1
|
Cho JE, Shaltz S, Yakovleva L, Shuman S, Jinks-Robertson S. Deletions initiated by the vaccinia virus TopIB protein in yeast. DNA Repair (Amst) 2024; 137:103664. [PMID: 38484460 PMCID: PMC10994728 DOI: 10.1016/j.dnarep.2024.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The type IB topoisomerase of budding yeast (yTop1) generates small deletions in tandem repeats through a sequential cleavage mechanism and larger deletions with random endpoints through the nonhomologous end-joining (NHEJ) pathway. Vaccinia virus Top1 (vTop1) is a minimized version of the eukaryal TopIB enzymes and uniquely has a strong consensus cleavage sequence: the pentanucleotide (T/C)CCTTp↓. To define the relationship between the position of TopIB cleavage and mutagenic outcomes, we expressed vTop1 in yeast top1Δ strains containing reporter constructs with a single CCCTT site, tandem CCCTT sites, or CCCTT sites separated by 42 bp. vTop1 cleavage at a single CCCTT site was associated with small, NHEJ-dependent deletions. As observed with yTop1, vTop1 generated 5-bp deletions at tandem CCCTT sites. In contrast to yTop1-initiated deletions, however, 5-bp deletions associated with vTop1 expression were not affected by the level of ribonucleotides in genomic DNA. vTop1 expression was associated with a 47-bp deletion when CCCTT sites were separated by 42 bp. Unlike yTop1-initiated large deletions, the vTop1-mediated 47-bp deletion did not require NHEJ, consistent with a model in which re-ligation of enzyme-associated double-strand breaks is catalyzed by vTop1.
Collapse
Affiliation(s)
- Jang Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyudmila Yakovleva
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Fukute J, Maki K, Adachi T. The nucleolar shell provides anchoring sites for DNA untwisting. Commun Biol 2024; 7:83. [PMID: 38263258 PMCID: PMC10805735 DOI: 10.1038/s42003-023-05750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
DNA underwinding (untwisting) is a crucial step in transcriptional activation. DNA underwinding occurs between the site where torque is generated by RNA polymerase (RNAP) and the site where the axial rotation of DNA is constrained. However, what constrains DNA axial rotation in the nucleus is yet unknown. Here, we show that the anchorage to the nuclear protein condensates constrains DNA axial rotation for DNA underwinding in the nucleolus. In situ super-resolution imaging of underwound DNA reveal that underwound DNA accumulates in the nucleolus, a nuclear condensate with a core-shell structure. Specifically, underwound DNA is distributed in the nucleolar core owing to RNA polymerase I (RNAPI) activities. Furthermore, underwound DNA in the core decreases when nucleolar shell components are prevented from binding to their recognition structure, G-quadruplex (G4). Taken together, these results suggest that the nucleolar shell provides anchoring sites that constrain DNA axial rotation for RNAPI-driven DNA underwinding in the core. Our findings will contribute to understanding how nuclear protein condensates make up constraints for the site-specific regulation of DNA underwinding and transcription.
Collapse
Affiliation(s)
- Jumpei Fukute
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
| | - Koichiro Maki
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.
| | - Taiji Adachi
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
3
|
Bianchi G, Mangiagalli M, Ami D, Ahmed J, Lombardi S, Longhi S, Natalello A, Tompa P, Brocca S. Condensation of the N-terminal domain of human topoisomerase 1 is driven by electrostatic interactions and tuned by its charge distribution. Int J Biol Macromol 2024; 254:127754. [PMID: 38287572 DOI: 10.1016/j.ijbiomac.2023.127754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) is pivotal in forming biomolecular condensates, which are crucial in several biological processes. Intrinsically disordered regions (IDRs) are typically responsible for driving LLPS due to their multivalency and high content of charged residues that enable the establishment of electrostatic interactions. In our study, we examined the role of charge distribution in the condensation of the disordered N-terminal domain of human topoisomerase I (hNTD). hNTD is densely charged with oppositely charged residues evenly distributed along the sequence. Its LLPS behavior was compared with that of charge permutants exhibiting varying degrees of charge segregation. At low salt concentrations, hNTD undergoes LLPS. However, LLPS is inhibited by high concentrations of salt and RNA, disrupting electrostatic interactions. Our findings show that, in hNTD, moderate charge segregation promotes the formation of liquid condensates that are sensitive to salt and RNA, whereas marked charge segregation results in the formation of aberrant condensates. Although our study is based on a limited set of protein variants, it supports the applicability of the "stickers-and-spacers" model to biomolecular condensates involving highly charged IDRs. These results may help generate reliable models of the overall LLPS behavior of supercharged polypeptides.
