protective role of EphA4 signaling in OA. A prototype strategy of an EphA4 signaling-based strategy involving biweekly injections of EfnA4-fc into injured joints was developed and was shown to be highly effective in preventing OA/PTOA when it was administered at 1 day post-injury and in treating OA/PTOA when it was applied after OA has been established. The efficacy of this prototype was dose- and time-dependent. The effects were not caused by the Fc moiety of EfnA4-fc. Other soluble EfnA ligands of EphA4, ie, EfnA1-fc and EfnA2-fc, were also effective. A prototype of a novel EphA4 signaling-based therapy was developed for OA/PTOA that not only reduces the progressive destruction of articular cartilage but may also promote regeneration of the damaged cartilage. © 2022 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Virginia M Stiffel
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA.,Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Matilda H-C Sheng
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA.,Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Subhashri Das
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA.,Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
2
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
3
|
Stiffel VM, Thomas A, Rundle CH, Sheng MHC, Lau KHW. The EphA4 Signaling is Anti-catabolic in Synoviocytes but Pro-anabolic in Articular Chondrocytes. Calcif Tissue Int 2020; 107:576-592. [PMID: 32816052 PMCID: PMC7606366 DOI: 10.1007/s00223-020-00747-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
The expression and activation of EphA4 in the various cell types in a knee joint was upregulated upon an intraarticular injury. To determine if EphA4 signaling plays a role in osteoarthritis, we determined whether deficient EphA4 expression (in EphA4 knockout mice) or upregulation of the EphA4 signaling (with the EfnA4-fc treatment) would alter cellular functions of synoviocytes and articular chondrocytes. In synoviocytes, deficient EphA4 expression enhanced, whereas activation of the EphA4 signaling reduced, expression and secretion of key inflammatory cytokines and matrix metalloproteases. Conversely, in articular chondrocytes, activation of the EphA4 signaling upregulated, while deficient EphA4 expression reduced, expression levels of chondrogenic genes (e.g., aggrecan, lubricin, type-2 collagen, and Sox9). EfnA4-fc treatment in wildtype, but not EphA4-deficient, articular chondrocytes promoted the formation and activity of acidic proteoglycan-producing colonies. Activation of the EphA4 signaling in articular chondrocytes upregulated Rac1/2 and downregulated RhoA via enhancing Vav1 and reducing Ephexin1 activation, respectively. However, activation of the EphA4 signaling in synoviocytes suppressed the Vav/Rac signaling while upregulated the Ephexin/Rho signaling. In summary, the EphA4 signaling in synoviocytes is largely of anti-catabolic nature through suppression of the expression of inflammatory cytokines and matrix proteases, but in articular chondrocytes the signaling is pro-anabolic in that it promotes the biosynthesis of articular cartilage. The contrasting action of the EphA4 signaling in synoviocytes as opposing to articular chondrocytes may in part be mediated through the opposite differential effects of the EphA4 signaling on the Vav/Rac signaling and Ephexin/Rho signaling in the two skeletal cell types.
Collapse
Affiliation(s)
- Virginia M Stiffel
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | - Alexander Thomas
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Matilda H-C Sheng
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial V.A. Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA.
