1
|
Li Z, Cheng T, Guo Y, Gao R, Ma X, Mao X, Han X. CD147 induces asthmatic airway remodeling and activation of circulating fibrocytes in a mouse model of asthma. Respir Res 2024; 25:6. [PMID: 38178133 PMCID: PMC10765784 DOI: 10.1186/s12931-023-02646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Airway remodeling is a poorly reversible feature of asthma which lacks effective therapeutic interventions. CD147 can regulate extracellular matrix (ECM) remodeling and tissue fibrosis, and participate in the pathogenesis of asthma. In this study, the role of CD147 in airway remodeling and activation of circulating fibrocytes was investigated in asthmatic mice. METHODS Asthmatic mouse model was established by sensitizing and challenging mice with ovalbumin (OVA), and treated with anti-CD147 or Isotype antibody. The number of eosinophils in bronchoalveolar lavage fluid (BALF) was examined by microscope, and the levels of interleukin-4 (IL-4), IL-5 and IL-13 in BALF were detected by enzyme-linked immunosorbent assay (ELISA). The number of CD45+ and collagen I (COL-I)+ circulating fibrocytes in BALF was detected by flow cytometry. Lung tissue sections were respectively stained with hematoxylin and eosin (HE), periodic acid-Schiff (PAS) or Masson trichrome staining, or used for immunohistochemistry of CD31 and immunohistofluorescence of α-smooth muscle actin (α-SMA), CD45 and COL-I. The protein expression of α-SMA, vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), Fibronectin, and COL-I was determined by western blotting. RESULTS Anti-CD147 treatment significantly reduced the number of eosinophils and the levels of IL-4, IL-13, and IL-5 in BALF, and repressed airway inflammatory infiltration and airway wall thickening in asthmatic mice. Anti-CD147 treatment also reduced airway goblet cell metaplasia, collagen deposition, and angiogenesis in asthmatic mice, accompanied by inhibition of VEGF and α-SMA expression. The number of CD45+COL-I+ circulating fibrocytes was increased in BALF and lung tissues of OVA-induced asthmatic mice, but was decreased by anti-CD147 treatment. In addition, anti-CD147 treatment also reduced the protein expression of COL-I, fibronectin, and TGF-β1 in lung tissues of asthmatic mice. CONCLUSION OVA-triggered airway inflammation and airway remodeling in asthmatic mice can be repressed by anti-CD147 treatment, along with inhibiting the accumulation and activation of circulating fibrocytes.
Collapse
Affiliation(s)
- Zhao Li
- Department of Cardiopulmonary Diseases, Xi 'an International Medical Center Hospital, No. 777 of Xitai Road, High-tech Zone, Xi 'an, Shaanxi Province, 710100, China
| | - Tao Cheng
- Department of Cardiopulmonary Diseases, Xi 'an International Medical Center Hospital, No. 777 of Xitai Road, High-tech Zone, Xi 'an, Shaanxi Province, 710100, China
| | - Yaning Guo
- Department of Cardiopulmonary Diseases, Xi 'an International Medical Center Hospital, No. 777 of Xitai Road, High-tech Zone, Xi 'an, Shaanxi Province, 710100, China
| | - Rong Gao
- Department of Cardiopulmonary Diseases, Xi 'an International Medical Center Hospital, No. 777 of Xitai Road, High-tech Zone, Xi 'an, Shaanxi Province, 710100, China
| | - Xuankun Ma
- Department of Cardiopulmonary Diseases, Xi 'an International Medical Center Hospital, No. 777 of Xitai Road, High-tech Zone, Xi 'an, Shaanxi Province, 710100, China
| | - Xuecong Mao
- Department of Cardiopulmonary Diseases, Xi 'an International Medical Center Hospital, No. 777 of Xitai Road, High-tech Zone, Xi 'an, Shaanxi Province, 710100, China
| | - Xinpeng Han
- Department of Cardiopulmonary Diseases, Xi 'an International Medical Center Hospital, No. 777 of Xitai Road, High-tech Zone, Xi 'an, Shaanxi Province, 710100, China.
