1
|
Yu L, Gu X, Chen P, Yang R, Xu Y, Yang X. Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations. Curr Issues Mol Biol 2024; 46:12061-12074. [PMID: 39590309 PMCID: PMC11593023 DOI: 10.3390/cimb46110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: Protein tyrosine phosphatase non-receptor type 6 (PTPN6) is a cytoplasmic phosphatase that acts as a key regulatory protein in cell signaling to control inflammation and cell death. In order to investigate the role of PTPN6 in hematologic tumor myelodysplastic syndrome (MDS), this study infected SKM-1 cell line (MDS cell line) with packaged H_PTPN6-shRNA lentivirus to obtain H_PTPN6-shRNA SKM-1 stable strain. The effect of PTPN6 knockdown on apoptosis, erythroid differentiation, and inflammations in SKM-1 cell line was examined. Methods: The stable knockdown SKM-1 cell line was validated using qPCR and Western blot assays. The proliferation activity, apoptosi, erythroid differentiation, and inflammatory cytokines in SKM-1 cells were assessed before and after transfection. Results: qPCR confirmed that the expression level of H_PTPN6-shRNA in SKM-1 cells was significantly reduced, and Western blot showed that the protein expression level of H_PTPN6-shRNA in SKM-1 cells was also significantly reduced. The CCK-8 cell viability assay confirmed that stable gene knockdown did not affect cell viability. Flow cytometry revealed that the apoptosis rate of cells in the PTPN6 knockdown group was 0.8%, lower than the 2.7% observed in the empty plasmid group; the expression rate of the erythroid differentiation marker CD235a was 13.2%, lower than the 25.0% observed in the empty plasmid group. The expression levels of the proinflammatory factors IL-6 and IL-8 increased, and the expression levels of the inhibitor factor IL-4 decreased. Conclusions: The PTPN6 gene was successfully knocked down using lentivirus-mediated transduction, and the constructed cell line was validated using PCR and Western blot. The CCK-8 cell viability assay confirmed that stable gene knockdown did not affect cell proliferation viability. Flow cytometry analysis of apoptosis and erythroid differentiation indicated that PTPN6 knockdown inhibits apoptosis and erythroid differentiation in SKM-1 cells and also alters the level of inflammations in the bone marrow microenvironment. It suggests that the PTPN6 gene acts as a tumor suppressor in myelodysplastic syndrome cells, influencing hematopoietic cell apoptosis, erythroid differentiation, and inflammations. This provides a reliable experimental basis for further in-depth studies on the mechanism of PTPN6 in MDS and related pharmacological research.
Collapse
Affiliation(s)
| | | | | | | | - Yonggang Xu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (L.Y.); (X.G.); (P.C.); (R.Y.)
| | - Xiupeng Yang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (L.Y.); (X.G.); (P.C.); (R.Y.)
| |
Collapse
|
2
|
Hua Z, Liu N, Yan X. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins. Beilstein J Org Chem 2024; 20:741-752. [PMID: 38633914 PMCID: PMC11022409 DOI: 10.3762/bjoc.20.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.
Collapse
Affiliation(s)
- Zhongwei Hua
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
3
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Yang J, Wang L, Guan X, Qin JJ. Inhibiting STAT3 signaling pathway by natural products for cancer prevention and therapy: In vitro and in vivo activity and mechanisms of action. Pharmacol Res 2022; 182:106357. [PMID: 35868477 DOI: 10.1016/j.phrs.2022.106357] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in signal transmission from the plasma membrane to the nucleus, regulating the expression of genes involved in essential cell functions and controlling the processes of cell cycle progression and apoptosis. Thus, STAT3 has been elucidated as a promising target for developing anticancer drugs. Many natural products have been reported to inhibit the STAT3 signaling pathway during the past two decades and have exhibited significant anticancer activities in vitro and in vivo. However, there is no FDA-approved STAT3 inhibitor yet. The major mechanisms of these natural product inhibitors of the STAT3 signaling pathway include targeting the upstream regulators of STAT3, directly binding to the STAT3 SH2 domain and inhibiting its activation, inhibiting STAT3 phosphorylation and/or dimerization, and others. In the present review, we have systematically discussed the development of these natural product inhibitors of STAT3 signaling pathway as well as their in vitro and in vivo anticancer activity and mechanisms of action. Outlooks and perspectives on the associated challenges are provided as well.
