1
|
Melkikh AV. Why does a cell function? New arguments in favor of quantum effects. Biosystems 2024; 245:105311. [PMID: 39173899 DOI: 10.1016/j.biosystems.2024.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
In this study, the complexities of intracellular processes have been analyzed, including DNA folding, alternative splicing, mitochondrial function, and enzyme transport in lysosomes. Based on a previously proposed hypothesis (Levinthal's generalized paradox), a conclusion is made that all abovementioned processes cannot be realized with sufficient accuracy and in a realistic timeframe within the framework of classical physics. It is unclear why the cell functions at all. For the cell to function, its internal environment must be highly structured. In this regard, the cell shares similarities with computational devices (computers). In this study, quantum models of interactions between biologically important molecules were constructed, taking into account the long-range effects. One significant aspect of these models is the special role of the phase of the wavefunction, which serves as a controlling parameter. Experiments have been proposed that may confirm or refute these models.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| |
Collapse
|
2
|
Poignant F, Pariset E, Plante I, Ponomarev AL, Evain T, Viger L, Slaba TC, Blattnig SR, Costes SV. DNA break clustering as a predictor of cell death across various radiation qualities: influence of cell size, cell asymmetry, and beam orientation. Integr Biol (Camb) 2024; 16:zyae015. [PMID: 39299711 DOI: 10.1093/intbio/zyae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.
Collapse
Affiliation(s)
- Floriane Poignant
- Analytical Mechanics Associates Inc., 21 Enterprise Parkway, Hampton, VA 23666, United States
| | - Eloise Pariset
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, United States
| | - Ianik Plante
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States
| | | | - Trevor Evain
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Louise Viger
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Tony C Slaba
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Steve R Blattnig
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Sylvain V Costes
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
| |
Collapse
|
3
|
Ibarra J, Hershenhouse T, Almassalha L, Walterhouse D, Backman V, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. Front Cell Dev Biol 2023; 11:1293891. [PMID: 38020905 PMCID: PMC10662331 DOI: 10.3389/fcell.2023.1293891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Tyler Hershenhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, United States
| | - David Walterhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Kyle L. MacQuarrie
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
5
|
Ibarra J, Hershenhouse T, Almassalha L, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540394. [PMID: 37214969 PMCID: PMC10197681 DOI: 10.1101/2023.05.11.540394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Tyler Hershenhouse
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL
| | - Kyle L MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| |
Collapse
|
6
|
Perničková K, Kopecký D. Visualizing Chromosome Territories and Nuclear Architecture of Large Plant Genomes Using Alien Introgressions. Methods Mol Biol 2023; 2672:365-376. [PMID: 37335489 DOI: 10.1007/978-1-0716-3226-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Visualization of chromosome territories is a challenging task in plant genomes due to the lack of chromosome-specific probes, especially in species with large genomes. On the other hand, combination of flow sorting, genomic in situ hybridization (GISH), confocal microscopy, and employment of software for 3D modeling enables to visualize and characterize chromosome territories (CT) in interspecific hybrids. Here, we describe the protocol for the analysis of CTs in wheat-rye and wheat-barley hybrids, including amphiploids and introgression forms, where a pair of chromosomes or chromosome arms from one species is introgressed into the genome of another species. In this way, the architecture and dynamics of CTs in various tissues and different stages of cell cycle can be analyzed.
Collapse
Affiliation(s)
- Kateřina Perničková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - David Kopecký
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic.
| |
Collapse
|
7
|
Fritz AJ, Ghule PN, Toor R, Dillac L, Perelman J, Boyd J, Lian JB, Gordon JA, Frietze S, Van Wijnen A, Stein JL, Stein GS. Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle. Crit Rev Eukaryot Gene Expr 2023; 33:85-97. [PMID: 37017672 PMCID: PMC10826887 DOI: 10.1615/critreveukaryotgeneexpr.2022046190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Rabail Toor
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Louis Dillac
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Jonah Perelman
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Joseph Boyd
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Johnathan A.R. Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont, USA
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Andre Van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| |
Collapse
|
8
|
Geometrical Properties of the Nucleus and Chromosome Intermingling Are Possible Major Parameters of Chromosome Aberration Formation. Int J Mol Sci 2022; 23:ijms23158638. [PMID: 35955776 PMCID: PMC9368922 DOI: 10.3390/ijms23158638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Ionizing radiation causes chromosome aberrations, which are possible biomarkers to assess space radiation cancer risks. Using the Monte Carlo codes Relativistic Ion Tracks (RITRACKS) and Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage (RITCARD), we investigated how geometrical properties of the cell nucleus, irradiated with ion beams of linear energy transfer (LET) ranging from 0.22 keV/μm to 195 keV/μm, influence the yield of simple and complex exchanges. We focused on the effect of (1) nuclear volume by considering spherical nuclei of varying radii; (2) nuclear shape by considering ellipsoidal nuclei of varying thicknesses; (3) beam orientation; and (4) chromosome intermingling by constraining or not constraining chromosomes in non-overlapping domains. In general, small nuclear volumes yield a higher number of complex exchanges, as compared to larger nuclear volumes, and a higher number of simple exchanges for LET < 40 keV/μm. Nuclear flattening reduces complex exchanges for high-LET beams when irradiated along the flattened axis. The beam orientation also affects yields for ellipsoidal nuclei. Reducing chromosome intermingling decreases both simple and complex exchanges. Our results suggest that the beam orientation, the geometry of the cell nucleus, and the organization of the chromosomes within are important parameters for the formation of aberrations that must be considered to model and translate in vitro results to in vivo risks.