| |
Collapse
|
2
|
Zhong Z, Li K, Shen C, Ma Y, Guo L. Erythropoietin improves pulmonary hypertension by promoting the homing and differentiation of bone marrow mesenchymal stem cells in lung tissue. Hum Cell 2024; 37:214-228. [PMID: 37968533 DOI: 10.1007/s13577-023-01009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease thatultimately progresses to right-sided heart failure and death. Erythropoietin (EPO) has been shown to have therapeutic potential in cardiovascular diseases, including PAH. In this study, we aimed to investigate the improvement effect of EPO pretreated bone marrow mesenchymal stem cells (BMSCs) on PAH. BMSCs were obtained from the bone marrow of male SD rats. Female rats were randomly divided into six groups, including control group, monocrotaline (MCT)-induced group, and four groups with different doses of EPO pretreated BMSCs. Lung tissue was taken for testing at 2 weeks of treatment. Our results showed EPO promoted homing and endothelial cell differentiation of BMSCs in the lung tissues of PAH rats. EPO and BMSCs treatment attenuated pulmonary arterial pressure, polycythemia, and pulmonary artery structural remodeling. Furthermore, BMSCs inhibited pulmonary vascular endothelial-to-mesenchymal transition (EndoMT) in PAH rats, which was further suppressed by EPO in a concentration-dependent manner. Meanwhile, EPO and BMSC treatment elevated pulmonary angiogenesis in PAH rats. BMSCs inhibited TNF-α, IL-1β, IL-6, and MCP-1 in lung tissues of PAH rats, which was further decreased by EPO in a concentration-dependent manner. Thus, EPO improved pulmonary hypertension (PH) by promoting the homing and differentiation of BMSCs in lung tissue.
Collapse
Affiliation(s)
- Zhendong Zhong
- Institute for Laboratory Animal Research, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Kang Li
- Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa, 850000, Tibet, China
| | - Chongyang Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 230041, Sichuan, China
| | - Yuxiao Ma
- Department of Biology, New York University, 100 Washington Square E, New York, NY, 10003, United States of America.
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2,1St Ring Rd., Chengdu, 610072, Sichuan, China.
| |
Collapse
|
3
|
Zhai Z, Cui T, Chen J, Mao X, Zhang T. Advancements in engineered mesenchymal stem cell exosomes for chronic lung disease treatment. J Transl Med 2023; 21:895. [PMID: 38071321 PMCID: PMC10709966 DOI: 10.1186/s12967-023-04729-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic lung diseases include an array of conditions that impact airways and lung structures, leading to considerable societal burdens. Mesenchymal stem cells (MSCs) and their exosomes (MSC-exos) can be used for cell therapy and exhibit a diverse spectrum of anti-inflammatory, antifibrotic, and immunomodulatory properties. Engineered MSC-exos possesses enhanced capabilities for targeted drug delivery, resulting in more potent targeting effects. Through various engineering modifications, these exosomes can exert many biological effects, resulting in specific therapeutic outcomes for many diseases. Moreover, engineered stem cell exosomes may exhibit an increased capacity to traverse physiological barriers and infiltrate protected lesions, thereby exerting their therapeutic effects. These characteristics render them a promising therapeutic agent for chronic pulmonary diseases. This article discusses and reviews the strategies and mechanisms of engineered MSC-exos in the treatment of chronic respiratory diseases based on many studies to provide new solutions for these diseases.
Collapse
Affiliation(s)
- Zhengyao Zhai
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tairong Cui
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jialiang Chen
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xulong Mao
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
4
|
Huang S, Li Y, Zeng J, Chang N, Cheng Y, Zhen X, Zhong D, Chen R, Ma G, Wang Y. Mesenchymal Stem/Stromal Cells in Asthma Therapy: Mechanisms and Strategies for Enhancement. Cell Transplant 2023; 32:9636897231180128. [PMID: 37318186 DOI: 10.1177/09636897231180128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Asthma is a complex and heterogeneous disease characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. Most asthmatic patients are well-established using standard treatment strategies and advanced biologicals. However, a small group of patients who do not respond to biological treatments or are not effectively controlled by available treatment strategies remain a clinical challenge. Therefore, new therapies are urgently needed for poorly controlled asthma. Mesenchymal stem/stromal cells (MSCs) have shown therapeutic potential in relieving airway inflammation and repairing impaired immune balance in preclinical trials owing to their immunomodulatory abilities. Noteworthy, MSCs exerted a therapeutic effect on steroid-resistant asthma with rare side effects in asthmatic models. Nevertheless, adverse factors such as limited obtained number, nutrient and oxygen deprivation in vitro, and cell senescence or apoptosis affected the survival rate and homing efficiency of MSCs, thus limiting the efficacy of MSCs in asthma. In this review, we elaborate on the roles and underlying mechanisms of MSCs in the treatment of asthma from the perspective of their source, immunogenicity, homing, differentiation, and immunomodulatory capacity and summarize strategies to improve their therapeutic effect.