Collapse
Affiliation(s)
- Jing Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lingling Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
5
|
An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants (Basel) 2022; 11:antiox11061074. [PMID: 35739971 PMCID: PMC9220052 DOI: 10.3390/antiox11061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Crocus sativus L. has various pharmacological properties, known for over 3600 years. These properties are attributed mainly to biologically active substances, which belong to the terpenoid group and include crocins, picrocrocin and safranal. The aim of the current work was to examine the effects of crocins (CRCs) and their methyl ester derivate dimethylcrocetin (DMCRT) on glioblastoma and rhabdomyosarcoma cell lines, in terms of cytotoxicity and gene expression, implicated in proapoptotic and cell survival pathways. Cell cytotoxicity was assessed with Alamar Blue fluorescence assay after treatment with saffron carotenoids for 24, 48 and 72 h and concentrations ranging from 22.85 to 0.18 mg/mL for CRCs and 11.43 to 0.09 mg/mL for DMCRT. In addition, BAX, BID, BCL2, MYCN, SOD1, and GSTM1 gene expression was studied by qRT-PCR analysis. Both compounds demonstrated cytotoxic effects against glioblastoma and rhabdomyosarcoma cell lines, in a dose- and time-dependent manner. They induced apoptosis, via BAX and BID upregulation, MYCN and BCL-2, SOD1, GSTM1 downregulation. The current research denotes the possible anticancer properties of saffron carotenoids, which are considered safe phytochemicals, already tested in clinical trials for their health promoting properties.
Collapse
|
6
|
Kim B, Lee K, Park B. Minecoside promotes apoptotic progression through STAT3 inactivation in breast cancer cells. Oncol Lett 2022; 23:94. [PMID: 35154425 PMCID: PMC8822415 DOI: 10.3892/ol.2022.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide, and is a major cause of mortality and morbidity in cancer patients. Constitutive activation of STAT3 has been found in a variety of malignant tumors, including breast cancer. Since STAT3 activation is capable of regulating various important features of tumor cells, identification of a novel STAT3 inhibitor is considered a potential strategy for treating breast cancer. The aim of the present study was to examine whether minecoside (MIN), an active compound extracted from Veronica peregrina L., exerts an antitumor effect by inhibiting STAT3 signaling pathway in MDA-MB-231 cells. The results revealed that MIN inhibited the constitutive STAT3 activation in a dose- and time-dependent manner. MIN also blocked the nuclear translocation of STAT3 and suppressed STAT3-DNA binding. In addition, MIN downregulated the STAT3-mediated expression of proteins such as Bcl-xL, Bcl-2, CXCR4, VEGF, and cyclin D1. Subsequently, MIN promoted the caspase-dependent apoptosis in MDA-MB-231 cells. Overall, results of the present study provide evidence that MIN exerted anticancer activity via inhibition of the STAT3 signaling pathway. Further studies using animal models are required to determine the potential of this molecule as an anticancer drug.