Collapse
|
9
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
10
|
Valenzuela-Muñoz V, Gallardo-Escárate C, Benavente BP, Valenzuela-Miranda D, Núñez-Acuña G, Escobar-Sepulveda H, Váldes JA. Whole-Genome Transcript Expression Profiling Reveals Novel Insights into Transposon Genes and Non-Coding RNAs during Atlantic Salmon Seawater Adaptation. BIOLOGY 2021; 11:1. [PMID: 35052999 PMCID: PMC8772943 DOI: 10.3390/biology11010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
The growing amount of genome information and transcriptomes data available allows for a better understanding of biological processes. However, analysis of complex transcriptomic experimental designs involving different conditions, tissues, or times is relevant. This study proposes a novel approach to analyze complex data sets combining transcriptomes and miRNAs at the chromosome-level genome. Atlantic salmon smolts were transferred to seawater under two strategies: (i) fish group exposed to gradual salinity changes (GSC) and (ii) fish group exposed to a salinity shock (SS). Gills, intestine, and head kidney samples were used for total RNA extraction, followed by mRNA and small RNA illumina sequencing. Different expression patterns among the tissues and treatments were observed through a whole-genome transcriptomic approach. Chromosome regions highly expressed between experimental conditions included a great abundance of transposable elements. In addition, differential expression analysis showed a greater number of transcripts modulated in response to SS in gills and head kidney. miRNA expression analysis suggested a small number of miRNAs involved in the smoltification process. However, target analysis of these miRNAs showed a regulatory role in growth, stress response, and immunity. This study is the first to evidence the interplaying among mRNAs and miRNAs and the structural relationship at the genome level during Atlantic salmon smoltification.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Bárbara P. Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Hugo Escobar-Sepulveda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Juan Antonio Váldes
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| |
Collapse
|
11
|
Karamysheva T, Romanenko S, Makunin A, Rajičić M, Bogdanov A, Trifonov V, Blagojević J, Vujošević M, Orishchenko K, Rubtsov N. New Data on Organization and Spatial Localization of B-Chromosomes in Cell Nuclei of the Yellow-Necked Mouse Apodemus flavicollis. Cells 2021; 10:cells10071819. [PMID: 34359988 PMCID: PMC8305704 DOI: 10.3390/cells10071819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.
Collapse
Affiliation(s)
- Tatyana Karamysheva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1332)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.R.); (V.T.)
| | | | - Marija Rajičić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.R.); (V.T.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Jelena Blagojević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Mladen Vujošević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Konstantin Orishchenko
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay Rubtsov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Imperador CHL, Rodrigues VLCC, Mello MLS. The Topological Distribution of the Chromocenter in Panstrongylus megistus (Burmeister) Malpighian Tubule Cells Examined by Confocal Microscopy. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - Maria Luiza S. Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp)
| |
Collapse
|
13
|
Das P, Shen T, McCord RP. Inferring chromosome radial organization from Hi-C data. BMC Bioinformatics 2020; 21:511. [PMID: 33167851 PMCID: PMC7654587 DOI: 10.1186/s12859-020-03841-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The nonrandom radial organization of eukaryotic chromosome territories (CTs) inside the nucleus plays an important role in nuclear functional compartmentalization. Increasingly, chromosome conformation capture (Hi-C) based approaches are being used to characterize the genome structure of many cell types and conditions. Computational methods to extract 3D arrangements of CTs from this type of pairwise contact data will thus increase our ability to analyze CT organization in a wider variety of biological situations. RESULTS A number of full-scale polymer models have successfully reconstructed the 3D structure of chromosome territories from Hi-C. To supplement such methods, we explore alternative, direct, and less computationally intensive approaches to capture radial CT organization from Hi-C data. We show that we can infer relative chromosome ordering using PCA on a thresholded inter-chromosomal contact matrix. We simulate an ensemble of possible CT arrangements using a force-directed network layout algorithm and propose an approach to integrate additional chromosome properties into our predictions. Our CT radial organization predictions have a high correlation with microscopy imaging data for various cell nucleus geometries (lymphoblastoid, skin fibroblast, and breast epithelial cells), and we can capture previously documented changes in senescent and progeria cells. CONCLUSIONS Our analysis approaches provide rapid and modular approaches to screen for alterations in CT organization across widely available Hi-C data. We demonstrate which stages of the approach can extract meaningful information, and also describe limitations of pairwise contacts alone to predict absolute 3D positions.
