1
|
Retraction Note: Inhibition of microRNA-214 promotes epithelial-mesenchymal transition process and induces interstitial cystitis in postmenopausal women by upregulating Mfn2. Exp Mol Med 2022; 54:861. [PMID: 35701562 PMCID: PMC9256695 DOI: 10.1038/s12276-022-00787-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
2
|
Huang M, Li X, Zhou C, Si M, Zheng H, Chen L, Ding H. Noncoding RNA miR-205-5p mediates osteoporosis pathogenesis and osteoblast differentiation by regulating RUNX2. J Cell Biochem 2019; 121:4196-4203. [PMID: 31886577 DOI: 10.1002/jcb.29599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022]
Abstract
As a kind of noncoding RNAs, microRNAs (miRNAs) play important roles in disease pathogenesis by regulating gene expression. However, the molecular mechanism of miRNAs in osteoporosis remains largely unknown. In the present study, we aim to explore the genome-wide miRNAs expression profile and the regulatory mechanism of miR-205-5p in osteoporosis. A total of 72 differentially expressed miRNAs were identified in osteoporosis via microarray technology and bioinformatics analysis. We focused on one of the abnormally expressed miRNAs, miR-205-5p, which was previously unknown in osteoporosis. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that miR-205-5p was upregulated in osteoporosis samples and its expression was gradually decreased during osteogenic differentiation. Besides, miR-205-5p overexpression could inhibit the activity of osteoblast markers, including collagen, type I, α 1 (COL1A1) and alkaline phosphatase (ALP) while miR-205-5p inhibition showed the opposite results. Moreover, bioinformatics analysis identified the potential targets of miR-205-5p, including runt-related transcription factor 2 (RUNX2), SMAD1 and BCL6, etc. The dual-luciferase reporter assay confirmed RUNX2 was directly targeted by miR-205-5p. Furthermore, the rescue experiments showed that RUNX2 overexpression could significantly weaken the effect of miR-205-5p on osteoblast markers, indicating that miR-205-5p may inhibit osteogenic differentiation by targeting RUNX2.
Collapse
Affiliation(s)
- Mingwei Huang
- Department of Endocrinology, ShiYan People's Hospital & Affiliated People's Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaowen Li
- Department of Endocrinology, ShiYan People's Hospital & Affiliated People's Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Can Zhou
- Department of Pharmacy, Affiliated People's Hospital of Hubei University of Medicine, China
| | - Min Si
- Department of Endocrinology, ShiYan People's Hospital & Affiliated People's Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Haiyan Zheng
- Department of Endocrinology, ShiYan People's Hospital & Affiliated People's Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Lianhua Chen
- Department of Endocrinology, ShiYan People's Hospital & Affiliated People's Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| | - Hongcheng Ding
- Department of Endocrinology, ShiYan People's Hospital & Affiliated People's Hospital of Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
3
|
Hadida M, Marchat D. Strategy for achieving standardized bone models. Biotechnol Bioeng 2019; 117:251-271. [PMID: 31531968 PMCID: PMC6915912 DOI: 10.1002/bit.27171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Reliably producing functional in vitro organ models, such as organ-on-chip systems, has the potential to considerably advance biology research, drug development time, and resource efficiency. However, despite the ongoing major progress in the field, three-dimensional bone tissue models remain elusive. In this review, we specifically investigate the control of perfusion flow effects as the missing link between isolated culture systems and scientifically exploitable bone models and propose a roadmap toward this goal.
Collapse
Affiliation(s)
- Mikhael Hadida
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| |
Collapse
|
4
|
Shao Y, Wichern E, Childress PJ, Adaway M, Misra J, Klunk A, Burr DB, Wek RC, Mosley AL, Liu Y, Robling AG, Brustovetsky N, Hamilton J, Jacobs K, Vashishth D, Stayrook KR, Allen MR, Wallace JM, Bidwell JP. Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality. Am J Physiol Endocrinol Metab 2019; 316:E749-E772. [PMID: 30645175 PMCID: PMC6580174 DOI: 10.1152/ajpendo.00343.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/11/2022]
Abstract
A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor nuclear matrix protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared with wild-type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyperanabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion: a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. The expression of matrix genes that contribute to bone material-level mechanical properties was elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality.