Collapse
Affiliation(s)
- Buyun Kim
- College of Pharmacy, Keimyung University, Dalseo‑Gu, Daegu, North Gyeongsang 704‑701, Republic of Korea
| | - Ki Lee
- College of Pharmacy, Korea University, Sejong 339‑770, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Dalseo‑Gu, Daegu, North Gyeongsang 704‑701, Republic of Korea
| |
Collapse
|
7
|
Crocin Promotes Apoptosis in Human EBV-Transformed B-Lymphocyte via Intrinsic Pathway. Mediterr J Hematol Infect Dis 2021; 13:e2021049. [PMID: 34276918 PMCID: PMC8265378 DOI: 10.4084/mjhid.2021.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background As a major carotenoid in saffron, crocin demonstrates potent anti-cancer impacts. However, its anti-lymphoma effects remain vague, especially in the human EBV-associated B-cell lymphoproliferative disorders. This study examined crocin's apoptogenic potential and its underlying mechanism in CO 88BV59-1 cell line vs. normal human peripheral blood B cells. Methods CO 88BV59-1 cells were treated with crocin alone or in combination with vincristine for up to 72 h. The cell viability was examined using a resazurin assay. Flow cytometry using annexin V and propidium iodide labeling was performed to detect apoptotic cells. Also, the expression levels of genes and proteins involved in apoptosis (CASP3, CASP8, CASP9, P53, Bax, and Bcl-2) were respectively determined via real-time PCR and Western blot analysis. Results Crocin concentration-dependently reduced cell viability in CO 88BV59-1 cells with no significant toxicity toward normal B cells. Similar to vincristine, crocin significantly increased apoptosis in these cells during 72 h of incubation. Furthermore, the combination of crocin (80 μM) and vincristine (1 μM) enhanced apoptosis in CO 88BV59-1 cells. Therefore, this synergistic effect was detected in human EBV-transformed B-lymphocyte. CASP3, CASP9, P53, and Bax/Bcl-2 ratio expressions were significantly raised in CO 88BV59-1 cells, whereas CASP8 was unaltered. It was proposed that crocin promoted apoptosis in CO 88BV59-1 cells in a time- and concentration-dependent manner via the induction of the intrinsic pathway. Conclusion The results suggest that crocin may serve as a good alternative/coadjuvant to vincristine in EBV-associated B-cell lymphoproliferative disorders.
Collapse
|
8
|
Jöhrer K, Ҫiҫek SS. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers (Basel) 2021; 13:2678. [PMID: 34072312 PMCID: PMC8198565 DOI: 10.3390/cancers13112678] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
A literature search on plant natural products with antimyeloma activity until the end of 2020 resulted in 92 compounds with effects on at least one human myeloma cell line. Compounds were divided in different compound classes and both their structure-activity-relationships as well as eventual correlations with the pathways described for Multiple Myeloma were discussed. Each of the major compound classes in this review (alkaloids, phenolics, terpenes) revealed interesting candidates, such as dioncophyllines, a group of naphtylisoquinoline alkaloids, which showed pronounced and selective induction of apoptosis when substituted in position 7 of the isoquinoline moiety. Interestingly, out of the phenolic compound class, two of the most noteworthy constituents belong to the relatively small subclass of xanthones, rendering this group a good starting point for possible further drug development. The class of terpenoids also provides noteworthy constituents, such as the highly oxygenated diterpenoid oridonin, which exhibited antiproliferative effects equal to those of bortezomib on RPMI8226 cells. Moreover, triterpenoids containing a lactone ring and/or quinone-like substructures, e.g., bruceantin, whitaferin A, withanolide F, celastrol, and pristimerin, displayed remarkable activity, with the latter two compounds acting as inhibitors of both NF-κB and proteasome chymotrypsin-like activity.
Collapse
Affiliation(s)
- Karin Jöhrer
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria;
| | - Serhat Sezai Ҫiҫek
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
9
|
Liu Y, Yao C, Wang Y, Liu X, Xu S, Liang L. Protective Effect of Crocin on Liver Function and Survival in Rats With Traumatic Hemorrhagic Shock. J Surg Res 2021; 261:301-309. [PMID: 33482612 DOI: 10.1016/j.jss.2020.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 11/13/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND This study investigated the underlying mechanism of crocin in protecting rats with traumatic hemorrhagic shock (THS) from liver injury. MATERIALS AND METHODS Eighty Sprague Dawley rats were randomly divided into four groups (n = 20), namely, Sham group, THS group, crocin group, and Sodium Acetate Ringer group. A rat model of THS was induced by hemorrhage from the left femur fracture. The effects of crocin on hemodynamics, cardiac output, blood gas, animal survival rate, and liver function in the rats with THS were determined, and its relationship with oxidative stress was also explored. RESULTS Crocin significantly improved the survival rate, hemodynamic parameters, increased tissue blood flow, and promoted the liver function of the THS rats. Further results indicated that crocin significantly inhibited oxidative stress in serum and liver tissue of THS rats, with increased levels of superoxide dismutase, catalase, and glutathione, and also reduced levels of malondialdehyde and myeloperoxidase levels. In addition, crocin greatly increased nuclear factor erythroid 2-related factor 2/heme oxygenase-1 level in liver tissues of THS rats. CONCLUSIONS The protective mechanism of crocin on the liver of THS rats may be attributed to its abilities to stabilize hemodynamics, improve cardiac output and blood gas, increase antioxidant enzyme activity, reduce serum liver enzyme levels, and promote nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway, thereby reducing oxidative stress.