Collapse
Affiliation(s)
- Greta Bianchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Junaid Ahmed
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
4
|
Han J, Li S, Feng Y, He Y, Hong W, Ye Z. A novel circular RNA (hsa_circ_0059930)-mediated miRNA-mRNA axis in the lipopolysaccharide-induced acute lung injury model of MRC-5 cells. Bioengineered 2021; 12:1739-1751. [PMID: 34002668 PMCID: PMC8806270 DOI: 10.1080/21655979.2021.1916276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Circular RNA (circRNA) is a class of newly discovered endogenous non-coding RNA with closed circular structure. Some circRNAs have been reported to be closely associated with acute lung injury (ALI). While the expression profile of circRNAs in lipopolysaccharide (LPS)-induced ALI and the underlying roles are still not completely clear. The LPS-induced ALI model of MRC-5 cells was first established, and the expression profiles of circRNAs and mRNAs in LPS-induced MRC-5 cells were confirmed through RNA sequencing analysis. Gene Ontologyanalysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were also applied to predict the latent functions and pathways of the differential mRNAs. After hsa_circ_0059930 knockdown, the proliferation and apoptosis of MRC-5 cells were identified by CCK-8, flow cytometer, and western blot assays. And we predicted the network analysis of hsa_circ_0059930. We testified that LPS could markedly prevent proliferation and induce apoptosis of MRC-5 cells. We discovered a total of 820 differential circRNAs (560 upregulated and 260 downregulated circRNAs) and 484 differential mRNAs (240 upregulated and 244 downregulated mRNAs) in LPS-induced MRC-5 cells. Besides, hsa_circ_0059930 was identified to be significantly upregulated in LPS-induced MRC-5 cells, and knockdown of hsa_circ-0059930 could notably accelerate proliferation and suppress apoptosis of LPS-mediated MRC-5 cells. Moreover, through the network analysis of hsa_circ_0059930, we preliminarily screened the potential regulatory axis hsa_circ_0059930/hsa-miR-382-5p/Topoisomerase 1 (TOP1) in LPS-induced ALI. Our data contribute to understand the importance of circRNAs and mRNAs in LPS-induced ALI. We also provided many hsa_circ_0059930-mediated microRNA (miRNA)–mRNA axis, especially hsa_circ_0059930/hsa-miR-382-5p/TOP1 in LPS-induced ALI.
Collapse
Affiliation(s)
- Jianhua Han
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shigeng Li
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yawei Feng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng He
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weilong Hong
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Girstun A, Ishikawa T, Staron K. Effects of SRSF1 on subnuclear localization of topoisomerase I. J Cell Biochem 2019; 120:11794-11808. [PMID: 30775805 DOI: 10.1002/jcb.28459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Subnuclear localization of topoisomerase I (top I) is determined by its DNA relaxation activity and a net of its interactions with in majority unidentified nucleolar and nucleoplasmic elements. Here, we recognized SR protein SRSF1 (Serine/arginine-rich splicing factor 1, previously known as SF2/ASF) as a new element of the net. In HeLa cells, overexpression of SRSF1 recruited top I to the nucleoplasm whereas its silencing concentrated it in the nucleolus. Effect of SRSF1 was independent of top I relaxation activity and was the best pronounced for the mutant inactive in relaxation reaction. In HCT116 cells where top I was not released from the nucleolus upon halting relaxation activity, it was also not relocated by elevated level of SRSF1. Out of remaining SR proteins, SRSF5, SRSF7, and SRSF9 did not influence the localization of top I in HeLa cells whereas overexpression of SRSF2, SRSF3, SRSF6, and partly SRSF4 concentrated top I in the nucleolus, most possibly due to the reduction of the SRSF1 accessibility. Specific effect of SRSF1 was exerted because of its distinct RS domain. Silencing of SRSF1 compensated the deletion of the top I N-terminal region, individually responsible for nucleoplasmic localization of the mutant, and restored the wild-type phenotype of deletion mutant localization. SRSF1 was essential for the camptothecin-induced clearance from the nucleolus. These results suggest a possible role of SRSF1 in establishing partition of top I between the nucleolus and the nucleoplasm in some cell types with distinct combinations of SR proteins levels.
