1
|
Ferreira G, Santander A, Cardozo R, Chavarría L, Domínguez L, Mujica N, Benítez M, Sastre S, Sobrevia L, Nicolson GL. Nutrigenomics of inward rectifier potassium channels. Biochim Biophys Acta Mol Basis Dis 2023:166803. [PMID: 37406972 DOI: 10.1016/j.bbadis.2023.166803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels play a key role in maintaining the resting membrane potential and supporting potassium homeostasis. There are many variants of Kir channels, which are usually tetramers in which the main subunit has two trans-membrane helices attached to two N- and C-terminal cytoplasmic tails with a pore-forming loop in between that contains the selectivity filter. These channels have domains that are strongly modulated by molecules present in nutrients found in different diets, such as phosphoinositols, polyamines and Mg2+. These molecules can impact these channels directly or indirectly, either allosterically by modulation of enzymes or via the regulation of channel expression. A particular type of these channels is coupled to cell metabolism and inhibited by ATP (KATP channels, essential for insulin release and for the pathogenesis of metabolic diseases like diabetes mellitus). Genomic changes in Kir channels have a significant impact on metabolism, such as conditioning the nutrients and electrolytes that an individual can take. Thus, the nutrigenomics of ion channels is an important emerging field in which we are attempting to understand how nutrients and diets can affect the activity and expression of ion channels and how genomic changes in such channels may be the basis for pathological conditions that limit nutrition and electrolyte intake. In this contribution we briefly review Kir channels, discuss their nutrigenomics, characterize how different components in the diet affect their function and expression, and suggest how their genomic changes lead to pathological phenotypes that affect diet and electrolyte intake.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Lucía Domínguez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Nicolás Mujica
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Milagros Benítez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Sastre
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo CP 11800, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
2
|
Yang M, Zhang Y, Ren J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165836. [PMID: 32413386 DOI: 10.1016/j.bbadis.2020.165836] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Acetylation belongs to a class of post-translational modification (PTM) processes that epigenetically regulate gene expression and gene transcriptional activity. Reversible histone acetylation on lysine residues governs the interactions between DNA and histones to mediate chromatin remodeling and gene transcription. Non-histone protein acetylation complicates cellular function whereas acetylation of key mitochondrial enzymes regulates bioenergetic metabolism. Acetylation and deacetylation of functional proteins are essential to the delicated homeostatic regulation of embryonic development, postnatal maturation, cardiomyocyte differentiation, cardiac remodeling and onset of various cardiovascular diseases including obesity, diabetes mellitus, cardiometabolic diseases, ischemia-reperfusion injury, cardiac remodeling, hypertension, and arrhythmias. Histone acetyltransferase (HATs) and histone deacetylases (HDACs) are essential enzymes mainly responsible for the regulation of lysine acetylation levels, thus providing possible drugable targets for therapeutic interventions in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| |
Collapse
|
3
|
Wang D, Wang Y, Liu H, Tong C, Ying Q, Sachinidis A, Li L, Peng L. Laminin promotes differentiation of rat embryonic stem cells into cardiomyocytes by activating the integrin/FAK/PI3K p85 pathway. J Cell Mol Med 2019; 23:3629-3640. [PMID: 30907509 PMCID: PMC6484303 DOI: 10.1111/jcmm.14264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/27/2022] Open
Abstract
The generation of germline competent rat embryonic stem cells (rESCs) allows the study of their lineage commitment. Here, we developed a highly efficient system for rESC-derived cardiomyocytes, and even the formation of three-dimensional (3D)-like cell clusters with cTNT and α-Actinin. We have validated that laminin can interact with membrane integrin to promote the phosphorylation of both phosphatidylinositol 3-kinase (PI3K) p85 and the focal adhesion kinase (FAK). In parallel, GATA4 was up-regulated. Upon inhibiting the integrin, laminin loses the effect on cardiomyocyte differentiation, accompanied with a down-regulation of phosphorylation level of PI3K p85 and FAK. Meanwhile, the expression of Gata4 was inhibited as well. Taken together, laminin is a crucial component in the differentiation of rESCs into cardiomyocytes through increasing their proliferation via interacting with integrin pathway. These results provide new insights into the pathways mediated by extracellular laminin involved in the fate of rESC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Chang Tong
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|