Collapse
Affiliation(s)
- Yang Liu
- Department of Emergency, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, People's Republic of China
| | - Caoyuan Yao
- Department of Respiratory and Critical Care Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuan Wang
- Department of Emergency, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, People's Republic of China
| | - Xiaolin Liu
- Department of Emergency, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, People's Republic of China
| | - Shanggang Xu
- Department of Emergency, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, People's Republic of China
| | - Longbin Liang
- Department of Emergency, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
Bian Y, Yuan L, Yang X, Weng L, Zhang Y, Bai H, Chen J. SMURF1-mediated ubiquitylation of SHP-1 promotes cell proliferation and invasion of endometrial stromal cells in endometriosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:362. [PMID: 33842583 PMCID: PMC8033391 DOI: 10.21037/atm-20-2897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Endometriosis is a widespread benign gynecological disorder. The signal transducer and activator of transcription 3 (STAT3) signaling pathway plays an important role in the pathogenesis of endometriosis through regulating proliferation and invasion of endometrial stromal cells. Furthermore, the protein tyrosine phosphatase (PTP), SH2 domain-containing phosphatase 1 (SHP-1), negatively regulates STAT3 activation. However, regulation of the SHP-1-STAT3 pathway in the pathogenesis of endometriosis remains unclear. Methods Cell proliferation and invasion were assessed by Cell Counting Kit-8 (CCK-8) assay and Transwell analysis, respectively, to investigate the role and regulation of the SHP-1-STAT3 pathway in the proliferation and invasion of endometrial stromal cells. Expression of Smad ubiquitin regulatory factor 1 (SMURF1), SHP-1, matrix metalloproteinase 2 (MMP2), MMP9, STAT3, and phospho-STAT3 (p-STAT3) level in patients with endometriosis were measured by Western blotting and/or immunohistochemical staining. The interaction between SMURF1 and SHP-1 was investigated by co-immunoprecipitation and ubiquitylation analysis. Results The present study demonstrated that downregulation of SHP-1 expression in patients with endometriosis was negatively correlated with SMURF1 expression. SMURF1, an E3 ubiquitin ligase, activated the STAT3 pathway via ubiquitylation and degradation of SHP-1. Furthermore, SMURF1 promoted cell proliferation and invasion of endometrial stromal cells by activating STAT3 signaling and expression of its downstream targets, MMP2 and MMP9, whereas SHP-1 demonstrated an inverse effect. Additionally, SHP-1 inhibited SMURF1-mediated cell invasion and proliferation of endometrial stromal cells. Conclusions Our findings indicate that SMURF1-mediated ubiquitylation of SHP-1 regulates endometrial stromal cell proliferation and invasion during endometriosis.
Collapse
Affiliation(s)
- Yunmeng Bian
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Li Yuan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaoqian Yang
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Lichun Weng
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Yanli Zhang
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - He Bai
- Department of Gynaecology and Obstetrics, Kaiyuan People's Hospital, Kaiyuan, China
| | - Jinhong Chen
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
12
|
Yang L, Lin S, Xu L, Lin J, Zhao C, Huang X. Novel activators and small-molecule inhibitors of STAT3 in cancer. Cytokine Growth Factor Rev 2019; 49:10-22. [PMID: 31677966 DOI: 10.1016/j.cytogfr.2019.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Excessive activation of signal transducer and activator of transcription 3 (STAT3) signaling is observed in a subset of many cancers, making activated STAT3 a highly promising potential therapeutic target supported by multiple preclinical and clinical studies. However, early-phase clinical trials have produced mixed results with STAT3-targeted cancer therapies, revealing substantial complexity to targeting aberrant STAT3 signaling. This review discusses the diverse mechanisms of oncogenic activation of STAT3, and the small molecule inhibitors of STAT3 in cancer treatment.