Collapse
Affiliation(s)
- Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| | - Rachel Patton McCord
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
14
|
Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Panthum T, Griffin DK, Srikulnath K. Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome. Cells 2020; 9:cells9112386. [PMID: 33142713 PMCID: PMC7692289 DOI: 10.3390/cells9112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
- Correspondence: ; Tel.: +66-2562-5644
| |
Collapse
|
15
|
Liu R, Ding J. Chromosomal Repositioning and Gene Regulation of Cells on a Micropillar Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35799-35812. [PMID: 32667177 DOI: 10.1021/acsami.0c05883] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While various cell responses on material surfaces have been examined, relatively few reports are focused on significant self-deformation of cell nuclei and corresponding chromosomal repositioning. Herein, we prepared a micropillar array of poly(lactide-co-glycolide) (PLGA) and observed significant nuclear deformation of HeLa cells on the polymeric micropillars. In particular, we detected the territory positioning of chromosomes 18 and 19 and gene expression profiles of HeLa cells on the micropillar array using fluorescence in situ hybridization and a DNA microarray. Chromosome 18 was found to be translocated closer to the nuclear periphery than chromosome 19 on the micropillar array. With the repositioning of chromosomal territories, HeLa cells changed their gene expressions on the micropillar array with 180 genes upregulated and 255 genes downregulated for all of the 23 pairs of chromosomes under the experimental conditions and the employed Bioinformatics criteria. Hence, this work deepens the understanding on cell-material interactions by revealing that material surface topography can probably influence chromosomal repositioning in the nuclei and gene expressions of cells.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
16
|
Imperador CHL, Bardella VB, Dos Anjos EHM, Rodrigues VLCC, Cabral-de-Mello DC, Mello MLS. Spatial Distribution of Heterochromatin Bodies in the Nuclei of Triatoma infestans (Klug). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:567-574. [PMID: 32393416 DOI: 10.1017/s143192762000149x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constitutive heterochromatin typically exhibits low gene density and is commonly found adjacent or close to the nuclear periphery, in contrast to transcriptionally active genes concentrated in the innermost nuclear region. In Triatoma infestans cells, conspicuous constitutive heterochromatin forms deeply stained structures named chromocenters. However, to the best of our knowledge, no information exists regarding whether these chromocenters acquire a precise topology in the cell nuclei or whether their 18S rDNA, which is important for ribosome function, faces the nuclear center preferentially. In this work, the spatial distribution of fluorescent Feulgen-stained chromocenters and the distribution of their 18S rDNA was analyzed in Malpighian tubule cells of T. infestans using confocal microscopy. The chromocenters were shown to be spatially positioned relatively close to the nuclear periphery, though not adjacent to it. The variable distance between the chromocenters and the nuclear periphery suggests mobility of these bodies within the cell nuclei. The distribution of 18S rDNA at the edge of the chromocenters was not found to face the nuclear interior exclusively. Because the genome regions containing 18S rDNA in the chromocenters also face the nuclear periphery, the proximity of the chromocenters to this nuclear region is not assumed to be associated with overall gene silencing.
