1
|
Maksimova A, Shevela E, Sakhno L, Tikhonova M, Ostanin A, Chernykh E. Human Macrophages Polarized by Interaction with Apoptotic Cells Produce Fibrosis-Associated Mediators and Enhance Pro-Fibrotic Activity of Dermal Fibroblasts In Vitro. Cells 2023; 12:1928. [PMID: 37566007 PMCID: PMC10417661 DOI: 10.3390/cells12151928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Apoptosis and subsequent removal of dead cells are an essential part of wound healing. Macrophages phagocytize apoptotic cells (efferocytosis) and contribute to the resolution of inflammation. However, their participation in fibrogenesis and the mechanisms of influence on this process remain unclear. In the present study, we focused on the fibrogenic properties of human monocyte-derived macrophages polarized in the M2 direction by interaction with apoptotic cells. We studied their influence on the proliferation ([3H]-thymidine incorporation), differentiation (by the expression of α-SMA, a myofibroblast marker) and collagen-producing activity (ELISA) of dermal fibroblasts compared to classically (LPS) and alternatively (IL-4) activated macrophages. Macrophages polarized by the interaction with apoptotic cells had a unique phenotype and profile of produced factors and differed from the compared macrophage subtypes. Their conditioned media promoted the proliferation of dermal fibroblasts and the expression of α-SMA in them at the level of macrophages stimulated by IL-4, while the stimulating effect on the collagen-producing activity was more pronounced compared to that of the other macrophage subtypes. Moreover, they are characterized by the high level of production of pro-fibrotic factors such as TIMP-1, TGF-β1 and angiogenin. Taken together, M2-like macrophages polarized by efferocytosis demonstrate in vitro pro-fibrotic activity by promoting the functional activity of dermal fibroblasts and producing pro-fibrotic and pro-angiogenic factors.
Collapse
Affiliation(s)
- Aleksandra Maksimova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (E.S.); (L.S.); (M.T.); (A.O.); (E.C.)
| | | | | | | | | | | |
Collapse
|
2
|
Griebel M, Vasan A, Chen C, Eyckmans J. Fibroblast clearance of damaged tissue following laser ablation in engineered microtissues. APL Bioeng 2023; 7:016112. [PMID: 36938481 PMCID: PMC10017124 DOI: 10.1063/5.0133478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 03/15/2023] Open
Abstract
Although the mechanisms underlying wound healing are largely preserved across wound types, the method of injury can affect the healing process. For example, burn wounds are more likely to undergo hypertrophic scarring than are lacerations, perhaps due to the increased underlying damage that needs to be cleared. This tissue clearance is thought to be mainly managed by immune cells, but it is unclear if fibroblasts contribute to this process. Herein, we utilize a 3D in vitro model of stromal wound healing to investigate the differences between two modes of injury: laceration and laser ablation. We demonstrate that laser ablation creates a ring of damaged tissue around the wound that is cleared by fibroblasts prior to wound closure. This process is dependent on ROCK and dynamin activity, suggesting a phagocytic or endocytic process. Transmission electron microscopy of fibroblasts that have entered the wound area reveals large intracellular vacuoles containing fibrillar extracellular matrix. These results demonstrate a new model to study matrix clearance by fibroblasts in a 3D soft tissue. Because aberrant wound healing is thought to be caused by an imbalance between matrix degradation and production, this model, which captures both aspects, will be a valuable addition to the study of wound healing.
Collapse
Affiliation(s)
- Megan Griebel
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, USA
| | - Anish Vasan
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
3
|
Gucciardo F, Pirson S, Baudin L, Lebeau A, Noël A. uPARAP/Endo180: a multifaceted protein of mesenchymal cells. Cell Mol Life Sci 2022; 79:255. [PMID: 35460056 PMCID: PMC9033714 DOI: 10.1007/s00018-022-04249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
The urokinase plasminogen activator receptor-associated protein (uPARAP/Endo180) is already known to be a key collagen receptor involved in collagen internalization and degradation in mesenchymal cells and some macrophages. It is one of the four members of the mannose receptor family along with a macrophage mannose receptor (MMR), a phospholipase lipase receptor (PLA2R), and a dendritic receptor (DEC-205). As a clathrin-dependent endocytic receptor for collagen or large collagen fragments as well as through its association with urokinase (uPA) and its receptor (uPAR), uPARAP/Endo180 takes part in extracellular matrix (ECM) remodeling, cell chemotaxis and migration under physiological (tissue homeostasis and repair) and pathological (fibrosis, cancer) conditions. Recent advances that have shown an expanded contribution of this multifunctional protein across a broader range of biological processes, including vascular biology and innate immunity, are summarized in this paper. It has previously been demonstrated that uPARAP/Endo180 assists in lymphangiogenesis through its capacity to regulate the heterodimerization of vascular endothelial growth factor receptors (VEGFR-2 and VEGFR-3). Moreover, recent findings have demonstrated that it is also involved in the clearance of collectins and the regulation of the immune system, something which is currently being studied as a biomarker and a therapeutic target in a number of cancers.
