1
|
Song Y, Wang S, Cheng X. LINC01006 regulates the proliferation, migration and invasion of hepatocellular carcinoma cells through regulating miR-433-3p/CBX3 axis. Ann Hepatol 2022; 25:100343. [PMID: 33781916 DOI: 10.1016/j.aohep.2021.100343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES LINC01006 has been verified to be correlated with several cancer types, whereas its biological function in hepatocellular carcinoma (HCC) is still elusive. This study aimed to elucidate the specific regulatory mechanism of LINC01006 in the tumorigenesis of HCC. MATERIALS AND METHODS The expression of LINC01006, miR-433-3p and CBX3 in HCC tissues and cells was assessed by qRT-PCR or Western blot. MTT, wound-healing, and transwell assays were used to evaluate the effects of LINC01006 on cell viability, migration, and invasion in vitro. A mouse xenograft model was established for in vivo assays. The relations among LINC01006, miR-433-3p, and CBX3 were analyzed by MS2-RNA immunoprecipitation (RIP) and Dual-luciferase reporter (DLR) assays. RESULTS The expression of LINC01006 was up-regulated in HCC tissues and cells. LINC01006 knockdown inhibited the viability, wound healing rate, and invasive cell number of HeP3B and SK-HeP-1 cells, and decreased the tumor volume and weight in a mouse xenograft model. MiR-433-3p was a target of LINC01006, and LINC01006 overexpression inhibited the viability, wound healing rate, and invasive cell number of HeP3B and SK-HeP-1 cells. In addition, CBX3 was a target of miR-433-3p, which was negatively regulated by miR-433-3p. CBX3 overexpression and miR-433-3p inhibition reversed the inhibiting effects of LINC01006 knockdown on the viability, migration, and invasion of HeP3B cells. CONCLUSIONS Silencing of LINC01006 inhibited the viability, migration, and invasion of HCC cells through regulating miR-433-3p/CBX3 axis.
Collapse
Affiliation(s)
- Yaobo Song
- Department of Oncology, Yantai Mountain Hospital, No. 91, Jiefang Road, Zhifu District, Yantai City, Shandong Province, 264000, China
| | - Shuang Wang
- The First Department of Oncology, Tai'an City Central Hospital, No. 29, Longtan Road, Tai'an City, Shandong Province, 271000, China
| | - Xiangming Cheng
- Department of Hematology and Oncology, Jinxiang People's Hospital, No. 117, East Jinfeng Road, Jinxiang County, Jining City, Shandong Province, 272200, China.
| |
Collapse
|
2
|
Knockdown of long non-coding RNA LINC01006 represses the development of hepatocellular carcinoma by modulating the miR-194-5p/CADM1 axis. Ann Hepatol 2022; 27 Suppl 1:100571. [PMID: 34718169 DOI: 10.1016/j.aohep.2021.100571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Long non-coding RNAs (lncRNAs) have great potential as therapeutic targets in hepatocellular carcinoma (HCC). In this study, we aimed to uncover the function and molecular mechanism of long intergenic non-protein coding RNA 1006 (LINC01006) in HCC. MATERIALS AND METHODS Mice were injected with HCC cells in order to establish the HCC model. Quantitative reverse transcription polymerase chain reaction was used to determine the expression levels of LINC01006, cell adhesion molecule 1 (CADM1), and microRNA (miR)-194-5p in HCC tissues and cells. The cell proliferation, invasion, and migration abilities were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, transwell, and wound healing assays. The interrelation between LINC01006, miR-194-5p, and CADM1 was confirmed by a dual-luciferase reporter assay. Western blotting was employed to assess the relative protein expression level of CADM1. RESULTS LINC01006 and CADM1 displayed upregulation, but miR-194-5p exhibited downregulation in HCC cells and tissues. Short hairpin (sh)-LINC01006 and miR-194-5p mimics repressed the proliferative, migratory, and invasive capacities of HCC cells, and injection of sh-LINC01006 restrained the growth of HCC tumours in mice. LINC01006 served as a competing endogenous RNA of miR-194-5p and was inversely correlated with miR-194-5p. CADM1 was targeted by miR-194-5p, inversely correlated with miR-194-5p, and positively associated with LINC01006. Furthermore, transfection of pcDNA-CADM1 or the miR-194-5p inhibitor reversed the suppressive effects of sh-LINC01006 on the proliferation, invasion, and migration abilities of HCC cells. CONCLUSIONS Downregulation of LINC01006 repressed the development of HCC by sponging miR-194-5p to modulate the expression of CADM1, implying its potential as a therapeutic target for HCC.
Collapse
|
3
|
Yang J, Qi M, Fei X, Wang X, Wang K. Long non-coding RNA XIST: a novel oncogene in multiple cancers. Mol Med 2021; 27:159. [PMID: 34930117 PMCID: PMC8686246 DOI: 10.1186/s10020-021-00421-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is an important lncRNA derived from the XIST gene in mammals. XIST is abnormally expressed in numerous tumors, in most of which XIST functions as an oncogene. XIST is involved in multiple aspects of carcinogenesis, including tumor onset, progression, and prognosis. In our review, we collected and analyzed the recent studies on the impact of XIST in human tumor development. The multilevel molecular functions of XIST in human tumors are comprehensively reviewed to clarify the pathologic mechanisms and to offer a novel direction for further study.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Manlong Qi
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China.
| |
Collapse
|
4
|
Yang L, Xie F, Xu W, Xu T, Ni Y, Tao X, Zang Y, Jin J. Long non-coding RNA XIST accelerates hepatic carcinoma progression by targeting the microRNA-320a/PIK3CA axis. Oncol Lett 2021; 22:801. [PMID: 34630708 PMCID: PMC8477073 DOI: 10.3892/ol.2021.13062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to reveal the new molecular mechanism of long non-coding (lnc)RNA XIST in the development of hepatic carcinoma. A total of 69 patients with hepatic carcinoma were included. Hepatoma cell lines (SUN449), hepatoblastoma cell line (HepG2, Huh-6), liver cancer cell line (HepG2) and transformed human liver epithelial-2 cells (THLE-2) were used in the present study. A total 3 short hairpin RNA (sh)-lncRNA XIST sequences, overexpression vector (oe)-lncRNA XIST, microRNA (miR)-320a mimic, miR-320a inhibitor, PIK3CA inhibitor, and their corresponding controls were transfected in hepatic carcinoma cells. Reverse transcription-quantitative polymerase chain reaction was conducted to detect lncRNA-XIST, miR-320a and PIK3CA expression. Cell Counting Kit-8 assay and flow cytometry were undertaken to measure proliferation and apoptosis. Cell invasion and migration were detected by Transwell assays. Moreover, the binding of lncRNA XIST, PIK3CA and miR-320a were verified by luciferase reporter experiment and pull-down assay. Finally, a rescue assay was processed to confirm the effect of lncRNA-XIST, miR-320a and PIK3CA in the aforementioned processes. lncRNA XIST was highly expressed in hepatic carcinoma tissues and cells. The survival rate was significantly lower in the highly expressed lncRNA XIST group. shlncRNA XIST attenuated cell proliferation, invasion and migration, while increasing the apoptosis of hepatic carcinoma cells. The lncRNA XIST negatively targeted miR-320a, and miR-320a negatively regulated the expression of PIK3CA. The miR-320a mimic and PIK3CA inhibitor could recover the effect of oe-lncRNA in terms of the proliferation, invasion, migration and apoptosis of hepatic carcinoma cells. lncRNA XIST accelerates hepatic carcinoma progression by targeting the miR-320a/PIK3CA axis, which might provide the theoretical basis for the potential targeted therapy of hepatic carcinomas.