Collapse
Affiliation(s)
- Si Huang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yiyang Li
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqing Zeng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Ning Chang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Xiangfan Zhen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Dan Zhong
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yajun Wang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
5
|
Niranjan R, Subramanian M, Panneer D, Ojha SK. Eosinophils Restrict Diesel Exhaust Particles Induced Cell Proliferation of Lung Epithelial A549 Cells, Vial Interleukin-13 Mediated Mechanisms: Implications for Tissue Remodelling And Fibrosis. Comb Chem High Throughput Screen 2022; 25:1682-1694. [PMID: 34986769 DOI: 10.2174/1386207325666220105150655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diesel exhaust particulates (DEPs) affect lung physiology and cause serious damage to the lungs. A number of studies demonstrated that, eosinophils play a very important role in the development of tissue remodelling and fibrosis of lungs. However, the exact mechanism of pathogenesis of tissue remodelling and fibrosis is not known. METHODS Both in vitro and in vivo models were used in the study. HL-60 and A549 cells were used in the study. Balb/C mice of 8 to 12 weeks old were used for in vivo study. Cell viability by MTT assay, RNA isolation by tri reagent was accomplished. mRNA expression of inflammatory genes were accomplished by real time PCR or qPCR. Immunohistochemistry was done to asses the localization and expressions of proteins. One way ANOVA followed by post hoc test were done for the statistical analysis. Graph-Pad Prism software was used for statistical analysis. RESULTS We for the first time demonstrate that, Interleukin-13 plays a very important role in the development of tissue remodelling and fibrosis. We report that, diesel exhaust particles significantly induce eosinophils cell proliferation and interleukin-13 release in in vitro culture conditions. Supernatant collected from DEP-induced eosinophils cells significantly restrict cell proliferation of epithelial cells in response to exposure of diesel exhast particles. Furthermore, purified interleukin-13 decreases the proliferation of A549 cells, highliting the involvement of IL-13 in tissue remodeling. Notably, Etoricoxib (selective COX-2 inhibitor) did not inhibit DEP-triggered release of interleukin-13, suggesting another cell signalling pathway. The in vivo exposer of DEP to the lungs of mice, resulted in high level of eosinophils degranulation as depicted by the EPX-1 immunostaining and altered level of mRNA expressions of inflammatory genes. We also found that, a-SMA, fibroblast specific protein (FSP-1) has been changed in response to DEP in the mice lungs along with the mediators of inflammation. CONCLUSION Altogether, we elucidated, the mechanistic role of eosinophils and IL-13 in the DEP-triggered proliferation of lungs cells thus providing an inside in the pathophysiology of tissue remodelling and fibrosis of lungs.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Immunology laboratories, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry, India, 605006
| | | | - Devaraju Panneer
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Puducherry, India, 605006
| | - Sanjay Kumar Ojha
- Pandorum Technologies Pvt. Ltd., Bangalore Bio-innovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru - 560 100
| |
Collapse
|
6
|
Erythropoietin Abrogates Post-Ischemic Activation of the NLRP3, NLRC4, and AIM2 Inflammasomes in Microglia/Macrophages in a TAK1-Dependent Manner. Transl Stroke Res 2021; 13:462-482. [PMID: 34628598 PMCID: PMC9046144 DOI: 10.1007/s12975-021-00948-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022]
Abstract
Inflammasomes are known to contribute to brain damage after acute ischemic stroke (AIS). TAK1 is predominantly expressed in microglial cells and can regulate the NLRP3 inflammasome, but its impact on other inflammasomes including NLRC4 and AIM2 after AIS remains elusive. EPO has been shown to reduce NLRP3 protein levels in different disease models. Whether EPO-mediated neuroprotection after AIS is conveyed via an EPO/TAK1/inflammasome axis in microglia remains to be clarified. Subjecting mice deficient for TAK1 in microglia/macrophages (Mi/MΦ) to AIS revealed a significant reduction in infarct sizes and neurological impairments compared to the corresponding controls. Post-ischemic increased activation of TAK1, NLRP3, NLRC4, and AIM2 inflammasomes including