Collapse
Affiliation(s)
- Fabrice Gucciardo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Sébastien Pirson
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Alizée Lebeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium.
| |
Collapse
|
4
|
An overview of the prospects of extracting collagens from waste sources and its applications. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Aveic S, Craveiro RB, Wolf M, Fischer H. Current Trends in In Vitro Modeling to Mimic Cellular Crosstalk in Periodontal Tissue. Adv Healthc Mater 2021; 10:e2001269. [PMID: 33191670 PMCID: PMC11469331 DOI: 10.1002/adhm.202001269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Clinical evidence indicates that in physiological and therapeutic conditions a continuous remodeling of the tooth root cementum and the periodontal apparatus is required to maintain tissue strength, to prevent damage, and to secure teeth anchorage. Within the tooth's surrounding tissues, tooth root cementum and the periodontal ligament are the key regulators of a functional tissue homeostasis. While the root cementum anchors the periodontal fibers to the tooth root, the periodontal ligament itself is the key regulator of tissue resorption, the remodeling process, and mechanical signal transduction. Thus, a balanced crosstalk of both tissues is mandatory for maintaining the homeostasis of this complex system. However, the mechanobiological mechanisms that shape the remodeling process and the interaction between the tissues are largely unknown. In recent years, numerous 2D and 3D in vitro models have sought to mimic the physiological and pathophysiological conditions of periodontal tissue. They have been proposed to unravel the underlying nature of the cell-cell and the cell-extracellular matrix interactions. The present review provides an overview of recent in vitro models and relevant biomaterials used to enhance the understanding of periodontal crosstalk and aims to provide a scientific basis for advanced regenerative strategies.
Collapse
Affiliation(s)
- Sanja Aveic
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachen52074Germany
- Neuroblastoma LaboratoryPediatric Research Institute Fondazione Città della SperanzaPadova35127Italy
| | | | - Michael Wolf
- Department of OrthodonticsRWTH Aachen University HospitalAachen52074Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachen52074Germany
| |
Collapse
|
6
|
Jürgensen HJ, van Putten S, Nørregaard KS, Bugge TH, Engelholm LH, Behrendt N, Madsen DH. Cellular uptake of collagens and implications for immune cell regulation in disease. Cell Mol Life Sci 2020; 77:3161-3176. [PMID: 32100084 PMCID: PMC11105017 DOI: 10.1007/s00018-020-03481-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.
Collapse
Affiliation(s)
- Henrik J Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark.
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Kirstine S Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730, Herlev, Denmark.
| |
Collapse
|
7
|
Zhu Z, Achreja A, Meurs N, Animasahun O, Owen S, Mittal A, Parikh P, Lo TW, Franco-Barraza J, Shi J, Gunchick V, Sherman MH, Cukierman E, Pickering AM, Maitra A, Sahai V, Morgan MA, Nagrath S, Lawrence TS, Nagrath D. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat Metab 2020; 2:775-792. [PMID: 32694827 PMCID: PMC7438275 DOI: 10.1038/s42255-020-0226-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
Branched-chain amino acids (BCAAs) supply both carbon and nitrogen in pancreatic cancers, and increased levels of BCAAs have been associated with increased risk of pancreatic ductal adenocarcinomas (PDACs). It remains unclear, however, how stromal cells regulate BCAA metabolism in PDAC cells and how mutualistic determinants control BCAA metabolism in the tumour milieu. Here, we show distinct catabolic, oxidative and protein turnover fluxes between cancer-associated fibroblasts (CAFs) and cancer cells, and a marked reliance on branched-chain α-ketoacid (BCKA) in PDAC cells in stroma-rich tumours. We report that cancer-induced stromal reprogramming fuels this BCKA demand. The TGF-β-SMAD5 axis directly targets BCAT1 in CAFs and dictates internalization of the extracellular matrix from the tumour microenvironment to supply amino-acid precursors for BCKA secretion by CAFs. The in vitro results were corroborated with circulating tumour cells (CTCs) and PDAC tissue slices derived from people with PDAC. Our findings reveal therapeutically actionable targets in pancreatic stromal and cancer cells.