Collapse
Affiliation(s)
- Lina Yang
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Fangliang Xie
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Weidong Xu
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Tonglei Xu
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Yuan Ni
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Xiao Tao
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Yu Zang
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| | - Juan Jin
- Department of Hepatobiliary Surgery, Lianyungang No. 1 People's Hospital, Lianyungang, Jiangsu 222002, P.R. China
| |
Collapse
|
5
|
Zhou S, Yu X, Wang M, Meng Y, Song D, Yang H, Wang D, Bi J, Xu S. Long Non-coding RNAs in Pathogenesis of Neurodegenerative Diseases. Front Cell Dev Biol 2021; 9:719247. [PMID: 34527672 PMCID: PMC8435612 DOI: 10.3389/fcell.2021.719247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence addresses the link between the aberrant epigenetic regulation of gene expression and numerous diseases including neurological disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). LncRNAs, a class of ncRNAs, have length of 200 nt or more, some of which crucially regulate a variety of biological processes such as epigenetic-mediated chromatin remodeling, mRNA stability, X-chromosome inactivation and imprinting. Aberrant regulation of the lncRNAs contributes to pathogenesis of many diseases, such as the neurological disorders at the transcriptional and post-transcriptional levels. In this review, we highlight the latest research progress on the contributions of some lncRNAs to the pathogenesis of neurodegenerative diseases via varied mechanisms, such as autophagy regulation, Aβ deposition, neuroinflammation, Tau phosphorylation and α-synuclein aggregation. Meanwhile, we also address the potential challenges on the lncRNAs-mediated epigenetic study to further understand the molecular mechanism of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Department of Nutrition, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Meng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Song
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Yang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dewei Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Wang C, Li X, Zhang L, Chen Y, Dong R, Zhang J, Zhao J, Guo X, Yang G, Li Y, Gu C, Xi Q, Zhang R. miR-194-5p down-regulates tumor cell PD-L1 expression and promotes anti-tumor immunity in pancreatic cancer. Int Immunopharmacol 2021; 97:107822. [PMID: 34098485 DOI: 10.1016/j.intimp.2021.107822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a highly malignant cancer of the digestive tract. Studies have shown that in some types of cancer, a high level of microRNA-194-5p (miR-194-5p) is beneficial for controlling tumor progression, while in other cancers it plays a completely opposite role. However, how miR-194-5p affects anti-tumor immunity of pancreatic cancer remains unclear. In this study, we found that high expression of miR-194-5p in human pancreatic cancer patients is associated with a better survival rate, while increased expression of programmed cell death ligand 1 (PD-L1) in human pancreatic cancer patients is associated with a worse survival rate. In pancreatic cancer, the expression level of PD-L1 is negatively correlated with the expression level of miR-194-5p, and we identified that PD-L1 was target gene of miR-194-5p. In addition, we found that overexpression of miR-194-5p inhibited the migration, invasion and proliferation of pancreatic cancer cells in vitro. The orthotopic mouse model of pancreatic cancer shown that miR-194-5p suppressed the progression of pancreatic cancer, promoted the infiltration of CD8+ T cells in tumor immune microenvironments, and enhanced the IFN-γ production of CD8+ T cells. Consistently, the co-culture experiments showed that overexpression of miR-194-5p in tumor cell enhanced IFN-γ production by CD8+ T cells. In conclusion, miR-194-5p may serve as a novel immunotherapeutic target for pancreatic ductal adenocarcinoma (PDAC) by inhibiting the expression of PD-L1, and play important roles in inhibiting the progression of pancreatic cancer and boosting the anti-tumor effect of CD8+ T cells.
Collapse
Affiliation(s)
- Chengzhi Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijuan Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruijie Dong
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Jieyou Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Jingyi Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangdong Guo
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Guangze Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chao Gu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Qing Xi
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China.
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Ning D, Chen J, Du P, Liu Q, Cheng Q, Li X, Zhang B, Chen X, Jiang L. The crosstalk network of XIST/miR-424-5p/OGT mediates RAF1 glycosylation and participates in the progression of liver cancer. Liver Int 2021; 41:1933-1944. [PMID: 33909326 DOI: 10.1111/liv.14904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Liver cancer is a major public health concern, but the mechanistic actions of biomarkers contributing to liver cancer remain to be determined. In this study, we aimed to investigate the regulatory cascade of microRNA-424-5p (miR-424-5p), X-inactive-specific transcript (XIST) and O-GlcNAc transferase (OGT) in liver cancer. METHODS Differentially expressed miRNAs and target genes related to liver cancer were predicted by bioinformatics analyses, and their expression was determined in liver tissues of patients with liver cancer and liver cancer cells. The RNA immunoprecipitation (RIP), RNA pull-down and dual luciferase reporter assay were used to examine the binding affinity among XIST and miR-424-5p and OGT. Then, gain- and loss-of-function assays were conducted to evaluate the effects of the XIST/miR-424-5p/OGT axis on malignant phenotypes. A nude mouse model of liver cancer was further established for in vivo substantiation. RESULTS XIST and OGT were up-regulated in liver cancer tissues and cells, responsible for poor prognosis in patients with liver cancer, while miR-424-5p was down-regulated. XIST competitively bound to miR-424-5p to increase OGT expression. XIST silencing inhibited malignant phenotypes of liver cancer cells, while miR-424-5p down-regulation negated its effect. miR-424-5p suppressed RAF1 glycosylation by negatively regulating OGT expression and promoted its ubiquitination/degradation. Furthermore, XIST knockdown inhibited tumour growth and metastasis in nude mice, while ectopic OGT reversed its effect. CONCLUSION These results reveal a novel mechanism by which the interaction of XIST/miR-424-5p/OGT participates in the malignancy and metastasis of liver cancer.