Collapse
Affiliation(s)
- Lehe Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China; Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Shichong Lin
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Lingyuan Xu
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
13
|
Maruca A, Catalano R, Bagetta D, Mesiti F, Ambrosio FA, Romeo I, Moraca F, Rocca R, Ortuso F, Artese A, Costa G, Alcaro S, Lupia A. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur J Med Chem 2019; 181:111579. [PMID: 31398616 DOI: 10.1016/j.ejmech.2019.111579] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Many bioactive agents have been extracted from plants or belong to functional foods and have been considered in the treatment of serious and multifactorial diseases, such as cancer. In particular, this review is focused on the anti-cancer properties owned by several natural products typically from the Mediterranean area. In some regions of the South of Italy, a lower cancer incidence has been observed. There is increasing evidence that adherence to a Mediterranean dietary pattern correlates with reduced risk of several cancer types. This could be mainly attributed to the typical lifestyle aspects of the Mediterranean diet, such as high consumption of fruit and vegetables. In this review, the main natural products of the Mediterranean area are discussed, with particular attention on their anti-cancer properties endowed with multi-target profiles.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Chemistry and Chemical Technology, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Federica Moraca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Roberta Rocca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine "Magna Græcia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
14
|
Sawant AV, Srivastava S, Prassanawar SS, Bhattacharyya B, Panda D. Crocin, a carotenoid, suppresses spindle microtubule dynamics and activates the mitotic checkpoint by binding to tubulin. Biochem Pharmacol 2019; 163:32-45. [PMID: 30710515 DOI: 10.1016/j.bcp.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
Abstract
Crocin, a constituent of the saffron spice, exhibits promising antitumor activity in animal models and also inhibits the proliferation of several types of cancer cells in culture. Recently, we have shown that crocin binds to purified tubulin at the vinblastine site, depolymerizes microtubules and induces a mitotic block in cultured cells. Here, we extend our previous suggestion and explore the cellular effects of crocin to further understand its mechanism of action. In a kinetic study, we observed that the crocin-induced depolymerization of microtubules preceded both DNA damage and reactive oxygen species generation indicating that depolymerizing microtubules is the primary action of crocin. Crocin also inhibited the growth of cold-depolymerized microtubules in HeLa cells indicating that it can inhibit microtubule dynamics. Using fluorescence recovery after photobleaching, crocin was found to suppress the spindle microtubule dynamics in live HeLa cells. Further, crocin treatment resulted in activation of spindle assembly checkpoint proteins, BubR1 and Mad2. Similar to other microtubule-targeting agents, crocin also perturbed the localization of end-binding protein EB1 from the growing microtubule ends and enhanced the acetylation of remaining microtubules. Further, crocin was found to bind to purified tubulin with a dissociation constant of 12 ± 1.5 μM. The results suggested that crocin exerted its antiproliferative effect primarily by inhibiting the assembly and dynamics of microtubules. Importantly, the combination of crocin with known anticancer agents like combretastatin A-4, cisplatin, doxorubicin or sorafenib, exerted a strong synergistic cytotoxic effect in HeLa cells indicating that crocin may enhance the effectiveness of other anticancer agents.
Collapse
Affiliation(s)
- Avishkar V Sawant
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shalini Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shweta S Prassanawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
15
|
Deng L, Li J, Lu S, Su Y. Crocin inhibits proliferation and induces apoptosis through suppressing MYCN expression in retinoblastoma. J Biochem Mol Toxicol 2019; 33:e22292. [PMID: 30672053 DOI: 10.1002/jbt.22292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/29/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
The pathogenetic mechanisms of retinoblastoma are still not yet fully elucidated, putting limits to efficacious treatment. Crocin is the main component of saffron, which exhibits significant antitumorigenic properties. The aim of this paper is to investigate the effect of crocin on retinoblastoma. The effects of crocin on the proliferation of human retinoblastoma cells were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell number assay, and colony formation assay. Cell apoptosis induced by crocin was measured by flow cytometry analysis. Cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 were tested by western blot analysis. The expression levels of MYCN were assessed by western blot and quantitative polymerase chain reaction and the stability of MYCN messenger RNA was determined by in vitro RNA degradation assays. We found that crocin significantly inhibited the cell proliferation and clonogenicity and induced cell apoptosis in Y79 and WERI-RB-1 cells. In addition, crocin treatment significantly reduced the expression and the stability of MYCN. Besides, overexpression of MYCN rescued the inhibitory effect of crocin in Y79 cells. Our findings suggest that crocin exhibits antitumorigenic effects in human retinoblastoma cell lines through a MYCN-dependent manner, which may provide guidance to logical therapeutic designs in prevention and treatment of retinoblastoma.