Collapse
Affiliation(s)
- Ziwen Zhu
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Owen
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pooja Parikh
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ting-Wen Lo
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Valerie Gunchick
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Edna Cukierman
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Meredith A Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sunitha Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Nørregaard KS, Krigslund O, Behrendt N, Engelholm LH, Jürgensen HJ. The collagen receptor uPARAP/Endo180 regulates collectins through unique structural elements in its FNII domain. J Biol Chem 2020; 295:9157-9170. [PMID: 32424040 PMCID: PMC7335807 DOI: 10.1074/jbc.ra120.013710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Indexed: 11/06/2022] Open
Abstract
C-type lectins that contain collagen-like domains are known as collectins. These proteins are present both in the circulation and in extravascular compartments and are central players of the innate immune system, contributing to first-line defenses against viral, bacterial, and fungal pathogens. The collectins mannose-binding lectin (MBL) and surfactant protein D (SP-D) are regulated by tissue fibroblasts at extravascular sites via an endocytic mechanism governed by urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180), which is also a collagen receptor. Here, we investigated the molecular mechanisms that drive the uPARAP-mediated cellular uptake of MBL and SP-D. We found that the uptake depends on residues within a protruding loop in the fibronectin type-II (FNII) domain of uPARAP that are also critical for collagen uptake. Importantly, however, we also identified FNII domain residues having an exclusive role in collectin uptake. We noted that these residues are absent in the related collagen receptor, the mannose receptor (MR or CD206), which consistently does not interact with collectins. We also show that the second C-type lectin-like domain (CTLD2) is critical for the uptake of SP-D, but not MBL, indicating an additional level of complexity in the interactions between collectins and uPARAP. Finally, we demonstrate that the same molecular mechanisms enable uPARAP to engage MBL immobilized on the surface of pathogens, thereby expanding the potential biological implications of this interaction. Our study reveals molecular details of the receptor-mediated cellular regulation of collectins and offers critical clues for future investigations into collectin biology and pathology.
Collapse
Affiliation(s)
- Kirstine Sandal Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Oliver Krigslund
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Henrik Jessen Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
9
|
Iwahashi H, Kawashima Y, Masaki H. Interleukin-1 alpha derived from ultraviolet B-exposed keratinocytes is associated with a decrease of endocytic collagen receptor Endo180. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2019; 36:34-41. [PMID: 31376337 DOI: 10.1111/phpp.12502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Endo180 contributes to the remodeling of the collagen fibers that comprise the dermal matrix due to the internalization of extracellular collagen fragments. In the sun-exposed elder skin, an accumulation of collagen fragments was observed in the dermal matrix which was associated with a reduction in Endo180 in the dermal fibroblasts. This suggests that the loss of Endo180 results in the accumulation of collagen fragments in the surrounding fibroblasts and causes interference with dermal matrix remodeling via collagen fibers. The purpose of the study was to identify a mechanism by which ultraviolet B (UVB) exposure induces a loss of Endo 180 with a specific focus on the crosstalk between keratinocytes and fibroblasts. METHODS Endo180 from normal human dermal fibroblasts, which were cultured with a conditioned medium (CM) of UVB-exposed keratinocytes, was examined using mRNA expression, protein levels and collagen internalization by quantitative RT-PCR, ELISA, and flow cytometry, respectively. RESULTS Although UVB irradiation to fibroblasts failed to reduce Endo180, the CM of UVB-exposed keratinocytes reduced Endo180 in the fibroblasts. Collagen internalization into the fibroblasts was decreased and was associated with a loss of Endo180. Among cytokines secreted from UVB-exposed keratinocytes, IL-1α solely reduced Endo180, and the reduction induced by the CM of UVB-exposed keratinocytes was abolished by the presence of IL-1RA. CONCLUSIONS These results indicate that a substance secreted from UVB-exposed keratinocytes regulates Endo180 expression and that IL-1α may play an important role in the maintenance of Endo180.