Collapse
Affiliation(s)
- Deng Ning
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Pengcheng Du
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Xue Li
- Clinical Immunology Laboratory, School of Medical Laboratory, Tianjin Medical University, Tianjin, P.R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Li Jiang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| |
Collapse
|
8
|
Shao Y, Hu X, Wu X. LncRNA X inactive-specific transcript promotes osteoclast differentiation through Tgif2 by acting as a ceRNA of miR-590-3p in a murine model. Regen Med 2021; 16:643-653. [PMID: 34187170 DOI: 10.2217/rme-2020-0174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: This study aims to investigate whether long noncoding RNA (lncRNA) X-inactive specific transcript (Xist) can regulate osteoclast differentiation in osteoporosis and the mechanism. Materials & methods: The mouse model of osteoporosis was established by ovariectomy surgery. Osteoclast differentiation from RAW264.7 cells was induced in vitro. The relationships between associated genes were assessed. Results: Xist and Tgif2 were upregulated, but miR-590-3p was downregulated in ovariectomy mouse femurs and cell models. Xist knockdown or miR-590-3p overexpression inhibited Tgif2 expression and osteoclast differentiation. Tgif2 and Xist were the targets of miR-590-3p. Increased miR-590-3p expression inhibited Tgif2 level and osteoclast differentiation, while Xist overexpression reversed these effects. Conclusion: Xist serves as a ceRNA of miR-590-3p to promote Tgif2 level; thereby, contributing to osteoclast differentiation.
Collapse
Affiliation(s)
- Yuefeng Shao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, China
| | - Xinya Hu
- Department of Blood Purification Center, Kaifeng Central Hospital, Kaifeng, 475000, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
9
|
Ghafouri-Fard S, Dashti S, Farsi M, Taheri M, Mousavinejad SA. X-Inactive-Specific Transcript: Review of Its Functions in the Carcinogenesis. Front Cell Dev Biol 2021; 9:690522. [PMID: 34179019 PMCID: PMC8226258 DOI: 10.3389/fcell.2021.690522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023] Open
Abstract
X-inactive-specific transcript (XIST) is one of the firstly discovered long non-coding RNAs with prominent roles in the process of X inactivation. Moreover, this transcript contributes in the carcinogenic process in different tissues. In addition to interacting with chromatin modifying molecules, XIST can be served as a molecular sponge for miRNAs to modulate expression of miRNA targets. Most of the studies have indicated an oncogenic role for XIST. However, in prostate cancer, a single study has indicated a tumor suppressor role for this lncRNA. Similar result has been reported for XIST in oral squamous cell carcinoma. In hepatocellular carcinoma, breast cancer, ovarian cancer, osteosarcoma, and renal cell carcinoma, different studies have reported inconsistent results. In the present manuscript, we review function of XIST in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Molood Farsi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
11
|
Liu L, Jiang H, Pan H, Zhu X. LncRNA XIST promotes liver cancer progression by acting as a molecular sponge of miR-200b-3p to regulate ZEB1/2 expression. J Int Med Res 2021; 49:3000605211016211. [PMID: 34018840 PMCID: PMC8142537 DOI: 10.1177/03000605211016211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective To evaluate the predictive value of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) for survival, and determine the involvement of miRNA(miR)-200b-3p and zinc finger E-box-binding homeobox (ZEB) 1/2 in the pro-tumor effect of lncRNA XIST in liver cancer. Methods We evaluated lncRNA XIST expression in liver cancer tissues and cell lines by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and analyzed the correlation between its expression and overall survival of liver cancer patients by Kaplan–Meier analysis. Its effects on cell proliferation, migration, and invasion were analyzed by Cell-Counting Kit-8 and Transwell assays. The association between lncRNA XIST and miR-200b-3p, and the effects of lncRNA XIST on ZEB1/2 expression were explored using luciferase reporter assays, real-time PCR, and western blotting. Results The lncRNA XIST was significantly upregulated in liver cancer, and increased lncRNA XIST expression was associated with a poor prognosis. The lncRNA XIST promoted liver cancer cell proliferation, migration, and invasion in vitro, and acted as a molecular sponge for miR-200b-3p, and also regulated the expression of ZEB1/2 via miR-200b-3p. Conclusion The lncRNA XIST is an oncogenic lncRNA that promotes liver cancer metastasis, and its pro-metastatic phenotype can be partially attributed to the lncRNA XIST/miR-200b-3p/ZEB1/2 signaling axis.
Collapse
Affiliation(s)
- Lili Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Jiang
- Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital Hangzhou Medical College, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuming Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
12
|
Zhu X, Pan H, Liu L. Long noncoding RNA network: Novel insight into hepatocellular carcinoma metastasis (Review). Int J Mol Med 2021; 48:134. [PMID: 34013360 PMCID: PMC8148093 DOI: 10.3892/ijmm.2021.4967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common, aggressive malignancies with poor prognosis and high mortality. Although great progress has been made in recent decades, overall survival of HCC patients remains unsatisfactory due to high recurrence and metastasis. Accordingly, understanding and clarifying the underlying molecular mechanisms of metastasis has become increasingly important. Recently, accumulated reports have supported that long noncoding RNAs (lncRNAs) are dysregulated in HCC and are involved in various pivotal biological processes, including metastasis. The aim of this review was to investigate the dysregulation of lncRNAs in HCC and their function as oncogenes or tumour suppressors. Furthermore, reciprocal regulatory networks between lncRNAs and various molecules that were identified in HCC metastasis, including regulating epithelial-mesenchymal transition (EMT), controlling metastasis-associated genes, and regulating tumour angiogenesis were examined. Numerous reports and information on lncRNAs may help identify lncRNAs that are potential novel diagnostic markers, prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xiuming Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lili Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
13
|
Feng Y, Hu X, Ma K, Zhang B, Sun C. Genome-Wide Screening Identifies Prognostic Long Noncoding RNAs in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6640652. [PMID: 34095306 PMCID: PMC8163536 DOI: 10.1155/2021/6640652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. Therefore, there is an urgent call for the investigation of novel biomarkers in HCC. In the present study, we identified 6 upregulated lncRNAs in HCC, including LINC01134, RHPN1-AS1, NRAV, CMB9-22P13.1, MKLN1-AS, and MAPKAPK5-AS1. Higher expression of these lncRNAs was correlated to a more advanced cancer stage and a poorer prognosis in HCC patients. Enrichment analysis revealed that these lncRNAs played a crucial role in HCC progression, possibly through a series of cancer-related biological processes, such as cell cycle, DNA replication, histone acetyltransferase complex, fatty acid oxidation, and lipid modification. Moreover, competing endogenous RNA (ceRNA) network analysis revealed that these lncRNAs could bind to certain miRNAs to promote HCC progression. Loss-of-function assays indicated that silencing of RHPN1-AS1 significantly suppressed HCC proliferation and migration. Though further validations are still needed, these identified lncRNAs could serve as valuable potential biomarkers for HCC prognosis.