Collapse
Affiliation(s)
- Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Krzysztof Staron
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Corallo C, Cheleschi S, Cutolo M, Soldano S, Fioravanti A, Volpi N, Franci D, Nuti R, Giordano N. Antibodies against specific extractable nuclear antigens (ENAs) as diagnostic and prognostic tools and inducers of a profibrotic phenotype in cultured human skin fibroblasts: are they functional? Arthritis Res Ther 2019; 21:152. [PMID: 31234888 PMCID: PMC6592008 DOI: 10.1186/s13075-019-1931-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The importance of systemic sclerosis (SSc) autoantibodies for diagnosis has become recognized by their incorporation into the 2013 ACR/EULAR classification criteria. Clear prognostic and phenotypic associations with cutaneous subtype and internal organ involvement have been also described. However, little is known about the potential of autoantibodies to exert a direct pathogenic role in SSc. The aim of the study is to assess the pathogenic capacity of anti-DNA-topoisomerase I (anti-Topo-I) and anti-centromeric protein B (anti-Cenp-B) autoantibodies to induce pro-fibrotic markers in dermal fibroblasts. METHODS Dermal fibroblasts were isolated from unaffected and affected skin samples of (n = 10) limited cutaneous SSc (LcSSc) patients, from affected skin samples of diffuse cutaneous (DcSSc) patients (n = 10) and from healthy subjects (n = 20). Fibroblasts were stimulated with anti-Topo-I, anti-Cenp-B IgGs, and control IgGs in ratios 1:100 and 1:200 for 24 h. Cells were also incubated with 10% SSc anti-Topo-I+ and anti-Cenp-B+ whole serum and with 10% control serum for 24 h. Viability was assessed by MTT test, while apoptosis was assessed by flow cytometry. Activation of pro-fibrotic genes ACTA2, COL1A1, and TAGLN was evaluated by quantitative real-time PCR (qPCR), while the respective protein levels alpha-smooth-muscle actin (α-SMA), type-I-collagen (Col-I), and transgelin (SM22) were assessed by immunocytochemistry (ICC). RESULTS MTT showed that anti-Cenp-B/anti-Topo-I IgGs and anti-Cenp-B+/anti-Topo-I+ sera reduced viability (in a dilution-dependent manner for IgGs) for all the fibroblast populations. Apoptosis is induced in unaffected LcSSc and control fibroblasts, while affected LcSSc/DcSSc fibroblasts showed apoptosis resistance. Basal mRNA (ACTA2, COL1A1, and TAGLN) and protein (α-SMA, Col-1, and SM22) levels were higher in affected LcSSc/DcSSc fibroblasts compared to LcSSc unaffected and to control ones. Stimulation with anti-Cenp-B/anti-Topo-I IgGs and with anti-Cenp-B+/anti-Topo-I+ sera showed a better induction in unaffected LcSSc and control fibroblasts. However, a statistically significant increase of all pro-fibrotic markers is reported also in affected LcSSc/DcSSc fibroblasts upon stimulation with both IgGs and sera. CONCLUSIONS This study suggests a pathogenic role of SSc-specific autoantibodies to directly induce pro-fibrotic activation in human dermal fibroblasts. Therefore, besides the diagnostic and prognostic use of those autoantibodies, these data might further justify the importance of immunosuppressive drugs in the early stages of the autoimmune disease, including SSc.
Collapse
Affiliation(s)
- Claudio Corallo
- Scleroderma Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Stefano Soldano
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Antonella Fioravanti
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Nila Volpi
- Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Daniela Franci
- Scleroderma Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Scleroderma Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Nicola Giordano
- Scleroderma Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Zhang H, Seol Y, Agama K, Neuman KC, Pommier Y. Distribution bias and biochemical characterization of TOP1MT single nucleotide variants. Sci Rep 2017; 7:8614. [PMID: 28819183 PMCID: PMC5561071 DOI: 10.1038/s41598-017-09258-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial topoisomerase I (TOP1MT) is a type IB topoisomerase encoded in the nucleus of vertebrate cells. In contrast to the other five human topoisomerases, TOP1MT possesses two high frequency single nucleotide variants (SNVs), rs11544484 (V256I, Minor Allele Frequency = 0.27) and rs2293925 (R525W, MAF = 0.45), which tend to be mutually exclusive across different human ethnic groups and even more clearly in a cohort of 129 US patients with breast cancer and in the NCI-60 cancer cell lines. We expressed these two TOP1MT variants and the double-variant (V256I-R525W) as recombinant proteins, as well as a less common variant E168G (rs200673353, MAF = 0.001), and studied their biochemical properties by magnetic tweezers-based supercoil relaxation and classical DNA relaxation assays. Variants showed reduced DNA relaxation activities, especially the V256I variant towards positively supercoiled DNA. We also found that the V256I variant was enriched to MAF = 0.64 in NCI-60 lung carcinoma cell lines, whereas the TOP1MT R525W was enriched to MAF = 0.65 in the NCI-60 melanoma cell lines. Moreover, TOP1MT expression correlated with the 256 variants in the NCI-60 lung carcinoma cell lines, valine with high expression and isoleucine with low expression. Our results are discussed in the context of evolution between the nuclear and mitochondrial topoisomerases and potential cancer predisposition.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|