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
4
|
Shalev M, Elson A. The roles of protein tyrosine phosphatases in bone-resorbing osteoclasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:114-123. [PMID: 30026076 DOI: 10.1016/j.bbamcr.2018.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Maintaining the proper balance between osteoblast-mediated production of bone and its degradation by osteoclasts is essential for health. Osteoclasts are giant phagocytic cells that are formed by fusion of monocyte-macrophage precursor cells; mature osteoclasts adhere to bone tightly and secrete protons and proteases that degrade its matrix. Phosphorylation of tyrosine residues in proteins, which is regulated by the biochemically-antagonistic activities of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is central in regulating the production of osteoclasts and their bone-resorbing activity. Here we review the roles of individual PTPs of the classical and dual-specificity sub-families that are known to support these processes (SHP2, cyt-PTPe, PTPRO, PTP-PEST, CD45) or to inhibit them (SHP1, PTEN, MKP1). Characterizing the functions of PTPs in osteoclasts is essential for complete molecular level understanding of bone resorption and for designing novel therapeutic approaches for treating bone disease.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
5
|
A novel miR17/protein tyrosine phosphatase-oc/EphA4 regulatory axis of osteoclast activity. Arch Biochem Biophys 2018; 650:30-38. [PMID: 29763590 PMCID: PMC5985224 DOI: 10.1016/j.abb.2018.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
Abstract
Information about the molecular mechanisms leading to the activation of the osteoclast is relatively limited. While there is compelling evidence that the signaling mechanisms of Src and integrin β3 are essential for osteoclast activation, the regulation of these two signaling mechanisms is not fully understood. In this review, evidence supporting a novel regulatory axis of osteoclast activation that plays an upstream regulatory role in both the Src and integrin β3 signaling during osteoclast activation is discussed. This regulatory axis contains three unique components: a structurally unique transmembrane protein-tyrosine phosphatase, PTP-oc, EphA4, and miR17. In the first component, PTP-oc activates the Src signaling through dephosphorylation of the inhibitory tyr-527 of Src. This in turn activates the integrin β3 signaling, enhances the JNK2/NFκB signaling, promotes the ITAM/Syk signaling, and suppresses the ITIM/Shp1 signaling; the consequence of which is activation of the osteoclast. In the second component, EphA4 inhibits osteoclast activity by suppressing the integrin β3 signaling. PTP-oc relieves the suppressive actions of EphA4 by directly dephosphorylating EphA4. In the third component, PTP-oc expression is negatively regulated by miR17. Accordingly, suppression of miR17 during osteoclast activation upregulates the PTP-oc signaling and suppresses the EphA4 signaling, resulting in the activation of the osteoclast. This regulatory axis is unique, in that each of the three components acts to exert suppressive action on their respective immediate downstream inhibitory step. Because the final downstream event is the EphA4-mediated inhibition of osteoclast activation, the overall effect of this mechanism is the stimulation of osteoclast activity.
Collapse
|
6
|
Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev Biol 2017; 428:283-292. [PMID: 28728679 DOI: 10.1016/j.ydbio.2017.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Protein-tyrosine phosphatases (PTPs) remove phosphate groups from tyrosine residues, and thereby propagate or inhibit signal transduction, and hence influence cellular processes such as cell proliferation and differentiation. The importance of tightly controlled PTP activity is reflected by the numerous mechanisms employed by the cell to control PTP activity, including a variety of post-translational modifications, and restricted subcellular localization. This review highlights the strides made in the last decade and discusses the important role of PTPs in key aspects of embryonic development: the regulation of stem cell self-renewal and differentiation, gastrulation and somitogenesis during early embryonic development, osteogenesis, and angiogenesis. The tentative importance of PTPs in these processes is highlighted by the diseases that present upon aberrant activity.