Collapse
Affiliation(s)
- Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Chuandong Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| |
Collapse
|
14
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Wang J, Yin G, Bian H, Yang J, Zhou P, Yan K, Liu C, Chen P, Zhu J, Li Z, Xue T. LncRNA XIST upregulates TRIM25 via negatively regulating miR-192 in hepatitis B virus-related hepatocellular carcinoma. Mol Med 2021; 27:41. [PMID: 33858324 PMCID: PMC8050905 DOI: 10.1186/s10020-021-00278-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) XIST has been implicated in the progression of a variety of tumor diseases. The purpose of this study was to explore the molecular role of lncRNA XIST in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS The expression levels of lncRNA XIST, miR-192 and TRIM25 in HBV-related HCC tissues and HepG2.2.15 cells were detected by qRT-PCR. Biological information and luciferin gene reporter assay were performed to detect the interaction among lncRNA XIST, miR-192 and TRIM25. CCk-8 assay, wound healing assay and colony formation assay were conducted to detect the proliferation and migration ability of HepG2.2.15 cells. RESULTS qRT-PCR results showed that the expression levels of lncRNA XIST were remarkably increased in HBV-related HCC tissues and HepG2.2.15 cells. In addition, miR-192 was a direct target gene of lncRNA XIST, and the expression of miR-192 and lncRNA XIST were negatively correlated. Moreover, overexpression of miR-192 observably inhibited the proliferation and migration of HCC cells, while overexpression of lncRNA XIST showed an opposite effect. Furthermore, TRIM25 was a direct target of miR-192, and lncRNA XIST could up-regulate the expression of TRIM25 by targeting miR-192. CONCLUSION LncRNA XIST could up-regulate the expression of TRIM25 by targeting and binding to miR-192, thus accelerating the occurrence and development of HCC.
Collapse
Affiliation(s)
- Jiancheng Wang
- The People's Hospital of Lianshui County, Huai'an City, 223400, Jiangsu Province, People's Republic of China
| | - Gang Yin
- Department of Intervention, The Second People's Hospital of Huai'an City, Huai'an City, 223002, Jiangsu Province, People's Republic of China
| | - Hu Bian
- Department of Pain and Intervention, Huaiyin Hospital of Huai'an City, Huai'an City, 223300, Jiangsu Province, People's Republic of China
| | - Jiangli Yang
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Pengcheng Zhou
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Kai Yan
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Cheng Liu
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Pei Chen
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China
| | - Jun Zhu
- The Third People's Hospital of Yancheng City, No. 75 Juchang Road, Yancheng City, 224001, Jiangsu Province, People's Republic of China
| | - Zhi Li
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Soochow City, 215006, Jiangsu Province, People's Republic of China
| | - Tongqing Xue
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, No. 161 Zhenhuailou East Road, Huai'an City, 223200, Jiangsu Province, People's Republic of China.
| |
Collapse
|
16
|
Liu Y, Huang X, Guo L, Luo N. LINC00649 Facilitates the Cellular Process of Bladder Cancer Cells via Signaling Axis miR-16-5p/JARID2. Urol Int 2021; 106:304-312. [PMID: 33789312 DOI: 10.1159/000506239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022]
Abstract
Bladder cancer (BC), as one of the most common cancers around the world, begins in the inner side of the bladder and is inclined to spread to the remaining parts of the body. Extensive documents have shown that long noncoding RNAs function as stimuli in various cancer types. With regard to LINC00649, there is limited investigation on its role previously. In our research, we discovered that LINC00649 was considerably highly expressed in BC cells and the lack of LINC00649 would cause inactivity in cellular proliferation, migration, and invasion. miR-16-5p turned out to be competitively incorporated by LINC00649 in the upstream or JARID2 downstream. In BC cells, LINC00649 was found to bind with miR-16-5p to increase the expression of JARID2. Overly expressed JARID2 was found to reverse the LINC00649 shortage-mediated suppressive impacts on the cellular process of BC cells. Concisely, it was the first study on the molecular mechanism of LINC00649 in BC. This work detected that LINC00649 enhanced cell proliferation, migration, and invasion of BC cells by acting as a sponge of miR-16-5p and upregulating JARID2, providing novel insight into understating BC.
Collapse
Affiliation(s)
- Yongsong Liu
- Department of Urology, The Second People's Hospital of Yibin, Yibin, China
| | - Xiande Huang
- Department of Urology, Gansu Provincial Hospital, Lanzhou, China
| | - Lijun Guo
- Department of Urology, Gansu Provincial Hospital, Lanzhou, China
| | - Nengqin Luo
- Department of Urology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
17
|
Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis 2021; 12:325. [PMID: 33771980 PMCID: PMC7997956 DOI: 10.1038/s41419-021-03618-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
TEFM (transcription elongation factor of mitochondria) has been identified as a novel nuclear-encoded transcription elongation factor in the transcription of mitochondrial genome. Our bioinformatics analysis of TCGA data revealed an aberrant over-expression of TEFM in hepatocellular carcinoma (HCC). We analyzed its biological effects and clinical significance in this malignancy. TEFM expression was analyzed by quantitative real-time PCR, western blot, and immunohistochemistry analysis in HCC tissues and cell lines. The effects of TEFM on HCC cell growth and metastasis were determined by cell proliferation, colony formation, flow cytometric cell cycle and apoptosis, migration, and invasion assays. TEFM expression was significantly increased in HCC tissues mainly caused by down-regulation of miR-194-5p. Its increased expression is correlated with poor prognosis of HCC patients. TEFM promoted HCC growth and metastasis both in vitro and in vivo by promoting G1–S cell transition, epithelial-to-mesenchymal transition (EMT), and suppressing cell apoptosis. Mechanistically, TEFM exerts its tumor growth and metastasis promoting effects at least partly through increasing ROS production and subsequently by activation of ERK signaling. Our study suggests that TEFM functions as a vital oncogene in promoting growth and metastasis in HCC and may contribute to the targeted therapy of HCC.