Collapse
Affiliation(s)
- Liya Deng
- Department of TCM Ophthalmology, Jinan Second People's Hospital, Jinan, Shandong, China
| | - Jincun Li
- Department of TCM, Shandong Provincial Western Hospital, Jinan, Shandong, China
| | - Shiyou Lu
- Department of Acupuncture, Affiliated Hospital of Shandong University of TCM, Jinan, Shandong, China
| | - Yan Su
- Department of TCM Ophthalmology, Jinan Second People's Hospital, Jinan, Shandong, China
| |
Collapse
|
16
|
Crocin improves endometriosis by inhibiting cell proliferation and the release of inflammatory factors. Biomed Pharmacother 2018; 106:1678-1685. [DOI: 10.1016/j.biopha.2018.07.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023] Open
|
17
|
Yao C, Liu BB, Qian XD, Li LQ, Cao HB, Guo QS, Zhou GF. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity. Onco Targets Ther 2018; 11:2017-2028. [PMID: 29670377 PMCID: PMC5898595 DOI: 10.2147/ott.s154586] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Autophagy induction is a common mechanism for antitumor chemicals in induction of cancer cell death. However, the role of autophagy in crocin-induced apoptosis is barely studied in hepatocellular carcinoma (HCC). Materials and methods The influence of crocin on growth, apoptosis, and autophagy and its mutual relations were analyzed by Cell Counting Kit-8 assay, flow cytometer, EGFP-LC3 puncta analysis, and Western blot in HCC cells. The activities of Akt/mTOR axis and its roles in autophagy regulation were also detected by Western blot in HCC cells treated with crocin. Finally, the roles of Akt/mTOR axis in crocin-induced autophagic apoptosis were analyzed by Western blot and flow cytometer in HCC cells. Results The results showed that crocin can induce growth inhibition in a does- and time-dependent pattern by apoptosis. Increased LC3 puncta and upregulated LC3-II accumulation was observed as early as at 6 hours in HepG2 and HCCLM3 cells treated with 3 mg/mL crocin. Moreover, apoptosis analysis using flow cytometer and cleaved poly (ADP-ribose) polymerase detection revealed that autophagy initiation was prior to apoptosis activation in HCC cells treated with crocin. When autophagy was blocked with 3-methyladenine, crocin-induced apoptosis was inhibited in HCC cells. Furthermore, crocin treatment constrained the activities of key proteins in Akt/mTOR signaling, such as p-Akt (S473), p-mTOR (S2448), and p-p70S6K (T389), suggesting that crocin could induce autophagic apoptosis in HCC cells in an Akt/mTOR-dependent mechanism. Indeed, when autophagy was suppressed by forced expression of Akt, the crocin-induced apoptosis was also impaired in HCC cells. Conclusion The results suggested that crocin could induce autophagic apoptosis in HCC cells by inhibiting Akt/mTOR activity. This study originally revealed that autophagic apoptosis is a novel cytotoxic function of crocin, which lays the theoretical foundation for clinical application of crocin in HCC.