Collapse
Affiliation(s)
- Carlos Henrique L Imperador
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Rua Monteiro Lobato 255, 13083-862Campinas, SP, Brazil
| | - Vanessa B Bardella
- Department of Biology, Institute of Biosciences, State University of São Paulo (Unesp), Avenida 24-A, 1515, 13506-900Rio Claro, SP, Brazil
| | - Eli Heber M Dos Anjos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Rua Monteiro Lobato 255, 13083-862Campinas, SP, Brazil
| | - Vera L C C Rodrigues
- Superintendence for Control of Endemic Diseases (SUCEN), Rua Afonso Pessini, 86, 13845-206Mogi-Guaçu, SP, Brazil
| | - Diogo C Cabral-de-Mello
- Department of Biology, Institute of Biosciences, State University of São Paulo (Unesp), Avenida 24-A, 1515, 13506-900Rio Claro, SP, Brazil
| | - Maria Luiza S Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Rua Monteiro Lobato 255, 13083-862Campinas, SP, Brazil
| |
Collapse
|
17
|
Denholtz M, Zhu Y, He Z, Lu H, Isoda T, Döhrmann S, Nizet V, Murre C. Upon microbial challenge, human neutrophils undergo rapid changes in nuclear architecture and chromatin folding to orchestrate an immediate inflammatory gene program. Genes Dev 2020; 34:149-165. [PMID: 31919189 PMCID: PMC7000913 DOI: 10.1101/gad.333708.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Differentiating neutrophils undergo large-scale changes in nuclear morphology. How such alterations in structure are established and modulated upon exposure to microbial agents is largely unknown. Here, we found that prior to encounter with bacteria, an armamentarium of inflammatory genes was positioned in a transcriptionally passive environment suppressing premature transcriptional activation. Upon microbial exposure, however, human neutrophils rapidly (<3 h) repositioned the ensemble of proinflammatory genes toward the transcriptionally permissive compartment. We show that the repositioning of genes was closely associated with the swift recruitment of cohesin across the inflammatory enhancer landscape, permitting an immediate transcriptional response upon bacterial exposure. We found that activated enhancers, marked by increased deposition of H3K27Ac, were highly enriched for cistromic elements associated with PU.1, CEBPB, TFE3, JUN, and FOSL2 occupancy. These data reveal how upon microbial challenge the cohesin machinery is recruited to an activated enhancer repertoire to instruct changes in chromatin folding, nuclear architecture, and to activate an inflammatory gene program.
Collapse
Affiliation(s)
- Matthew Denholtz
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Yina Zhu
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Zhaoren He
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Hanbin Lu
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Takeshi Isoda
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| | - Simon Döhrmann
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California 92093, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Cornelis Murre
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92039, USA
| |
Collapse
|
18
|
Bera M, Kalyana Sundaram RV. Chromosome Territorial Organization Drives Efficient Protein Complex Formation: A Hypothesis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:541-548. [PMID: 31543715 PMCID: PMC6747946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In eukaryotes, chromosomes often form a transcriptional kissing loop during interphase. We propose that these kissing loops facilitate the formation of protein complexes. mRNA transcripts from these loops could cluster together into phase-separated nuclear granules. Their export into the ER could be ensured by guided diffusion through the inter-chromatin space followed by association with nuclear baskets and export factors. Inside the ER, these mRNAs would form a translation hub. Juxtaposed translation of these mRNAs would increase the cis/trans protein complex assembly among the nascent protein chains. Eukaryotes might employ this pathway to increase complex formation efficiency.
Collapse
Affiliation(s)
- Manindra Bera
- To whom all correspondence should be addressed: Manindra Bera, Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT USA, 06520; Tel: 203-737-3269,
| | | |
Collapse
|
19
|
Koláčková V, Perničková K, Vrána J, Duchoslav M, Jenkins G, Phillips D, Turkosi E, Šamajová O, Sedlářová M, Šamaj J, Doležel J, Kopecký D. Nuclear Disposition of Alien Chromosome Introgressions into Wheat and Rye Using 3D-FISH. Int J Mol Sci 2019; 20:ijms20174143. [PMID: 31450653 PMCID: PMC6747102 DOI: 10.3390/ijms20174143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/07/2023] Open
Abstract
During interphase, the chromosomes of eukaryotes decondense and they occupy distinct regions of the nucleus, called chromosome domains or chromosome territories (CTs). In plants, the Rabl’s configuration, with telomeres at one pole of nucleus and centromeres at the other, appears to be common, at least in plants with large genomes. It is unclear whether individual chromosomes of plants adopt defined, genetically determined addresses within the nucleus, as is the case in mammals. In this study, the nuclear disposition of alien rye and barley chromosomes and chromosome arm introgressions into wheat while using 3D-FISH in various somatic tissues was analyzed. All of the introgressed chromosomes showed Rabl’s orientation, but their relative positions in the nuclei were less clear. While in most cases pairs of introgressed chromosomes occupied discrete positions, their association (proximity) along their entire lengths was rare, and partial association only marginally more frequent. This arrangement is relatively stable in various tissues and during various stages of the cell cycle. On the other hand, the length of a chromosome arm appears to play a role in its positioning in a nucleus: shorter chromosomes or chromosome arms tend to be located closer to the centre of the nucleus, while longer arms are more often positioned at the nuclear periphery.