Collapse
|
18
|
Guo T, Yuan D, Zhang W, Zhu D, Xiao A, Mao G, Jiang W, Lin M, Wang J. Upregulation of long noncoding RNA XIST has anticancer effects on ovarian cancer through sponging miR-106a. Hum Cell 2021; 34:579-587. [PMID: 33400246 DOI: 10.1007/s13577-020-00469-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
Ovarian cancer (OC) is a highly malignant tumor. X inactive specific transcript (XIST) was identified as a cancer-related gene, while its therapeutic effect in OC was poorly defined. The present study was designed to investigate the effectual corollary of the lncRNA XIST in OC. RT-qPCR was used to detect the XIST and miR-106a expression levels of OC tissues and cell lines. OC cell apoptosis and proliferation were detected by flow cytometry, colony formation, and CCK-8 assays. Moreover, bioinformatics analysis was used to predict the targeted miRNA of XIST. The dual-luciferase reporter and RNA pull-down assays were then used to verify the interaction between miR-106a and XIST. OC xenograft nude mice were raised to measure tumor growth. Notably, OC tissues and cells exhibited low XIST levels and high miR-106a levels. The XIST upregulation decreased the OVCAR3 and CAOV3 cell proliferation and inversely promoted cell apoptosis. miR-106a targeted the XIST. Also, the miR-106a overexpression reversed the inhibitory effects of XIST on OC cell proliferation and apoptosis. Our in vivo results suggested that XIST was involved in tumor growth deceleration, while the miR-106a reversed the effect. To conclusion, the present study demonstrated that XIST suppressed OC development via sponging miR-106a both in vitro and in vivo.
Collapse
Affiliation(s)
- Ting Guo
- Institute of Clinical Medicine, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China
| | - Donglan Yuan
- The Department of Obstetrics and Gynecology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China
| | - Wei Zhang
- The Department of Infectious Disease, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China
| | - Dandan Zhu
- The Department of Obstetrics and Gynecology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China
| | - Aifang Xiao
- Emergency Department, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China
| | - Guangyao Mao
- Institute of Clinical Medicine, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China
| | - Wenjuan Jiang
- Emergency Department, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China.
| | - Jun Wang
- Emergency Department, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
19
|
Rybakova Y, Gonzalez JT, Bogorad R, Chauhan VP, Dong YL, Whittaker CA, Zatsepin T, Koteliansky V, Anderson DG. Identification of a long non-coding RNA regulator of liver carcinoma cell survival. Cell Death Dis 2021; 12:178. [PMID: 33589614 PMCID: PMC7884843 DOI: 10.1038/s41419-021-03453-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Genomic studies have significantly improved our understanding of hepatocellular carcinoma (HCC) biology and have led to the discovery of multiple protein-coding genes driving hepatocarcinogenesis. In addition, these studies have identified thousands of new non-coding transcripts deregulated in HCC. We hypothesize that some of these transcripts may be involved in disease progression. Long non-coding RNAs are a large class of non-coding transcripts which participate in the regulation of virtually all cellular functions. However, a majority of lncRNAs remain dramatically understudied. Here, we applied a pooled shRNA-based screen to identify lncRNAs essential for HCC cell survival. We validated our screening results using RNAi, CRISPRi, and antisense oligonucleotides. We found a lncRNA, termed ASTILCS, that is critical for HCC cell growth and is overexpressed in tumors from HCC patients. We demonstrated that HCC cell death upon ASTILCS knockdown is associated with apoptosis induction and downregulation of a neighboring gene, protein tyrosine kinase 2 (PTK2), a crucial protein for HCC cell survival. Taken together, our study describes a new, non-coding RNA regulator of HCC.
Collapse
Affiliation(s)
- Yulia Rybakova
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - John T Gonzalez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Roman Bogorad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Vikash P Chauhan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yize L Dong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | | | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
Gong M, Wang X, Mu L, Wang Y, Pan J, Yuan X, Zhou H, Xing J, Wang R, Sun J, Liu Q, Zhang X, Wang L, Chen Y, Pei Y, Li S, Liu L, Zhao Y, Yuan Y. Steroid receptor coactivator-1 enhances the stemness of glioblastoma by activating long noncoding RNA XIST/miR-152/KLF4 pathway. Cancer Sci 2021; 112:604-618. [PMID: 33090636 PMCID: PMC7894023 DOI: 10.1111/cas.14685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) recurrence is attributed to the presence of therapy-resistant glioblastoma stem cells. Steroid receptor coactivator-1 (SRC-1) acts as an oncogenic regulator in many human tumors. The relationship between SRC-1 and GBM has not yet been studied. Herein, we investigate the role of SRC-1 in GBM. In this study, we found that SRC-1 expression is positively correlated with grades of glioma and inversely correlated with glioma patient's prognosis. Steroid receptor coactivator-1 promotes the proliferation, migration, and tumor growth of GBM cells. Notably, SRC-1 knockdown suppresses the stemness of GBM cells. Mechanistically, long noncoding RNA X-inactive specific transcript (XIST) is regulated by SRC-1 at the posttranscriptional level and mediates the function of SRC-1 in promoting stemness-like properties of GBM. Steroid receptor coactivator-1 can promote the expression of Kruppel-like factor 4 (KLF4) through the XIST/microRNA (miR)-152 axis. Additionally, arenobufagin and bufalin, SRC small molecule inhibitors, can reduce the proliferation and stemness of GBM cells. This study reveals SRC-1 promotes the stemness of GBM by activating the long noncoding RNA XIST/miR-152/KLF4 pathway and provides novel markers for diagnosis and therapy of GBM.
Collapse
Affiliation(s)
- Miaomiao Gong
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xun Wang
- Department of NeurosurgeryThe Third People’s Hospital of DalianDalianChina
| | - Lin Mu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yueyue Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jinjin Pan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xiaocheng Yuan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Haoran Zhou
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jinshan Xing
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Rui Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jian Sun
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Qiwang Liu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xiya Zhang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Lin Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yiying Chen
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yandong Pei
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Shao Li
- College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Liang Liu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yongshun Zhao
- The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yuhui Yuan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| |
Collapse
|
21
|
Sukowati CHC, Cabral LKD, Tiribelli C, Pascut D. Circulating Long and Circular Noncoding RNA as Non-Invasive Diagnostic Tools of Hepatocellular Carcinoma. Biomedicines 2021; 9:90. [PMID: 33477833 PMCID: PMC7832835 DOI: 10.3390/biomedicines9010090] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide, partially due to late diagnosis of the disease. Growing evidence in the field of biomarker discovery has shown the promising use of nucleic acid in the early detection of many cancers, including HCC. Here, we review data on how various long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) could be used as a diagnostic tool for HCC being differentially expressed in HCC compared to non-HCC patients. These non-coding RNAs (ncRNAs) showed high stability in the blood being present as free-circulating molecules or encapsulated into exosomes. This review reports some recent evidence on the use of lncRNAs and circRNAs as possible diagnostic biomarkers for HCC. Further, their pathophysiological mechanism in liver carcinogenesis was also described, elucidating the complex regulatory networks making these ncRNAs of particular relevance for the study of liver malignancy cancer.