Collapse
Affiliation(s)
- Hiroyasu Iwahashi
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima, Japan
| | - Yoshihito Kawashima
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima, Japan
| | - Hitoshi Masaki
- Laboratory of photoaging Research, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| |
Collapse
|
10
|
Sprangers S, Everts V. Molecular pathways of cell-mediated degradation of fibrillar collagen. Matrix Biol 2019; 75-76:190-200. [DOI: 10.1016/j.matbio.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
|
11
|
Durré T, Morfoisse F, Erpicum C, Ebroin M, Blacher S, García-Caballero M, Deroanne C, Louis T, Balsat C, Van de Velde M, Kaijalainen S, Kridelka F, Engelholm L, Struman I, Alitalo K, Behrendt N, Paupert J, Noel A. uPARAP/Endo180 receptor is a gatekeeper of VEGFR-2/VEGFR-3 heterodimerisation during pathological lymphangiogenesis. Nat Commun 2018; 9:5178. [PMID: 30518756 PMCID: PMC6281649 DOI: 10.1038/s41467-018-07514-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
The development of new lymphatic vessels occurs in many cancerous and inflammatory diseases through the binding of VEGF-C to its receptors, VEGFR-2 and VEGFR-3. The regulation of VEGFR-2/VEGFR-3 heterodimerisation and its downstream signaling in lymphatic endothelial cells (LECs) remain poorly understood. Here, we identify the endocytic receptor, uPARAP, as a partner of VEGFR-2 and VEGFR-3 that regulates their heterodimerisation. Genetic ablation of uPARAP leads to hyperbranched lymphatic vasculatures in pathological conditions without affecting concomitant angiogenesis. In vitro, uPARAP controls LEC migration in response to VEGF-C but not VEGF-A or VEGF-CCys156Ser. uPARAP restricts VEGFR-2/VEGFR-3 heterodimerisation and subsequent VEGFR-2-mediated phosphorylation and inactivation of Crk-II adaptor. uPARAP promotes VEGFR-3 signaling through the Crk-II/JNK/paxillin/Rac1 pathway. Pharmacological Rac1 inhibition in uPARAP knockout mice restores the wild-type phenotype. In summary, our study identifies a molecular regulator of lymphangiogenesis, and uncovers novel molecular features of VEGFR-2/VEGFR-3 crosstalk and downstream signaling during VEGF-C-driven LEC sprouting in pathological conditions.
Collapse
Affiliation(s)
- Tania Durré
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Florent Morfoisse
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Charlotte Erpicum
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Marie Ebroin
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Melissa García-Caballero
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Thomas Louis
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Cédric Balsat
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Maureen Van de Velde
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Seppo Kaijalainen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, 00014, Helsinki, Finland
| | - Frédéric Kridelka
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium.,Department of Obstetrics and Gynecology, CHU Liege, 4000, Liege, Belgium
| | - Lars Engelholm
- The Finsen Laboratory/BRIC, Rigshospitalet/University of Copenhagen, Jagtvej 124, 2200, Copenhagen, Denmark
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, 00014, Helsinki, Finland
| | - Niels Behrendt
- The Finsen Laboratory/BRIC, Rigshospitalet/University of Copenhagen, Jagtvej 124, 2200, Copenhagen, Denmark
| | - Jenny Paupert
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium.
| |
Collapse
|
12
|
Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK, Weiss BP, Miller ES, Bihorac A, Larson SD, Mohr AM, Brakenridge SC, Tsujimoto H, Ueno H, Moore FA, Moldawer LL, Efron PA. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Front Immunol 2018; 9:595. [PMID: 29670613 PMCID: PMC5893931 DOI: 10.3389/fimmu.2018.00595] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI), defined as ≥14 days requiring intensive care unit (ICU) resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS), and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.
Collapse
Affiliation(s)
- Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Russell B Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brett P Weiss
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Elizabeth S Miller
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | |
Collapse
|