their associated downstream cascades were markedly reduced upon deletion of Mi/MΦ TAK1. EPO administration improved clinical outcomes and dampened stroke-induced activation of TAK1 and inflammasome cascades, which was not evident after the deletion of Mi/MΦ TAK1. Pharmacological inhibition of NLRP3 in microglial BV-2 cells did not influence post-OGD IL-1β levels, but increased NLRC4 and AIM2 protein levels, suggesting compensatory activities among inflammasomes. Overall, we provide evidence that Mi/MΦ TAK1 regulates the expression and activation of the NLRP3, NLRC4, AIM2 inflammasomes. Furthermore, EPO mitigated stroke-induced activation of TAK1 and inflammasomes, indicating that EPO conveyed neuroprotection might be mediated via an EPO/TAK1/inflammasome axis.
Collapse
|
7
|
Cytoprotective effects of erythropoietin: What about the lung? Biomed Pharmacother 2021; 139:111547. [PMID: 33831836 DOI: 10.1016/j.biopha.2021.111547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (Epo) is a pleiotropic cytokine, essential for erythropoiesis. Epo and its receptor (Epo-R) are produced by several tissues and it is now admitted that Epo displays other physiological functions than red blood cell synthesis. Indeed, Epo provides cytoprotective effects, which consist in prevention or fight against pathological processes. This perspective article reviews the various protective effects of Epo in several organs and tries to give a proof of concept about its effects in the lung. The tissue-protective effects of Epo could be a promising approach to limit the symptoms of acute and chronic lung diseases.
Collapse
|
8
|
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S, Hassanzadeh A. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12:192. [PMID: 33736695 PMCID: PMC7971361 DOI: 10.1186/s13287-021-02265-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn's disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.
Collapse
Affiliation(s)
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yu X, Yu L, Guo B, Chen R, Qiu C. A narrative review of research advances in mesenchymal stem cell therapy for asthma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1461. [PMID: 33313206 PMCID: PMC7723541 DOI: 10.21037/atm-20-6389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways that involves multiple cells, including inflammatory cells, structural cells, and cellular components. Glucocorticoids and beta-receptor agonists are still the first choices for asthma treatment. However, the asthma symptoms may still be poorly controlled in some patients after an optimal treatment. Mesenchymal stem cells (MSCs) are characterized by the potential for multi-directional differentiation and can exert immunomodulatory and anti-inflammatory effects. Its role in treating asthma has increasingly been recognized in recent years. In this review article, we sought to summarize the recent advances in the therapeutic effects of MSCs on several types of asthma and explain the relevant mechanisms. Articles on asthma treatment with MSCs as of January 2020 were searched in PubMed, Google Scholar, and Web of Science databases. It was found that MSCs have therapeutic effects on allergic asthma, non-allergic asthma and occupational asthma; gene-modified or pretreated MSCs improves the therapeutic effects of MSCs in asthma; MSC-derived conditioned medium or extracellular vesicles possess the considerable curative effect as MSC on asthma; and MSCs exert their therapeutic effects on asthma by restoring Th1/Th2 balance, reversing Th17/Tregs imbalance, inhibiting DC maturation, and promoting the switch of M1 to M2 and repairing epithelial injury. Thus, MSCs may be a promising treatment for asthma.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Li Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Bingxin Guo
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Rongchang Chen
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (Second Clinical Medical College of Jinan University & First Affiliated Hospital of Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| |
Collapse
|
10
|