Collapse
Affiliation(s)
- Caecilia H. C. Sukowati
- Fondazione Italiana Fegato ONLUS, AREA Science Park, Campus Basovizza, SS14, km 163.5, 34149 Trieste, Italy; (C.H.C.S.); (L.K.D.C.); (C.T.)
| | - Loraine Kay D. Cabral
- Fondazione Italiana Fegato ONLUS, AREA Science Park, Campus Basovizza, SS14, km 163.5, 34149 Trieste, Italy; (C.H.C.S.); (L.K.D.C.); (C.T.)
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, AREA Science Park, Campus Basovizza, SS14, km 163.5, 34149 Trieste, Italy; (C.H.C.S.); (L.K.D.C.); (C.T.)
| | - Devis Pascut
- Fondazione Italiana Fegato ONLUS, AREA Science Park, Campus Basovizza, SS14, km 163.5, 34149 Trieste, Italy; (C.H.C.S.); (L.K.D.C.); (C.T.)
| |
Collapse
|
22
|
Atwa SM, Handoussa H, Hosny KM, Odenthal M, Tayebi HME. Pivotal role of long non-coding ribonucleic acid-X-inactive specific transcript in regulating immune checkpoint programmed death ligand 1 through a shared pathway between miR-194-5p and miR-155-5p in hepatocellular carcinoma. World J Hepatol 2020; 12:1211-1227. [PMID: 33442449 PMCID: PMC7772730 DOI: 10.4254/wjh.v12.i12.1211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anti-programmed death therapy has thrust immunotherapy into the spotlight. However, such therapy has a modest response in hepatocellular carcinoma (HCC). Epigenetic immunomodulation is a suggestive combinatorial therapy with immune checkpoint blockade. Non-coding ribonucleic acid (ncRNA) driven regulation is a major mechanism of epigenetic modulation. Given the wide range of ncRNAs that co-opt in programmed cell-death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) regulation, and based on the literature, we hypothesized that miR-155-5p, miR-194-5p and long non-coding RNAs (lncRNAs) X-inactive specific transcript (XIST) and MALAT-1 are involved in a regulatory upstream pathway for PD-1/PD-L1. Recently, nutraceutical therapeutics in cancers have received increasing attention. Thus, it is interesting to study the impact of oleuropein on the respective study key players.
AIM To explore potential upstream regulatory ncRNAs for the immune checkpoint PD-1/PD-L1.
METHODS Bioinformatics tools including microrna.org and lnCeDB software were adopted to detect targeting of miR-155-5p, miR-194-5p and lncRNAs XIST and MALAT-1 to PD-L1 mRNA, respectively. In addition, Diana tool was used to predict targeting of both aforementioned miRNAs to lncRNAs XIST and MALAT-1. HCC and normal tissue samples were collected for scanning of PD-L1, XIST and MALAT-1 expression. To study the interaction among miR-155-5p, miR-194-5p, lncRNAs XIST and MALAT-1, as well as PD-L1 mRNA, a series of transfections of the Huh-7 cell line was carried out.
RESULTS Bioinformatics software predicted that miR-155-5p and miR-194-5p can target PD-L1, MALAT-1 and XIST. MALAT-1 and XIST were predicted to target PD-L1 mRNA. PD-L1 and XIST were significantly upregulated in 23 HCC biopsies compared to healthy controls; however, MALAT-1 was barely detected. MiR-194 induced expression elevated the expression of PD-L1, XIST and MALAT-1. However, overexpression of miR-155-5p induced the upregulation of PD-L1 and XIST, while it had a negative impact on MALAT-1 expression. Knockdown of XIST did have an impact on PD-L1 expression; however, following knockdown of the negative regulator of X-inactive specific transcript (TSIX), PD-L1 expression was elevated, and abolished MALAT-1 activity. Upon co-transfection of miR-194-5p with siMALAT-1, PD-L1 expression was elevated. Co-transfection of miR-194-5p with siXIST did not have an impact on PD-L1 expression. Upon co-transfection of miR-194 with siTSIX, PD-L1 expression was upregulated. Interestingly, the same PD-L1 expression pattern was observed following miR-155-5p co-transfections. Oleuropein treatment of Huh-7 cells reduced the expression profile of PD-L1, XIST, and miR-155-5p, upregulated the expression of miR-194-5p and had no significant impact on the MALAT-1 expression profile.
CONCLUSION This study reported a novel finding revealing that opposing acting miRNAs in HCC, have the same impact on PD-1/PD-L1 immune checkpoint by sharing a common signaling pathway.
Collapse
Affiliation(s)
- Sara M Atwa
- Pharmaceutical Biology Department, German University in Cairo, Cairo 11865, Egypt
| | - Heba Handoussa
- Pharmaceutical Biology Department, German University in Cairo, Cairo 11865, Egypt
| | - Karim M Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Margarete Odenthal
- Institute for Pathology, University Hospital Cologne, Cologne 50924, Germany
| | - Hend M El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
23
|
Li P, Wang L, Li P, Hu F, Cao Y, Tang D, Ye G, Li H, Wang D. Silencing lncRNA XIST exhibits antiproliferative and proapoptotic effects on gastric cancer cells by up-regulating microRNA-132 and down-regulating PXN. Aging (Albany NY) 2020; 13:14469-14481. [PMID: 33154189 PMCID: PMC8202840 DOI: 10.18632/aging.103635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The present study aims to elucidate the potential therapeutic role of lncRNA XIST in gastric cancer through regulation of microRNA-132 (miR-132) and paxillin (PXN) expression. The study employed 65 gastric cancer tissue specimens and SGC7901 cell lines. Our results demonstrated that expression of lncRNA XIST and PXN was significantly elevated while the expression of miR-132 was significantly reduced in gastric cancer tissues. Dual-luciferase, RNA pull-down and RIP assays demonstrated that lncRNA XIST up-regulated the PXN expression by competitively binding to miR-132. Moreover, silencing of lncRNA XIST and up-regulation of miR-132 could suppress tumor formation ability, cell proliferation and migration, but enhanced apoptosis in gastric cancer. However, the overexpression of PXN achieved the opposite tumor-promotive effect. Meanwhile, rescue experiments suggested that silencing of lncRNA XIST could reverse the tumor-promotive effect exerted by either miR-132 inhibitor or PXN. Taken together, the present study demonstrates lncRNA XIST as a novel oncogenic lncRNA in gastric cancer, highlighting its therapeutic role in this disease.
