1
|
Palmieri M, Catimel B, Mouradov D, Sakthianandeswaren A, Kapp E, Ang CS, Williamson NA, Nowell CJ, Christie M, Desai J, Gibbs P, Burgess AW, Sieber OM. PI3K-alpha translocation mediates nuclear PtdIns(3,4,5)P 3 effector signaling in colorectal cancer. Mol Cell Proteomics 2023; 22:100529. [PMID: 36931626 PMCID: PMC10130476 DOI: 10.1016/j.mcpro.2023.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The canonical view of phosphatidylinositol 3-kinase alpha (PI3Kα) signaling describes PtdIns(3,4,5)P3 generation and activation of downstream effectors at the plasma membrane or at microtubule-bound endosomes. Here, we show that colorectal cancer (CRC) cell lines exhibit a diverse plasma membrane-nuclear distribution of PI3Kα, controlling corresponding levels of subcellular PtdIns(3,4,5)P3 pools. PI3Kα nuclear translocation was mediated by the importin β-dependent nuclear import pathway. By PtdIns(3,4,5)P3 affinity capture mass spectrometry done in the presence of SDS on CRC cell lines with PI3Kα nuclear localization, we identified 867 potential nuclear PtdIns(3,4,5)P3 effector proteins. Nuclear PtdIns(3,4,5)P3 interactome proteins were characterized by non-canonical PtdIns(3,4,5)P3 binding domains and showed overrepresentation for nuclear membrane, nucleolus and nuclear speckles. The nuclear PtdIns(3,4,5)P3 interactome was enriched for proteins related to RNA metabolism, with splicing reporter assays and SC-35 foci staining suggesting a role of EGF-stimulated nuclear PI3Kα signaling in modulating pre-mRNA splicing. In patient tumors, nuclear p110α staining was associated with lower T stage and mucinous histology. These results indicate that PI3Kα translocation mediates nuclear PtdIns(3,4,5)P3 effector signaling in human CRC, modulating signaling responses.
Collapse
Affiliation(s)
- Michelle Palmieri
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Bruno Catimel
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Dmitri Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Anuratha Sakthianandeswaren
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Eugene Kapp
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia; Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cameron J Nowell
- Monash Institute for Pharmaceutical Science, Parkville, Victoria, 3052, Australia
| | - Michael Christie
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Pathology, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Jayesh Desai
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Department of Medical Oncology, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Medical Oncology, Western Health, Footscray, Victoria, 3011, Australia
| | - Antony W Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, 3050, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
2
|
Jimenez L, Mayoral-Varo V, Amenábar C, Ortega J, Sequeira JGN, Machuqueiro M, Mourato C, Silvestri R, Angeli A, Carta F, Supuran CT, Megías D, Ferreira BI, Link W. Multiplexed cellular profiling identifies an organoselenium compound as an inhibitor of CRM1-mediated nuclear export. Traffic 2022; 23:587-599. [PMID: 36353954 PMCID: PMC10099545 DOI: 10.1111/tra.12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Chromosomal region maintenance 1 (CRM1 also known as Xpo1 and exportin-1) is the receptor for the nuclear export controlling the intracellular localization and function of many cellular and viral proteins that play a crucial role in viral infections and cancer. The inhibition of CRM1 has emerged as a promising therapeutic approach to interfere with the lifecycle of many viruses, for the treatment of cancer, and to overcome therapy resistance. Recently, selinexor has been approved as the first CRM1 inhibitor for the treatment of multiple myeloma, providing proof of concept for this therapeutic option with a new mode of action. However, selinexor is associated with dose-limiting toxicity and hence, the discovery of alternative small molecule leads that could be developed as less toxic anticancer and antiviral therapeutics will have a significant impact in the clinic. Here, we report a CRM1 inhibitor discovery platform. The development of this platform includes reporter cell lines that monitor CRM1 activity by using red fluorescent protein or green fluorescent protein-labeled HIV-1 Rev protein with a strong heterologous nuclear export signal. Simultaneously, the intracellular localization of other proteins, to be interrogated for their capacity to undergo CRM1-mediated export, can be followed by co-culturing stable cell lines expressing fluorescent fusion proteins. We used this platform to interrogate the mode of nuclear export of several proteins, including PDK1, p110α, STAT5A, FOXO1, 3, 4 and TRIB2, and to screen a compound collection. We show that while p110α partially relies on CRM1-dependent nuclear export, TRIB2 is exported from the nucleus in a CRM1-independent manner. Compound screening revealed the striking activity of an organoselenium compound on the CRM1 nuclear export receptor.