Collapse
Affiliation(s)
- Veronika Koláčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Kateřina Perničková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - Martin Duchoslav
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, Wales SY23 3DA, UK
| | - Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, Wales SY23 3DA, UK
| | - Edina Turkosi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, P.O. Box 19, Hungary
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| |
Collapse
|
20
|
Dynamics of the spatial orientation of the pericentromeric heterochromatin regions in the polytene chromosomes of ovarian nurse cells in the Drosophila melanogaster (Diptera: Drosophilidae) oogenesis. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Perničková K, Koláčková V, Lukaszewski AJ, Fan C, Vrána J, Duchoslav M, Jenkins G, Phillips D, Šamajová O, Sedlářová M, Šamaj J, Doležel J, Kopecký D. Instability of Alien Chromosome Introgressions in Wheat Associated with Improper Positioning in the Nucleus. Int J Mol Sci 2019; 20:ijms20061448. [PMID: 30909382 PMCID: PMC6472020 DOI: 10.3390/ijms20061448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
Alien introgressions introduce beneficial alleles into existing crops and hence, are widely used in plant breeding. Generally, introgressed alien chromosomes show reduced meiotic pairing relative to the host genome, and may be eliminated over generations. Reduced pairing appears to result from a failure of some telomeres of alien chromosomes to incorporate into the leptotene bouquet at the onset of meiosis, thereby preventing chiasmate pairing. In this study, we analysed somatic nuclei of rye introgressions in wheat using 3D-FISH and found that while introgressed rye chromosomes or chromosome arms occupied discrete positions in the Rabl’s orientation similar to chromosomes of the wheat host, their telomeres frequently occupied positions away from the nuclear periphery. The frequencies of such abnormal telomere positioning were similar to the frequencies of out-of-bouquet telomere positioning at leptotene, and of pairing failure at metaphase I. This study indicates that improper positioning of alien chromosomes that leads to reduced pairing is not a strictly meiotic event but rather a consequence of a more systemic problem. Improper positioning in the nuclei probably impacts the ability of introgressed chromosomes to migrate into the telomere bouquet at the onset of meiosis, preventing synapsis and chiasma establishment, and leading to their gradual elimination over generations.
Collapse
Affiliation(s)
- Kateřina Perničková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| | - Veronika Koláčková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Chaolan Fan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| | - Martin Duchoslav
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, Wales SY23 3DA, UK.
| | - Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, Wales SY23 3DA, UK.
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| | - David Kopecký
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| |
Collapse
|
22
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
23
|
Fritz AJ, Gillis NE, Gerrard DL, Rodriguez PD, Hong D, Rose JT, Ghule PN, Bolf EL, Gordon JA, Tye CE, Boyd JR, Tracy KM, Nickerson JA, van Wijnen AJ, Imbalzano AN, Heath JL, Frietze SE, Zaidi SK, Carr FE, Lian JB, Stein JL, Stein GS. Higher order genomic organization and epigenetic control maintain cellular identity and prevent breast cancer. Genes Chromosomes Cancer 2019; 58:484-499. [PMID: 30873710 DOI: 10.1002/gcc.22731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells establish and sustain structural and functional integrity of the genome to support cellular identity and prevent malignant transformation. In this review, we present a strategic overview of epigenetic regulatory mechanisms including histone modifications and higher order chromatin organization (HCO) that are perturbed in breast cancer onset and progression. Implications for dysfunctions that occur in hormone regulation, cell cycle control, and mitotic bookmarking in breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer stem cell activities. The architectural organization of regulatory machinery is addressed within the contexts of translating cancer-compromised genomic organization to advances in breast cancer risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high specificity and minimal off target effects.
