1
|
Lu CW, Ho HC, Yao CL, Tseng TY, Kao CM, Chen SC. Bioremediation potential of cadmium by recombinant Escherichia coli surface expressing metallothionein MTT5 from Tetrahymenathermophila. CHEMOSPHERE 2023; 310:136850. [PMID: 36243083 DOI: 10.1016/j.chemosphere.2022.136850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a common heavy metal contaminant in industrial wastewater that causes many diseases in humans. Metallothionein (MT), a cysteine-rich metal-binding protein, is well known in chelate-heavy metals. In this study, we expressed MTT5 of Tetrahymena thermophila fused with Lpp-OmpA in the outer membrane of Escherichia coli to determine its ability to accumulate and adsorb Cd. Our results revealed that our recombinant E. coli had a 4.9-fold greater Cd adsorption compared to wild E. coli. Adsorption isothermic analysis demonstrated that the adsorption behavior for Cd in our recombinant bacteria was better fitted into the Freundlich isotherm model than Langmuir isotherm model. Fourier-transform infrared spectroscopy indicated that phosphate and organic phosphate groups were involved in the interaction between Cd and the bacterial surface. Using quantitative reverse transcription polymerase chain reaction, we further showed that the expression of metal-resistance genes (dnaK and clpB) was downregulated due to surface MTT5 protected our recombinant bacteria from Cd2+ adsorption. Furthermore, we showed that our recombinant bacteria could adsorb Cd from the contaminated wastewater containing other metals and were suggested to be applied in the field study.
Collapse
Affiliation(s)
- Che-Wei Lu
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Hsin-Cheng Ho
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Yu Tseng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan.
| |
Collapse
|
2
|
Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14271-14284. [PMID: 33528774 DOI: 10.1007/s11356-021-12583-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Among heavy metals, lead (Pb) is a non-essential metal having a higher toxicity and without any crucial known biological functions. Being widespread, non-biodegradable and persistent in every sphere of soil, air and water, Pb is responsible for severe health and environmental issues, which need appropriate remediation measures. However, microbes inhabiting Pb-contaminated area are found to have evolved distinctive mechanisms to successfully thrive in the Pb-contaminated environment without exhibiting any negative effects on their growth and metabolism. The defensive strategies used by bacteria to ameliorate the toxic effects of lead comprise biosorption, efflux, production of metal chelators like siderophores and metallothioneins and synthesis of exopolysaccharides, extracellular sequestration and intracellular bioaccumulation. Lead remediation technologies by employing microbes may appear as potential advantageous alternatives to the conventional physical and chemical means due to specificity, suitability for applying in situ condition and feasibility to upgrade by genetic engineering. Developing strategies by designing transgenic bacterial strain having specific metal binding properties and metal chelating proteins or higher metal adsorption ability and using bacterial activity such as incorporating plant growth-promoting rhizobacteria for improved Pb resistance, exopolysaccharide and siderophores and metallothionein-mediated immobilization may prove highly effective for formulating bioremediation vis-a-vis phytoremediation strategies.
Collapse
Affiliation(s)
- Anindita Mitra
- Bankura Christian College, Bankura, West Bengal, 722101, India
| | - Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Sampriti Kataki
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Rajesh P Rastogi
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi, 110003, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi, 110003, India.
| |
Collapse
|
3
|
Nong Q, Yuan K, Li Z, Chen P, Huang Y, Hu L, Jiang J, Luan T, Chen B. Bacterial resistance to lead: Chemical basis and environmental relevance. J Environ Sci (China) 2019; 85:46-55. [PMID: 31471030 DOI: 10.1016/j.jes.2019.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
Natural bacterial isolates from heavily contaminated sites may evolve diverse tolerance strategies, including biosorption, efflux mechanism, and intracellular precipitation under the continually increased stress of toxic lead (Pb) from anthropogenic activities. These strategies utilize a large variety of functional groups in biological macromolecules (e.g., exopolysaccharides (EPSs) and metalloproteins) and inorganic ligands, including carboxyl, phosphate and amide groups, for capturing Pb. The amount and type of binding sites carried by biologically originated materials essentially determines their performance and potential for Pb removal and remediation. Many factors, e.g., metal ion radius, electronegativity, the shape of the cell surface sheath, temperature and pH, are thought to exert significant influences on the abovementioned interactions with Pb. Conclusively, understanding the chemical basis of Pb-binding in these bacteria can allow for the development of effective microbial Pb remediation technologies and further elucidation of Pb cycling in the environment.