Collapse
Affiliation(s)
- Lucia Jimenez
- Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Victor Mayoral-Varo
- Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Carlos Amenábar
- Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Judit Ortega
- Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - João G N Sequeira
- BioISI--Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Machuqueiro
- BioISI--Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cristiana Mourato
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy-Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Farmaceutica e Nutraceutica, Florence, Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Farmaceutica e Nutraceutica, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Farmaceutica e Nutraceutica, Florence, Italy
| | - Diego Megías
- Advanced Optical Microscopy Unit, Instituto de salud Carlos III, Madrid, Spain
| | - Bibiana I Ferreira
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Wolfgang Link
- Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
3
|
Identification of a cross-talk between EGFR and Wnt/beta-catenin signaling pathways in HepG2 liver cancer cells. Cell Signal 2020; 79:109885. [PMID: 33340661 DOI: 10.1016/j.cellsig.2020.109885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
EGFRis a transmembrane receptor tyrosine kinase involved in regulating cell proliferation, differentiation and survival. EGFR is actively pursued as a therapeutic target because its aberrant expression or activity has been reported in several cancers. Several studies have reported the nuclear localization of the EGFR in various cell types, however, its exact nuclear functions are not clear yet. In this study, we have generated GFP fusion constructs of EGFR and its mutants to analyze their subcellular localizationin normal and cancer cells and impact of its sub-cellular location on its various activities using immunoblotting, confocal microscopy, reporter assays, loss-of-function EGFR mutants, and EGFR specific small molecule inhibitors. We show that EGFR is involved in modulating TCF dependent β-catenin transcriptional activity in HepG2 cells in a similar fashion as IGF1R tyrosine kinase. Moreover, we show that cytoplasmic and nuclear functions are two independent activities of EGFR.
Collapse
|
4
|
Bano N, Hossain MM, Bhat AQ, Ayaz MO, Kumari M, Sandhu P, Akhter Y, Dar MJ. Analyzing structural differences between insulin receptor (IR) and IGF1R for designing small molecule allosteric inhibitors of IGF1R as novel anti-cancer agents. Growth Horm IGF Res 2020; 55:101343. [PMID: 32877816 DOI: 10.1016/j.ghir.2020.101343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
IR and insulin-like growth factor-1 receptor (IGF-1R) share high degree of sequence and structural similarity that hinders the development of anticancer drugs targeting IGF1R, which is dysregulated in many cancers. Although IR and IGF1R mediate their activities through similar signalling pathways, yet they show different physiological effects. The exact molecular mechanism(s) how IR and IGF1R exert their distinct functions remain largely unknown. Here, we performed in silico analysis and generated GFP-fusion proteins of wild type IR and its K1079R mutant to analyze their subcellular localization, cytoplasmic and nuclear activities in comparison to IGF1R and its K1055R mutant. We showed that, like K1055R mutation in IGF1R, K1079R mutation does not impede the subcellular localization and nuclear activities of IR. Although K1079R mutation significantly decreases the kinase activity of IR but not as much as K1055R mutation, which was seen to drastically reduce the kinase activity of IGF1R. Moreover, K1079 residue in IR is seen to be sitting in a pocket which is different than the allosteric inhibitor binding pocket present in its homologue (IGF1R). This is for the first time such a study has been conducted to identify structural differences between these receptors that could be exploited for designing small molecule allosteric inhibitor(s) of IGF1R as novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nasima Bano
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Md Mehedi Hossain
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Aadil Qadir Bhat
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Mir Owais Ayaz
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Monika Kumari
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Himachal Pradesh 176206, India
| | - Padmani Sandhu
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
5
|
|
6
|
Singh P, Bano N, Hossain MM, Basit R, Dar MJ. p110α and p110β isoforms of PI3K are involved in protection against H 2O 2 induced oxidative stress in cancer cells. Breast Cancer 2018; 26:378-385. [PMID: 30499025 DOI: 10.1007/s12282-018-0933-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Phosphatidylinositol-3 kinases (PI3Ks) are involved in regulating cell growth, proliferation, differentiation, apoptosis and survival. p110α and p110β, two ubiquitously expressed isoforms of PI3K signalling, are involved in growth factor mediated signaling and survival by generating second messengers. Earlier, we have generated GFP-fusion proteins of p110α and p110β and expressed them in normal and cancer cell-lines to investigate their subcellular localization and their role in various activities. Here, we sought to examine the role of p110α and p110β isoforms in protecting MCF-7 breast cancer cells against oxidative stress. MATERIAL METHODS We performed cytotoxicity assays, DNA transfection, Plasmid DNA preparation, western blotting, flourscence microscopy and statistical analysis. RESULTS To know whether p110α and p110β are involved in protecting MCF-7 breast cancer cells against oxidative stress, we subjected MCF-7 cells to H2O2 treatment and observed a dose dependent decrease in cell viability and a marked increase in the levels of pro-apoptotic markers which include PARP, Bcl-2, Bax and procaspase-9. We then over-expressed recombinant GFP-fusion p110α and p110β proteins in MCF-7 cells and observed a significant decrease in apoptosis and a concomitant increase in pAkt levels. CONCLUSION We report the involvement of p110α and p110β isoforms of Class 1A PI3K signalling in rescue from oxidative stress-induced apoptosis in MCF-7 cells in Akt dependent manner.