Collapse
Affiliation(s)
- A J Fritz
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - N E Gillis
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - D L Gerrard
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - P D Rodriguez
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - D Hong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - J T Rose
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - P N Ghule
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - E L Bolf
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J A Gordon
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - C E Tye
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J R Boyd
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - K M Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J A Nickerson
- Division of Genes and Development of the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - A J van Wijnen
- Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - A N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J L Heath
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - S E Frietze
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - S K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - F E Carr
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - G S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
24
|
Fowler KE, Mandawala AA, Griffin DK. The role of chromosome segregation and nuclear organisation in human subfertility. Biochem Soc Trans 2019; 47:425-432. [DOI: 10.1042/bst20180231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Spermatogenesis is central to successful sexual reproduction, producing large numbers of haploid motile male gametes. Throughout this process, a series of equational and reductional chromosome segregation precedes radical repackaging of the haploid genome. Faithful chromosome segregation is thus crucial, as is an ordered spatio-temporal ‘dance’ of packing a large amount of chromatin into a very small space. Ergo, when the process goes wrong, this is associated with an improper chromosome number, nuclear position and/or chromatin damage in the sperm head. Generally, screening for overall DNA damage is relatively commonplace in clinics, but aneuploidy assessment is less so and nuclear organisation studies form the basis of academic research. Several studies have focussed on the role of chromosome segregation, nuclear organisation and analysis of sperm morphometry in human subfertility observing significant alterations in some cases, especially of the sex chromosomes. Importantly, sperm DNA damage has been associated with infertility and both extrinsic (e.g. lifestyle) and intrinsic (e.g. reactive oxygen species levels) factors, and while some DNA-strand breaks are repaired, unexpected breaks can cause differential chromatin packaging and further breakage. A ‘healthy’ sperm nucleus (with the right number of chromosomes, nuclear organisation and minimal DNA damage) is thus an essential part of reproduction. The purpose of this review is to summarise state of the art in the fields of sperm aneuploidy assessment, nuclear organisation and DNA damage studies.
Collapse
Affiliation(s)
- Katie E. Fowler
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, U.K
| | - Anjali A. Mandawala
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, U.K
| | | |
Collapse
|
25
|
Sequence Composition and Evolution of Mammalian B Chromosomes. Genes (Basel) 2018; 9:genes9100490. [PMID: 30309007 PMCID: PMC6211034 DOI: 10.3390/genes9100490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
B chromosomes (Bs) revealed more than a hundred years ago remain to be some of the most mysterious elements of the eukaryotic genome. Their origin and evolution, DNA composition, transcriptional activity, impact on adaptiveness, behavior in meiosis, and transfer to the next generation require intensive investigations using modern methods. Over the past years, new experimental techniques have been applied and helped us gain a deeper insight into the nature of Bs. Here, we consider mammalian Bs, taking into account data on their DNA sequencing, transcriptional activity, positions in nuclei of somatic and meiotic cells, and impact on genome functioning. Comparative cytogenetics of Bs suggests the existence of different mechanisms of their formation and evolution. Due to the long and complicated evolvement of Bs, the similarity of their morphology could be explained by the similar mechanisms involved in their development while the difference between Bs even of the same origin could appear due to their positioning at different stages of their evolution. A complex analysis of their DNA composition and other features is required to clarify the origin and evolutionary history of Bs in the species studied. The intraspecific diversity of Bs makes this analysis a very important element of B chromosome studies.
Collapse
|
26
|
Zaidi SK, Fritz AJ, Tracy KM, Gordon JA, Tye CE, Boyd J, Van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 2018; 69:1-10. [PMID: 29759441 PMCID: PMC6102062 DOI: 10.1016/j.jbior.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A Nickerson
- Department of Pediatrics, UMass Medical School, Worcester, MA, United States
| | - Antony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, United States
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
27
|
Abstract
Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention.
Collapse
|
28
|
Garcia A, Huang D, Righolt A, Righolt C, Kalaw MC, Mathur S, McAvoy E, Anderson J, Luedke A, Itorralba J, Mai S. Super-resolution structure of DNA significantly differs in buccal cells of controls and Alzheimer's patients. J Cell Physiol 2017; 232:2387-2395. [PMID: 27996096 PMCID: PMC5485033 DOI: 10.1002/jcp.25751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023]
Abstract
The advent of super-resolution microscopy allowed for new insights into cellular and physiological processes of normal and diseased cells. In this study, we report for the first time on the super-resolved DNA structure of buccal cells from patients with Alzheimer's disease (AD) versus age- and gender-matched healthy, non-caregiver controls. In this super-resolution study cohort of 74 participants, buccal cells were collected and their spatial DNA organization in the nucleus examined by 3D Structured Illumination Microscopy (3D-SIM). Quantitation of the super-resolution DNA structure revealed that the nuclear super-resolution DNA structure of individuals with AD significantly differs from that of their controls (p < 0.05) with an overall increase in the measured DNA-free/poor spaces. This represents a significant increase in the interchromatin compartment. We also find that the DNA structure of AD significantly differs in mild, moderate, and severe disease with respect to the DNA-containing and DNA-free/poor spaces. We conclude that whole genome remodeling is a feature of buccal cells in AD.