Collapse
Affiliation(s)
- Qiying Nong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ke Yuan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhuang Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Ping Chen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tiangang Luan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
4
|
He Y, Wang L, Ma W, Lu X, Li Y, Liu J. Secretory expression, immunoaffinity purification and metal-binding ability of recombinant metallothionein (ShMT) from freshwater crab Sinopotamon henanense. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:457-463. [PMID: 30472469 DOI: 10.1016/j.ecoenv.2018.11.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Metallothioneins (MTs) are a super-family of ubiquitous, low-molecular-weight, cysteine-rich and metal-binding proteins. They are thought to play a predominant role in mediating metal metabolism and antioxidation. However, the accurate functions of MTs remain unclear in the physiological processes due to native proteins deficiency and little information of their metal-binding character. Freshwater crab Sinopotamon henanense is a decapod crustacean widely distributed in northern China, in which only one MT isoform (ShMT) has been reported so far. In order to shed light on the accurate role of ShMT, a novel recombinant ShMT in native form was over-expressed by phoA secreted expression system in Escherichia coli (E. coli). Then the ShMT proteins were purified using a one-step gentle immunoaffinity chromatography with a polyol-responsive mAb (PR-mAb) to ShMT, which was generated by conventional hybridoma technology followed by ELISA-elution. The Zn-, Cu-, and Cd-ShMT complexes were prepared by recombinant synthesis in metal-enriched media and reconstitution with metal ions, respectively. Further analysis about metal-binding capacity showed recombinant ShMT has high ability to bind Zn, Cu and Cd metals, although the recombinantly expressed and reconstituted metal-ShMT complexes have different metal-to-protein stoichiometry. Moreover, the affinity of recombinant protein for metal ions has been analyzed using competitive reaction with 5, 5-dithiobis (2-nitrobenzoic acid) (DTNB). The results demonstrated the affinity of recombinant ShMT for metals was as follows: Cu>Cd>Zn. In summary, the experimental procedure we have developed facilitates production of recombinant ShMT with native characteristics for further research and the study of metal-binding ability could help further clarify the accurate functions of ShMT.
Collapse
Affiliation(s)
- Yongji He
- Institute of Agro-Products Processing Science and Technology, Shanxi Academy of Agricultural Sciences, 79 Longcheng Street, Taiyuan 030031, Shanxi Province, PR China; School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, PR China.
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, PR China
| | - Wenli Ma
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, PR China
| | - Xiaoxia Lu
- Biology Institute of Shanxi, 50 Shifan Street, Taiyuan 030006, Shanxi Province, PR China
| | - Yunlong Li
- Institute of Agro-Products Processing Science and Technology, Shanxi Academy of Agricultural Sciences, 79 Longcheng Street, Taiyuan 030031, Shanxi Province, PR China
| | - Jinping Liu
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, PR China
| |
Collapse
|
5
|
Zhou H, Xu J, Wang W. Functional comparision between truncated MTT1 and truncated MTT2 from Tetrahyemna thermophila. Biosci Biotechnol Biochem 2018; 82:449-455. [DOI: 10.1080/09168451.2018.1431517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Metallothioneins (MTs) are low-molecular-weight proteins with high Cys content and high metal-chelating ability. CdMT and CuMT subfamilies present different characteristics in Tetrahymena. To explore the effect of the cysteine arrangement and sequence length of MTs for binding different metal ions, MTT1, truncated MTT1 (TM1), MTT2, and truncated MTT2 (TM2) were expressed in E. coli. The half-maximal inhibiting concentrations (IC50) of Cd2+ and Cu+ for the recombinant strains were different. Furthermore, E. coli cells expressing MTT1 and TM1 exhibited higher accumulating ability for Cd2+ than cells expressing MTT2 and TM2. However, the opposite is true for Cu+. The binding ability of the different recombinant proteins to Cd2+ and Cu+ were also different. MTT1 and truncated mutant TM1 were the preference for Cd2+, whereas MTT2 and truncated mutant TM2 were the preference for Cu+ coordination. These results showed that metal ion tolerance and accumulation ability not only depended on cysteine arrangement pattern but also on sequence length of MT in Tetrahymena.
Collapse
Affiliation(s)
- Huanxin Zhou
- College of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, China
| | - Jing Xu
- College of Life Science, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|