Wang Y, Zhang L, Wu Y, Zhu R, Wang Y, Cao Y, Long W, Ji C, Wang H, You L. Peptidome analysis of umbilical cord mesenchymal stem cell (hUC-MSC) conditioned medium from preterm and term infants. Stem Cell Res Ther 2020; 11:414. [PMID: 32967723 PMCID: PMC7510303 DOI: 10.1186/s13287-020-01931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background The therapeutic role of mesenchymal stem cells (MSCs) has been widely confirmed in several animal models of premature infant diseases. Micromolecule peptides have shown promise for the treatment of premature infant diseases. However, the potential role of peptides secreted from MSCs has not been studied. The purpose of this study is to help to broaden the knowledge of the hUC-MSC secretome at the peptide level through peptidomic profile analysis. Methods We used tandem mass tag (TMT) labeling technology followed by tandem mass spectrometry to compare the peptidomic profile of preterm and term umbilical cord MSC (hUC-MSC) conditioned medium (CM). Gene Ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) were conducted to explore the differentially expressed peptides by predicting the functions of their precursor proteins. To evaluate the effect of candidate peptides on human lung epithelial cells stimulated by hydrogen peroxide (H2O2), quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were, respectively, adopted to detect inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression levels at the mRNA and protein levels. Results A total of 131 peptides derived from 106 precursor proteins were differentially expressed in the preterm hUC-MSC CM compared with the term group, comprising 37 upregulated peptides and 94 downregulated peptides. Bioinformatics analysis showed that these differentially expressed peptides may be associated with developmental disorders, inflammatory response, and organismal injury. We also found that peptides 7118TGAKIKLVGT7127 derived from MUC19 and 508AAAAGPANVH517 derived from SIX5 reduced the expression levels of TNF-α, IL-1β, and IL-6 in H2O2-treated human lung epithelial cells. Conclusions In summary, this study provides further secretomics information on hUC-MSCs and provides a series of peptides that might have antiinflammatory effects on pulmonary epithelial cells and contribute to the prevention and treatment of respiratory diseases in premature infants.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.,Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yun Wu
- Department of Ultrasound, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Rongping Zhu
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Wei Long
- Department of Obstetrics, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| |
Collapse
|
11
|
Wang X, Wang H, Lu J, Feng Z, Liu Z, Song H, Wang H, Zhou Y, Xu J. Erythropoietin-Modified Mesenchymal Stem Cells Enhance Anti-fibrosis Efficacy in Mouse Liver Fibrosis Model. Tissue Eng Regen Med 2020; 17:683-693. [PMID: 32621283 PMCID: PMC7333789 DOI: 10.1007/s13770-020-00276-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Mesenchymal stem cell (MSC)-based cell transplantation is an effective means of treating chronic liver injury, fibrosis and end-stage liver disease. However, extensive studies have found that only a small number of transplanted cells migrate to the site of injury or lesion, and repair efficacy is very limited.
Methods: Bone marrow-derived MSCs (BM-MSCs) were generated that overexpressed the erythropoietin (EPO) gene using a lentivirus. Cell Counting Kit-8 was used to detect the viability of BM-MSCs after overexpressing EPO. Cell migration and apoptosis were verified using Boyden chamber and flow cytometry, respectively. Finally, the anti-fibrosis efficacy of EPO-MSCs was evaluated in vivo using immunohistochemical analysis. Results: EPO overexpression promoted cell viability and migration of BM-MSCs without inducing apoptosis, and EPO-MSC treatment significantly alleviated liver fibrosis in a carbon tetrachloride (CCl4) induced mouse liver fibrosis model. Conclusion: EPO-MSCs enhance anti-fibrotic efficacy, with higher cell viability and stronger migration ability compared with treatment with BM-MSCs only. These findings support improving the efficiency of MSCs transplantation as a potential therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Xianyao Wang
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China.,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China.,Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Huizhen Wang
- Department of Stomatology, Nanyang Medical College, Nanyang, 473000, China
| | - Junhou Lu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Zhanhui Feng
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Zhongshan Liu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, 523000, China
| | - Heng Wang
- Department of Pharmacology, Qiannan Medical College for Nationalities, Duyun, 558000, China
| | - Yanhua Zhou
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China. .,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China.