Collapse
Affiliation(s)
- Ping Li
- Department of General Surgery, Huaian Tumor Hospital, Huaian Hospital of Huaian City, Huaian, 223200, P.R. China
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim 68167, Germany
| | - Liuhua Wang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery - Yangzhou, Yangzhou University, Yangzhou 225000, P.R. China
| | - Pengfei Li
- Department of General Surgery, Huaian Tumor Hospital, Huaian Hospital of Huaian City, Huaian, 223200, P.R. China
| | - Fangyong Hu
- Department of General Surgery, Huaian Tumor Hospital, Huaian Hospital of Huaian City, Huaian, 223200, P.R. China
| | - Yi Cao
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim 68167, Germany
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery - Yangzhou, Yangzhou University, Yangzhou 225000, P.R. China
| | - Gang Ye
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, P.R. China
| | - Hongbo Li
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou 225200, P.R. China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery - Yangzhou, Yangzhou University, Yangzhou 225000, P.R. China
| |
Collapse
|
24
|
Xu G, Xu WY, Xiao Y, Jin B, Du SD, Mao YL, Zhang ZT. The emerging roles of non-coding competing endogenous RNA in hepatocellular carcinoma. Cancer Cell Int 2020; 20:496. [PMID: 33061848 PMCID: PMC7552539 DOI: 10.1186/s12935-020-01581-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence has emerged revealing that noncoding RNAs (ncRNAs) play essential roles in the occurrence and development of hepatocellular carcinoma (HCC). However, the complicated regulatory interactions among various ncRNAs in the development of HCC are not entirely understood. The newly discovered mechanism of competing endogenous RNAs (ceRNAs) uncovered regulatory interactions among different varieties of RNAs. In recent years, a growing number of studies have suggested that ncRNAs, including long ncRNAs, circular RNAs and pseudogenes, play major roles in the biological functions of the ceRNA network in HCC. These ncRNAs can share microRNA response elements to affect microRNA affinity with target RNAs, thus regulating gene expression at the transcriptional level and both physiological and pathological processes. The ncRNAs that function as ceRNAs are involved in diverse biological processes in HCC cells, such as tumor cell proliferation, epithelial-mesenchymal transition, invasion, metastasis and chemoresistance. Based on these findings, ncRNAs that act as ceRNAs may be promising candidates for clinical diagnosis and treatments. In this review, we discuss the mechanisms and research methods of ceRNA networks. We also reviewed the recent advances in studying the roles of ncRNAs as ceRNAs in HCC and highlight possible directions and possibilities of ceRNAs as diagnostic biomarkers or therapeutic targets. Finally, the limitations, gaps in knowledge and opportunities for future research are also discussed.
Collapse
Affiliation(s)
- Gang Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Wei-Yu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Xi-Cheng District, Beijing, 100050 People's Republic of China
| | - Yao Xiao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Shun-Da Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Yi-Lei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital and Chinese Academy of Medical Sciences, 1# Shuaifuyuan, Wangfujing, Dong-Cheng District, Beijing, 100730 China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Xi-Cheng District, Beijing, 100050 People's Republic of China
| |
Collapse
|
25
|
Mao D, Jie Y, Lv Y. LncRNA SNHG6 Induces Epithelial-Mesenchymal Transition of Pituitary Adenoma Via Suppressing MiR-944. Cancer Biother Radiopharm 2020; 37:246-255. [PMID: 32935999 PMCID: PMC9127839 DOI: 10.1089/cbr.2020.3587] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Pituitary adenoma (PA) is a common primary brain tumor with invasive properties. Despite that long noncoding RNA (lncRNA) small nucleolar RNA host gene 6 (SNHG6) exerts oncogenic function in cancer cells and that miR-944 inhibits epithelial–mesenchymal transition (EMT) of cancer cells are well documented, few studies have explored the function and mechanism of SNHG6 and miR-944 in invasive pituitary adenoma (IPA). Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expressions of SNHG6 and miR-944 in PA samples. Human PA cell line HP75 was used as a cell model. The biological effects of SNHG6 and miR-944 on HP75 cells were investigated with cell counting kit-8 (CCK-8) assay, Transwell assay, and scratch healing assay in vitro, respectively. Markers of EMT, including E-cadherin and vimentin, were detected by Western blot. Interactions between SNHG6 and miR-944, miR-944 and RAB11A were determined by bioinformatics analysis, qRT-PCR, and dual luciferase reporter assay. Results: SNHG6 was significantly upregulated in IPA samples, whereas miR-944 was downregulated. SNHG6 markedly promoted viability, migration, invasion, and EMT of PA cells, whereas miR-944 transfection had the opposite effects. SNHG6 could downregulate miR-944, and there was a negative correlation between SNHG6 expression and miR-944 expression in IPA samples. Besides, it was confirmed that miR-944 could pair with the 3′-untranslated region of RAB11A and repress its expression. Conclusions: This study authenticates that the SNHG6/miR-994/RAB11A axis plays a crucial role in regulating proliferation, migration, invasion, and EMT of IPA cells. SNHG6 and miR-994 can serve as novel valuable therapeutic targets for IPA.
Collapse
Affiliation(s)
- Dandan Mao
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| | - Yuanqing Jie
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| | - Yao Lv
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
26
|
Abstract
Long non-coding RNA (lncRNA) Xist has emerged as a key modulator in dosage compensation by randomly inactivating one of the X chromosomes in mammals during embryonic development. Dysregulation of X chromosome inactivation (XCI) due to deletion of Xist has been proven to induce hematologic cancer in mice. However, this phenomenon is not consistent in humans as growing evidence suggests Xist can suppress or promote cancer growth in different organs of the human body. In this review, we discuss recent advances of XCI in human embryonic stem cells and provide an explanation for the seemingly contradictory roles of Xist in development of human cancer.