Collapse
Affiliation(s)
- Yu Shao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Emily Wichern
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Paul J Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
| | - Michele Adaway
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Angela Klunk
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - David B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
- Department of Biomedical Engineering, Indiana University-Purdue University , Indianapolis, Indiana
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine , Indianapolis, Indiana
| | - James Hamilton
- Department of Pharmacology and Toxicology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Kylie Jacobs
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies and Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | - Keith R Stayrook
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
- Roudebush Veterans Administration Medical Center , Indianapolis, Indiana
| | - Joseph M Wallace
- Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
- Department of Biomedical Engineering, Indiana University-Purdue University , Indianapolis, Indiana
| | - Joseph P Bidwell
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
5
|
Wang Y, Yang L, Liu X, Hong T, Wang T, Dong A, Li J, Xu X, Cao L. miR-431 inhibits adipogenic differentiation of human bone marrow-derived mesenchymal stem cells via targeting insulin receptor substance 2. Stem Cell Res Ther 2018; 9:231. [PMID: 30165902 PMCID: PMC6117893 DOI: 10.1186/s13287-018-0980-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background An understanding of the mechanism underlying adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) will provide new therapeutic approaches for many diseases, including osteoporosis. This study aimed to investigate the role of miR-431 in adipogenic differentiation of hMSCs. Methods hMSCs were induced for adipogenic differentiation and miR-431 was detected by polymerase chain reaction (PCR). hMSCs were transfected by miR-431 or small interfering RNA (siRNA) for insulin receptor substance 2 (IRS2). The expression of IRS2 was detected by PCR and Western blot analysis. The targeting of the 3′-untranslated region (UTR) of IRS2 by miR-431 was examined by luciferase assay. Results miR-431 expression was decreased during adipogenesis of hMSCs. Overexpression of miR-431 inhibited adipogenic differentiation, accompanied by the downregulation of CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), two key regulators of adipogenesis. Moreover, miR-431 decreased both protein and mRNA levels of IRS2. The expression of IRS2 was increased during adipogenic differentiation of hMSCs in conjunction with decreased levels of miR-431, and knockdown of IRS2 in hMSCs inhibited adipogenic differentiation. Luciferase assay confirmed that miR-431 targeted the 3′-UTR of IRS2 in hMSCs. Conclusions This is the first study to show that miR-431 inhibits adipogenic differentiation of hMSCs via targeting IRS2.
Collapse
Affiliation(s)
- Yangling Wang
- Department of Endocrinology, The First Hospital of Jiujiang City, Jiujiang, 332000, China.,Jiujiang Affiliated Hospital of Nanchang University, Jiujiang, 332000, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China
| | - Xiaofeng Liu
- Department of Endocrinology, The First Hospital of Jiujiang City, Jiujiang, 332000, China.,Jiujiang Affiliated Hospital of Nanchang University, Jiujiang, 332000, China
| | - Tao Hong
- Department of Endocrinology, The First Hospital of Jiujiang City, Jiujiang, 332000, China.,Jiujiang Affiliated Hospital of Nanchang University, Jiujiang, 332000, China
| | - Tao Wang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China
| | - Aiwu Dong
- Department of Endocrinology, The First Hospital of Jiujiang City, Jiujiang, 332000, China.,Jiujiang Affiliated Hospital of Nanchang University, Jiujiang, 332000, China
| | - Jiangxiong Li
- Department of Endocrinology, The First Hospital of Jiujiang City, Jiujiang, 332000, China.,Jiujiang Affiliated Hospital of Nanchang University, Jiujiang, 332000, China
| | - Xiaoyuan Xu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China.
| | - Lingling Cao
- Department of Endocrinology, The First Hospital of Jiujiang City, Jiujiang, 332000, China. .,Jiujiang Affiliated Hospital of Nanchang University, Jiujiang, 332000, China.
| |
Collapse
|