Collapse
Affiliation(s)
- Angeles Garcia
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - David Huang
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Amanda Righolt
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Christiaan Righolt
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Maria Carmela Kalaw
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Shubha Mathur
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| | - Elizabeth McAvoy
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - James Anderson
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - Angela Luedke
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - Justine Itorralba
- Department of Medicine (Geriatrics) and Neuroscience CenterQueen's UniversitySMOLKingstonOntarioCanada
| | - Sabine Mai
- Department of Physiology and PathophysiologyManitoba Institute of Cell BiologyUniversity of ManitobaCancerCare ManitobaWinnipegManitobaCanada
| |
Collapse
|
29
|
Fritz AJ, Ghule PN, Boyd JR, Tye CE, Page NA, Hong D, Shirley DJ, Weinheimer AS, Barutcu AR, Gerrard DL, Frietze S, van Wijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Intranuclear and higher-order chromatin organization of the major histone gene cluster in breast cancer. J Cell Physiol 2017; 233:1278-1290. [PMID: 28504305 DOI: 10.1002/jcp.25996] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Natalie A Page
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont.,Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David J Shirley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Adam S Weinheimer
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Ahmet R Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Diana L Gerrard
- Medical Laboratory and Radiation Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, Vermont
| | - Seth Frietze
- Medical Laboratory and Radiation Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
30
|
Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories. Chromosoma 2017; 126:655-667. [PMID: 28343235 DOI: 10.1007/s00412-017-0629-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/β-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.
Collapse
|
31
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
32
|
Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus. PLoS One 2017; 12:e0171290. [PMID: 28158219 PMCID: PMC5291520 DOI: 10.1371/journal.pone.0171290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/19/2017] [Indexed: 02/08/2023] Open
Abstract
Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO-a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.
Collapse
|
33
|
Sathitruangsak C, Righolt CH, Klewes L, Tung Chang D, Kotb R, Mai S. Distinct and shared three-dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma. Int J Cancer 2017; 140:400-410. [PMID: 27711972 PMCID: PMC5132008 DOI: 10.1002/ijc.30461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/11/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022]
Abstract
The consistent appearance of specific chromosomal translocations in multiple myeloma has suggested that the positioning of chromosomes in the interphase nucleus might play a role in the occurrence of particular chromosomal rearrangements associated with malignant transformation. Using fluorescence in situ hybridization, we have determined the positions of selected chromosome pairs (18 and 19, 9 and 22, 4 and 14, 14 and 16, 11 and 14) in interphase nuclei of myeloma cells compared to normal lymphocytes of treatment-naïve patients. All chromosome pairs were arranged in a nonrandom pattern. Chromosomes commonly involved in myeloma-associated translocations (4 and 14, 14 and 16, 11 and 14) were found in close spatial proximity, and this is correlated with the occurrence of overlapping chromosome territories. The spatial distribution of chromosomes may increase the possibility of chromosomal translocations in multiple myeloma.
Collapse
Affiliation(s)
- Chirawadee Sathitruangsak
- Department of Cell BiologyUniversity of Manitoba, Research Institute of Hematology and Oncology, CancerCare ManitobaWinnipegManitobaCanada
- Division of Medical OncologyDepartment of Internal MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Christiaan H. Righolt
- Department of Cell BiologyUniversity of Manitoba, Research Institute of Hematology and Oncology, CancerCare ManitobaWinnipegManitobaCanada
| | - Ludger Klewes
- Department of Cell BiologyUniversity of Manitoba, Research Institute of Hematology and Oncology, CancerCare ManitobaWinnipegManitobaCanada
- Department of Cell BiologyCancerCare Manitoba, Genomic Centre for Cancer Research and Diagnosis (GCCRD)WinnipegManitobaCanada
| | - Doris Tung Chang
- Department of Cell BiologyUniversity of Manitoba, Research Institute of Hematology and Oncology, CancerCare ManitobaWinnipegManitobaCanada
| | - Rami Kotb
- Department of HaematologyCancerCare ManitobaWinnipegManitobaCanada
| | - Sabine Mai
- Department of Cell BiologyUniversity of Manitoba, Research Institute of Hematology and Oncology, CancerCare ManitobaWinnipegManitobaCanada
- Department of Cell BiologyCancerCare Manitoba, Genomic Centre for Cancer Research and Diagnosis (GCCRD)WinnipegManitobaCanada
- Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
34
|
Barutcu AR, Lian JB, Stein JL, Stein GS, Imbalzano AN. The connection between BRG1, CTCF and topoisomerases at TAD boundaries. Nucleus 2017; 8:150-155. [PMID: 28060558 PMCID: PMC5403164 DOI: 10.1080/19491034.2016.1276145] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The eukaryotic genome is partitioned into topologically associating domains (TADs). Despite recent advances characterizing TADs and TAD boundaries, the organization of these structures is an important dimension of genome architecture and function that is not well understood. Recently, we demonstrated that knockdown of BRG1, an ATPase driving the chromatin remodeling activity of mammalian SWI/SNF enzymes, globally alters long-range genomic interactions and results in a reduction of TAD boundary strength. We provided evidence suggesting that this effect may be due to BRG1 affecting nucleosome occupancy around CTCF sites present at TAD boundaries. In this review, we elaborate on our findings and speculate that BRG1 may contribute to the regulation of the structural and functional properties of chromatin at TAD boundaries by affecting the function or the recruitment of CTCF and DNA topoisomerase complexes.