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China. .,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China. .,Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Sun C, Zhang S, Wang J, Jiang W, Xin Q, Chen X, Zhang Z, Luan Y. EPO enhances the protective effects of MSCs in experimental hyperoxia-induced neonatal mice by promoting angiogenesis. Aging (Albany NY) 2020; 11:2477-2487. [PMID: 31035257 PMCID: PMC6519997 DOI: 10.18632/aging.101937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy; however, there is no effective treatment for it. In the present study, a neonatal mouse BPD model was established by continuous exposure to high oxygen (HO) levels. Mice were divided randomly into 5 groups: control, BPD, EPO, MSCs, and MSCs+EPO. At 2 weeks post-treatment, vessel density and the expression levels of endothelial growth factor (VEGF), stromal cell-derived factor-1 (SDF-1), and its receptor C-X-C chemokine receptor type 4 (CXCR4) were significantly increased in the MSC+EPO group compared with the EPO or MSCs group alone; moreover, EPO significantly enhanced MSCs proliferation, migration, and anti-apoptosis ability in vitro. Furthermore, the MSCs could differentiate into cells that were positive for the type II alveolar epithelial cell (AECII)-specific marker surfactant protein-C, but not positive for the AECI-specific marker aquaporin 5. Our present results suggested that MSCs in combination with EPO could significantly attenuate lung injury in a neonatal mouse model of BPD. The mechanism may be by the indirect promotion of angiogenesis, which may involve the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Chao Sun
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Shanshan Zhang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, PR China
| | - Jue Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Wen Jiang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Qian Xin
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Xiaojing Chen
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, PR China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
13
|
Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, Bellusci S, Ehrhardt H. MSC Based Therapies-New Perspectives for the Injured Lung. J Clin Med 2020; 9:jcm9030682. [PMID: 32138309 PMCID: PMC7141210 DOI: 10.3390/jcm9030682] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic lung diseases pose a tremendous global burden. At least one in four people suffer from severe pulmonary sequelae over the course of a lifetime. Despite substantial improvements in therapeutic interventions, persistent alleviation of clinical symptoms cannot be offered to most patients affected to date. Despite broad discrepancies in origins and pathomechanisms, the important disease entities all have in common the pulmonary inflammatory response which is central to lung injury and structural abnormalities. Mesenchymal stem cells (MSC) attract particular attention due to their broadly acting anti-inflammatory and regenerative properties. Plenty of preclinical studies provided congruent and convincing evidence that MSC have the therapeutic potential to alleviate lung injuries across ages. These include the disease entities bronchopulmonary dysplasia, asthma and the different forms of acute lung injury and chronic pulmonary diseases in adulthood. While clinical trials are so far restricted to pioneering trials on safety and feasibility, preclinical results point out possibilities to boost the therapeutic efficacy of MSC application and to take advantage of the MSC secretome. The presented review summarizes the most recent advances and highlights joint mechanisms of MSC action across disease entities which provide the basis to timely tackle this global disease burden.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Sarah Kremer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Cho-Ming Chao
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | | | - Rory E. Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Ludwigstrasse 43, 61231 Bad Nauheim, Germany;
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Correspondence: ; Tel.: +49-985-43400; Fax: +49-985-43419
| |
Collapse
|
14
|
Li H, Tian Y, Xie L, Liu X, Huang Z, Su W. Mesenchymal stem cells in allergic diseases: Current status. Allergol Int 2020; 69:35-45. [PMID: 31445840 DOI: 10.1016/j.alit.2019.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases, which include asthma, allergic skin diseases, allergic rhinitis and allergic conjunctivitis, have already garnered worldwide public health attention over recent decades. Mesenchymal stem cells (MSCs) have gradually emerged as a potential method for treating allergic diseases due to their immunosuppressive characteristics, tissue repair ability and secretion of various biological factors. This potential of MSC-based therapy has been confirmed in clinical and preclinical studies, which report the therapeutic benefits of MSCs for various allergic diseases and explore the antiallergic mechanisms. In this review, we focus on the discoveries and biological mechanisms of MSCs as a therapeutic tool in allergic diseases. We discuss the challenges of conducting MSC studies as well as future directions.