Collapse
|
7
|
Lau KHW, Stiffel VM, Rundle CH, Amoui M, Tapia J, White TD, Sheng MHC. Conditional Disruption of miR17~92 in Osteoclasts Led to Activation of Osteoclasts and Loss of Trabecular Bone In Part Through Suppression of the miR17-Mediated Downregulation of Protein-Tyrosine Phosphatase-oc in Mice. JBMR Plus 2017; 1:73-85. [PMID: 29082358 PMCID: PMC5656011 DOI: 10.1002/jbm4.10014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study sought to understand the regulation of an osteoclastic protein-tyrosine phosphatase (PTP-oc), a positive regulator of osteoclast activaty. Our past studies suggested that PTP-oc is regulated post-transcriptionally. The 3'-UTR of PTP-oc mRNA contains a target site for miR17. During osteoclastic differentiation, there was an inverse relationship between the cellular levels of miR17 (expressed as one of the six cluster genes of miR17~92) and PTP-oc mRNA. Overexpression of pre-miR17~92 in mouse osteoclast precursors reduced PTP-oc mRNA level and the size of the derived osteoclasts; whereas deletion of miR17~92 or inhibition of miR17 resulted in the formation of larger osteoclasts containing more nuclei that expressed higher PTP-oc mRNA levels and created larger resorption pits. Thus, PTP-oc-mediated osteoclast activation is modulated in part by miR17~92, particularly miR17. The miR17~92 osteoclast conditional knockout (cKO) mutants, generated by breeding miR17~92loxp/loxp mice with Ctsk-Cre mice, had lower Tb.BV/TV, Tb.BMD, Tb.Conn-Dens, Tb.N, and Tb.Th, but larger Tb.Sp, and greater bone resorption without a change in bone formation compared to littermate controls. The cKO marrow-derived osteoclasts were twice as large, contained twice as many nuclei, and produced twice as large resorption pits as osteoclasts of littermate controls. The expression of genes associated with osteoclast activation was increased in cKO osteoclasts, suggesting that deletion of miR17~92 in osteoclasts promotes osteoclast activation. The cKO osteoblasts did not show differences in cellular miR17 level, alkaline phosphatase activity, and bone nodule formation ability. In conclusion, miR17-92 negatively regulates the osteoclast activity, in part via the miR17-mediated suppression of PTP-oc in osteoclasts.
Collapse
Affiliation(s)
- Kin-Hing William Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial V.A. Medical Center, Loma Linda, California 92357, U.S.A.,Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350, U.S.A
| | - Virginia M Stiffel
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial V.A. Medical Center, Loma Linda, California 92357, U.S.A
| | - Charles H Rundle
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial V.A. Medical Center, Loma Linda, California 92357, U.S.A.,Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350, U.S.A
| | - Mehran Amoui
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial V.A. Medical Center, Loma Linda, California 92357, U.S.A
| | - Jordan Tapia
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial V.A. Medical Center, Loma Linda, California 92357, U.S.A
| | - Tyler D White
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial V.A. Medical Center, Loma Linda, California 92357, U.S.A
| | - Matilda H-C Sheng
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350, U.S.A
| |
Collapse
|
8
|
Nguyen TM, Arthur A, Paton S, Hemming S, Panagopoulos R, Codrington J, Walkley CR, Zannettino ACW, Gronthos S. Loss of ephrinB1 in osteogenic progenitor cells impedes endochondral ossification and compromises bone strength integrity during skeletal development. Bone 2016; 93:12-21. [PMID: 27622886 DOI: 10.1016/j.bone.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
The EphB receptor tyrosine kinase family and their ephrinB ligands have been implicated as mediators of skeletal development and bone homeostasis in humans, where mutations in ephrinB1 contribute to frontonasal dysplasia and coronal craniosynostosis. In mouse models, ephrinB1 has been shown to be a critical factor mediating osteoblast function. The present study examined the functional importance of ephrinB1 during endochondral ossification using the Cre recombination system with targeted deletion of ephrinB1 (EfnB1fl/fl) in osteogenic progenitor cells, under the control of the osterix (Osx:Cre) promoter. The Osx:EfnB1-/- mice displayed aberrant bone growth during embryonic and postnatal skeletal development up to 4weeks of age, when compared to the Osx:Cre controls. Furthermore, compared to the Osx:Cre control mice, the Osx:EfnB1-/- mice exhibited significantly weaker and less rigid bones, with a reduction in trabecular/ cortical bone formation, reduced trabecular architecture and a reduction in the size of the growth plates at the distal end of the femora from newborn through to 4weeks of age. The aberrant bone formation correlated with increased numbers of tartrate resistant acid phosphatase positive osteoclasts and decreased numbers of bone lining osteoblasts in 4week old Osx:EfnB1-/- mice, compared to Osx:Cre control mice. Taken together, these observations demonstrate the importance of ephrinB1 signalling between cells of the skeleton required for endochondral ossification.
Collapse
Affiliation(s)
- Thao M Nguyen
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Division of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Sarah Hemming
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Romana Panagopoulos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - John Codrington
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Vic, Australia
| | - Andrew C W Zannettino
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|