Collapse
Affiliation(s)
- Chong Yao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China.,Pharmaceutical Department, Huzhou Central Hospital, Huzhou 313003, China
| | - Bing-Bing Liu
- Pharmaceutical Department, TCM Hospital of Changxin, Huzhou 313100, China
| | - Xiao-Dong Qian
- Pharmaceutical Department, Huzhou Central Hospital, Huzhou 313003, China
| | - Li-Qin Li
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou 313000, China
| | - Heng-Bin Cao
- Pharmaceutical Department, Huzhou Central Hospital, Huzhou 313003, China
| | - Qiao-Sheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Gui-Fen Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
18
|
Tong L, Qi G. Crocin prevents platelet‑derived growth factor BB‑induced vascular smooth muscle cells proliferation and phenotypic switch. Mol Med Rep 2018; 17:7595-7602. [PMID: 29620234 PMCID: PMC5983945 DOI: 10.3892/mmr.2018.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet-derived growth factor-BB (PDGF-BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF-BB-induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF-BB-induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit-8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF-BB-induced VSMCs proliferation compared with the PDGF-BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF-BB-induced increase in contractile protein α-smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF-BB-induced Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK)/Kruppel-like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF-BB-induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF-BB-induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Lijian Tong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guoxian Qi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Chen X, Chen C, Hao J, Zhang J, Zhang F. Effect of CLIP3 Upregulation on Astrocyte Proliferation and Subsequent Glial Scar Formation in the Rat Spinal Cord via STAT3 Pathway After Injury. J Mol Neurosci 2017; 64:117-128. [PMID: 29218499 DOI: 10.1007/s12031-017-0998-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event resulting in neuron degeneration and permanent paralysis through inflammatory cytokine overproduction and glial scar formation. Presently, the endogenous molecular mechanisms coordinating glial scar formation in the injured spinal cord remain elusive. Signal transducer and activator of transcription 3 (STAT3) is a well-known transcription factor particularly involving in cell proliferation and inflammation in the lesion site following SCI. Meanwhile, CAP-Gly domain containing linker protein 3(CLIP3), a vital cytoplasmic protein, has been confirmed to providing an optimal conduit for intracellular signal transduction and interacting with STAT3 with mass spectrometry analysis. In this study, we aimed to identify the expression of CLIP3 in the spinal cord as well as its role in mediating astrocyte activation and glial scar formation after SCI by establishing an acute traumatic SCI model in male adult rats. Western blot analysis revealed that CLIP3 increased gradually after injury, reached a peak at day 3. The immunohistochemistry staining showed the same result in white matter. With double immunofluorescence staining, we found that CLIP3 was expressed in glial cells and significant changes of CLIP3 expression occurred in astrocytes during the pathological process. Statistical analysis demonstrated there was a correlation between the number of positive cells stained by CLIP3 and STAT3 in the spinal cord after SCI. Co-immunoprecipitation further indicated that CLIP3 interacted with STAT3 in the injured spinal cord. Taken together, our study clearly suggested that CLIP3 played an essential role in astrocyte activation, associating with the STAT3 pathway activation induced by SCI.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, Jiangsu, 226001, China
| | - Cheng Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.,Medical Colleges of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, Jiangsu, 226001, China
| | - Jiyun Zhang
- Medical Colleges of Nantong University, Nantong, Jiangsu, 226001, China.,Department of Radiology, Third Municipal People's Hospital, Nantong, Jiangsu, 226001, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China. .,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
20
|
Hoshyar R, Mollaei H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J Pharm Pharmacol 2017; 69:1419-1427. [PMID: 28675431 DOI: 10.1111/jphp.12776] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Crocin is derived from dried stigmas of Crocus sativus L. (saffron). It has long been used to prevent and treat various diseases. Although crocin is suggested as one of the most effective cancer therapeutic constituents of saffron stigma, its exact molecular mechanisms are not fully understood. In this study, we reviewed anticancer effects of crocin and its underlying molecular mechanisms. KEY FINDINGS While several mechanisms may account for the antitumour activity of crocin, alteration of expression/activity of the genes and also epigenetic changes may be considered as necessary phenomena. These alternations may lead to inhibition of cancer cells' proliferation or/and induction of apoptosis through various mechanism including inhibition of synthesis of DNA and RNA, interaction with cellular topoisomerase, suppression of the telomerase activity and active STAT3, and targeting of microtubules. Moreover, this carotenoid could reverse the epithelial-mesenchymal transition and inhibit metastasis. CONCLUSIONS Knowing molecular mechanisms of antitumoral agents could guide us to choose the best chemotherapeutic compound especially for targeted therapy and also provide insights about possible side effects.
Collapse
Affiliation(s)
- Reyhane Hoshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Biochemistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Homa Mollaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|