Collapse
|
15
|
Ke X, Do DC, Li C, Zhao Y, Kollarik M, Fu Q, Wan M, Gao P. Ras homolog family member A/Rho-associated protein kinase 1 signaling modulates lineage commitment of mesenchymal stem cells in asthmatic patients through lymphoid enhancer-binding factor 1. J Allergy Clin Immunol 2018; 143:1560-1574.e6. [PMID: 30194990 DOI: 10.1016/j.jaci.2018.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Numbers of mesenchymal stem cells (MSCs) are increased in the airways after allergen challenge. Ras homolog family member A (RhoA)/Rho-associated protein kinase 1 (ROCK) signaling is critical in determining the lineage fate of MSCs in tissue repair/remodeling. OBJECTIVES We sought to investigate the role of RhoA/ROCK signaling in lineage commitment of MSCs during allergen-induced airway remodeling and delineate the underlying mechanisms. METHODS Active RhoA expression in lung tissues of asthmatic patients and its role in cockroach allergen-induced airway inflammation and remodeling were investigated. RhoA/ROCK signaling-mediated MSC lineage commitment was assessed in an asthma mouse model by using MSC lineage tracing mice (nestin-Cre; ROSA26-EYFP). The role of RhoA/ROCK in MSC lineage commitment was also examined by using MSCs expressing constitutively active RhoA (RhoA-L63) or dominant negative RhoA (RhoA-N19). Downstream RhoA-regulated genes were identified by using the Stem Cell Signaling Array. RESULTS Lung tissues from asthmatic mice showed increased expression of active RhoA when compared with those from control mice. Inhibition of RhoA/ROCK signaling with fasudil, a RhoA/ROCK inhibitor, reversed established cockroach allergen-induced airway inflammation and remodeling, as assessed based on greater collagen deposition/fibrosis. Furthermore, fasudil inhibited MSC differentiation into fibroblasts/myofibroblasts but promoted MSC differentiation into epithelial cells in asthmatic nestin-Cre; ROSA26-EYFP mice. Consistently, expression of RhoA-L63 facilitated differentiation of MSCs into fibroblasts/myofibroblasts, whereas expression of RhoA-19 switched the differentiation toward epithelial cells. The gene array identified the Wnt signaling effector lymphoid enhancer-binding factor 1 (Lef1) as the most upregulated gene in RhoA-L63-transfected MSCs. Knockdown of Lef1 induced MSC differentiation away from fibroblasts/myofibroblasts but toward epithelial cells. CONCLUSIONS These findings uncover a previously unrecognized role of RhoA/ROCK signaling in MSC-involved airway repair/remodeling in the setting of asthma.
Collapse
Affiliation(s)
- Xia Ke
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Otorhinolaryngology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Changjun Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yilin Zhao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Respiratory Medicine, Fourth Military Medical University, Xi'an, China
| | - Marian Kollarik
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Qingling Fu
- Otorhinolaryngology Hospital, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
16
|
Zhang Z, Sun C, Wang J, Jiang W, Xin Q, Luan Y. Timing of erythropoietin modified mesenchymal stromal cell transplantation for the treatment of experimental bronchopulmonary dysplasia. J Cell Mol Med 2018; 22:5759-5763. [PMID: 30160360 PMCID: PMC6201357 DOI: 10.1111/jcmm.13843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023] Open
Abstract
The aim of this study is to optimize the timing of erythropoietin gene modified mesenchymal stem cells (EPO‐MSCs) transplantation for bronchopulmonary dysplasia (BPD). Three weeks post‐operation, the results indicated that the damage of airway structure and apoptosis were significantly decreased, the proliferation was increased in three EPO‐MSCs transplantation groups as compared with BPD mice. Moreover, the inflammation cytokines were improvement in early EPO‐MSCs injection mice than in BPD mice, but there was no significant difference between late injection and BPD groups. Furthermore, the protein expression ratio of p‐p38/p38MAPK was down‐regulation in early mice but not in late transplantation mice. Our findings suggest that EPO‐MSCs maybe attenuate BPD injury in early than in late administration by inhibiting inflammation response through down‐regulation of the p38MAPK signalling pathway.
Collapse
Affiliation(s)
- Zhaohua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, China
| | - Chao Sun
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Jue Wang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Wen Jiang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Qian Xin
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Yun Luan
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|