Collapse
Affiliation(s)
- Paramjeet Singh
- Academy of Scientific and Innovative Research, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, 180001, India
| | - Nasima Bano
- Academy of Scientific and Innovative Research, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, 180001, India
| | - Md Mehedi Hossain
- Academy of Scientific and Innovative Research, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, 180001, India
| | - Rafia Basit
- Academy of Scientific and Innovative Research, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, 180001, India
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research, New Delhi, India. .,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, 180001, India.
| |
Collapse
|
7
|
Jamwal G, Singh G, Dar MS, Singh P, Bano N, Syed SH, Sandhu P, Akhter Y, Monga SP, Dar MJ. Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:920-931. [PMID: 29621572 DOI: 10.1016/j.bbamcr.2018.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Abstract
IGF1R is a ubiquitous receptor tyrosine kinase that plays critical roles in cell proliferation, growth and survival. Clinical studies have demonstrated upregulation of IGF1R mediated signaling in a number of malignancies including colon, breast, and lung cancers. Overexpression of the IGF1R in these malignancies is associated with a poor prognosis and overall survival. IGF1R specific kinase inhibitors have failed in multiple clinical trials partly because of the complex nature of IGF1R signaling. Thus identifying new binding partners and allosteric sites on IGF1R are emerging areas of research. More recently, IGF1R has been shown to translocate into the nucleus and perform many functions. In this study, we generated a library of IGF1R deletion and point mutants to examine IGF1R subcellular localization and activation of downstream signaling pathways. We show that the nuclear localization of IGF1R is primarily defined by its cytoplasmic domain. We identified a cross-talk between IGF1R and Wnt/β-catenin signaling pathways and showed, for the first time, that IGF1R is associated with upregulation of TCF-mediated β-catenin transcriptional activity. Using loss-of-function mutants, deletion analysis and IGF1R specific inhibitor(s), we show that cytoplasmic and nuclear activities are two independent functions of IGF1R. Furthermore, we identified a unique loss-of-function mutation in IGF1R. This unique loss-of-function mutant retains only nuclear functions and sits in a pocket, outside ATP and substrate binding region, that is suited for designing allosteric inhibitors of IGF1R.
Collapse
Affiliation(s)
- Gayatri Jamwal
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Gurjinder Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Mohd Saleem Dar
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Paramjeet Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Nasima Bano
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Sajad Hussain Syed
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Padmani Sandhu
- School of Life Sciences, Central University of Himachal Pradesh, Kangra-176206, Himachal Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, USA
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India.
| |
Collapse
|
8
|
Singh P, Dar MS, Dar MJ. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin? FEBS Lett 2016; 590:3071-82. [PMID: 27552098 DOI: 10.1002/1873-3468.12377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
Class-1 phosphatidylinositol-3-kinases (PI3Ks) are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes. p110α and p110β are the two most studied isoforms of the class-1A PI3K signaling pathway. Although these two isoforms are ubiquitously expressed and play multiple redundant roles, they also have distinct functions within the cell. More recently, p110α and p110β isoforms have been shown to translocate into the nucleus and play a role in DNA replication and repair, and in cell cycle progression. In the following Review article, we discuss the overlapping and unique roles of p110α and p110β isoforms with a particular focus on their structure, expression analysis, subcellular localization, and signaling contributions in various cell types and model organisms.
Collapse
Affiliation(s)
- Paramjeet Singh
- Academy of Scientific and Innovative Research, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Mohd Saleem Dar
- Academy of Scientific and Innovative Research, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Mohd Jamal Dar
- Academy of Scientific and Innovative Research, New Delhi, India. .,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.
| |
Collapse
|