Collapse
Affiliation(s)
- A Rasim Barutcu
- a Department of Cell and Developmental Biology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Jane B Lian
- b Department of Biochemistry , University of Vermont College of Medicine , Burlington , VT , USA
| | - Janet L Stein
- b Department of Biochemistry , University of Vermont College of Medicine , Burlington , VT , USA
| | - Gary S Stein
- b Department of Biochemistry , University of Vermont College of Medicine , Burlington , VT , USA
| | - Anthony N Imbalzano
- a Department of Cell and Developmental Biology , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
35
|
Jin DJ, Mata Martin C, Sun Z, Cagliero C, Zhou YN. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells. Crit Rev Biochem Mol Biol 2016; 52:96-106. [PMID: 28006965 DOI: 10.1080/10409238.2016.1269717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques. Co-imaging of RNA polymerase (RNA Pol) with DNA and transcription elongation factors involved in ribosomal RNA (rRNA) synthesis, and ribosome biogenesis has revealed similarities between bacteria and eukaryotes in the spatial organization of the transcription machinery for growth genes, most of which are rRNA genes. Evidence supports the notion that RNA Pol molecules are concentrated, forming foci at the clustering of rRNA operons resembling the eukaryotic nucleolus. RNA Pol foci are proposed to be active transcription factories for both rRNA genes expression and ribosome biogenesis to support maximal growth in optimal growing conditions. Thus, in fast-growing bacterial cells, RNA Pol foci mimic eukaryotic Pol I activity, and transcription factories resemble nucleolus-like compartmentation. In addition, the transcription and replication machineries are mostly segregated in space to avoid the conflict between the two major cellular functions in fast-growing cells.
Collapse
Affiliation(s)
- Ding Jun Jin
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Carmen Mata Martin
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Zhe Sun
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Cedric Cagliero
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| | - Yan Ning Zhou
- a Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory , National Cancer Institute, National Institutes of Health , Frederick , MD
| |
Collapse
|
36
|
Barutcu AR, Hong D, Lajoie BR, McCord RP, van Wijnen AJ, Lian JB, Stein JL, Dekker J, Imbalzano AN, Stein GS. RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1389-1397. [PMID: 27514584 PMCID: PMC5071180 DOI: 10.1016/j.bbagrm.2016.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
RUNX1 is a transcription factor functioning both as an oncogene and a tumor suppressor in breast cancer. RUNX1 alters chromatin structure in cooperation with chromatin modifier and remodeling enzymes. In this study, we examined the relationship between RUNX1-mediated transcription and genome organization. We characterized genome-wide RUNX1 localization and performed RNA-seq and Hi-C in RUNX1-depleted and control MCF-7 breast cancer cells. RNA-seq analysis showed that RUNX1 depletion led to up-regulation of genes associated with chromatin structure and down-regulation of genes related to extracellular matrix biology, as well as NEAT1 and MALAT1 lncRNAs. Our ChIP-Seq analysis supports a prominent role for RUNX1 in transcriptional activation. About 30% of all RUNX1 binding sites were intergenic, indicating diverse roles in promoter and enhancer regulation and suggesting additional functions for RUNX1. Hi-C analysis of RUNX1-depleted cells demonstrated that overall three-dimensional genome organization is largely intact, but indicated enhanced association of RUNX1 near Topologically Associating Domain (TAD) boundaries and alterations in long-range interactions. These results suggest an architectural role for RUNX1 in fine-tuning local interactions rather than in global organization. Our results provide novel insight into RUNX1-mediated perturbations of higher-order genome organization that are functionally linked with RUNX1-dependent compromised gene expression in breast cancer cells.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Deli Hong
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Bryan R Lajoie
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Rachel Patton McCord
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jane B Lian
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | - Gary S Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|