Collapse
Affiliation(s)
- Yung-Kang Chen
- School of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun Yen
- Graduate Institute of Medical Informatics, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan. .,Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan. .,Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
New LncRNAs in Chronic Hepatitis C progression: from fibrosis to hepatocellular carcinoma. Sci Rep 2020; 10:9886. [PMID: 32555359 PMCID: PMC7303194 DOI: 10.1038/s41598-020-66881-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world, and about 80% of the cases are associated with hepatitis B or C. Genetic and epigenetic alterations are accumulated over decades of chronic injury and may affect the functioning of tumor suppressor genes and protooncogenes. Studies have evidenced the role of Long non-coding RNAs (LncRNA) with oncogenic or tumor suppressor activities, suggesting a great potential in the treatment, diagnosis or indicator of prognosis in cancer. In this context, the aim of this study was to evaluate the global expression profile lncRNA in hepatic tissue samples with different stages of fibrosis associated with chronic hepatitis C, HCC and normal liver, in order to identify new lncRNAs that could contribute to study the progression of hepatic fibrosis to HCC associated with chronic hepatitis C. RNA-Seq was performed on Illumina NextSeq platform to identify lncRNAs expressed differently in 15 patients with chronic hepatitis C, three patients with HCC and three normal liver specimens. When the pathological tissues (fibrosis and carcinoma) were compared to normal hepatic tissue, were identified 2, 6 e 34 differentially expressed lncRNAs in moderate fibrosis, advanced fibrosis and HCC, respectively. The carcinoma group had the highest proportion of differentially expressed lncRNA (34) and of these, 29 were exclusive in this type of tissue. A heat map of the deregulated lncRNA revealed different expression patterns along the progression of fibrosis to HCC. The results showed the deregulation of some lncRNA already classified as tumor suppressors in HCC and other cancers, as well as some unpublished lncRNA whose function is unknown. Some of these lncRNAs are dysregulated since the early stages of liver injury in patients with hepatitis C, others overexpressed only in tumor tissue, indicating themselves as candidates of markers of fibrosis progression or tumor, with potential clinical applications in prognosis as well as a therapeutic target. Although there are already studies on lncRNA in hepatocellular carcinoma, this is the first study conducted in samples exclusively of HCV-related liver and HCV HCC.
Collapse
|
28
|
Wen JF, Jiang YQ, Li C, Dai XK, Wu T, Yin WZ. LncRNA-XIST promotes the oxidative stress-induced migration, invasion, and epithelial-to-mesenchymal transition of osteosarcoma cancer cells through miR-153-SNAI1 axis. Cell Biol Int 2020; 44:1991-2001. [PMID: 32515520 DOI: 10.1002/cbin.11405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common type of primary bone tumor that exhibits invasive growth and long-distance organ metastasis. Thus, investigating the specifically targeted therapeutic agents against metastatic osteosarcoma depends on understanding the molecular mechanisms. The long noncoding RNAs (lncRNA) XIST (X-inactive specific transcript) has been reported to have oncogenic roles in various malignant tumors including OS. However, its molecular mechanisms in OS migration and invasion are still under investigation. In the current study, we demonstrate that XIST is significantly upregulated in 30 pairs of OS tissues compared with their matched adjacent nontumor tissues by the quantitative reverse transcription polymerase chain reaction. Overexpression of XIST significantly induced the invasion, migration, and the epithelial-to-mesenchymal transition (EMT) phenotype. The epithelial marker, E-cadherin was effectively suppressed by XIST overexpression. On the other way, the mesenchymal marker, Fibronectin, Snail, and Vimentin were significantly activated by exogenous XIST overexpression. Furthermore, we observed XIST was upregulated by the oxidative stress-induced EMT. Bioinformatical analysis indicated that miR-153 has multiple biding sites for XIST and miR-153 was inversely suppressed by oxidative stress. XIST was verified to directly downregulate miR-153 via sponging. We identified the mesenchymal marker, SNAI1 was a direct messenger RNA target of miR-153. Importantly, inhibiting XIST successfully blocked the H2 O2 -induced EMT of OS cells. In conclusion, this work demonstrates that lncRNA-XIST promotes the oxidative stress-induced OS cell invasion, migration, and EMT through the miR-153/SNAI1 pathway, presenting lncRNA-XIST as a promising therapeutic target for treating metastatic OS.
Collapse
Affiliation(s)
- Ji-Feng Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong-Qing Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xian-Kui Dai
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Zhe Yin
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Hai B, Pan X, Du C, Mao T, Jia F, Liu Y, Ma Y, Liu X, Zhu B. LncRNA XIST Promotes Growth of Human Chordoma Cells by Regulating miR-124-3p/iASPP Pathway. Onco Targets Ther 2020; 13:4755-4765. [PMID: 32547104 PMCID: PMC7266409 DOI: 10.2147/ott.s252195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Chordoma is a malignant primary bone tumor that is found in the spine and skull. X-inactive specific transcript (XIST) is a long non-coding RNA (lncRNA) is known to be involved in the development of various cancers, but its precise function and mechanism in human chordoma have not been elucidated. Here, we investigated the role of lncRNA XIST in chordoma progression. Methods Quantitative real time-polymerase chain reaction (qRT-PCR) was performed to determine lncRNA XIST expression in human chordoma tissues and matched-noncancerous tissues. Western blot was used to determine protein expression. Silencing and overexpression of lncRNA XIST were carried out by RNA interference (RNAi) and lentiviral transduction, respectively. Cell Counting Kit-8 (CCK-8) assay and flow cytometry were employed to examine the effects of lncRNA XIST on growth of human chordoma cells. Lastly, the role of lncRNA XIST in vivo was explored using a xenograft model. Results We found that lncRNA XIST expression was upregulated in chordoma and strongly correlated with poor patient prognosis. Moreover, lncRNA XIST promoted proliferation and inhibited apoptosis of chordoma cells. Mechanistically, upregulation of lncRNA XIST led to a decrease in miR-124-3p expression, thereby promoting the expression of the miR-124-3p target gene, inhibitor of apoptosis-stimulating protein of p53 (iASPP). Addition of miR-124-3p inhibitor or mimic reversed the effects induced by lncRNA XIST silencing or overexpression on chordoma cell proliferation. Lastly, using a xenograft mouse model, we found that silencing of lncRNA XIST decreased tumorigenicity in vivo, as shown by increased tumor cell apoptosis. Conclusion Our findings demonstrate a key role for lncRNA XIST in chordoma progression by regulating miR124-3p/iAPSS pathway.
Collapse
Affiliation(s)
- Bao Hai
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoyu Pan
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Chuanchao Du
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Tianli Mao
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Fei Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yunlong Ma
- The Center for Pain Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China.,The Center for Pain Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Bin Zhu
- The Center for Pain Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
30
|
Yang LG, Cao MZ, Zhang J, Li XY, Sun QL. LncRNA XIST modulates HIF-1A/AXL signaling pathway by inhibiting miR-93-5p in colorectal cancer. Mol Genet Genomic Med 2020; 8:e1112. [PMID: 32061057 PMCID: PMC7196477 DOI: 10.1002/mgg3.1112] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Background Long noncoding RNA (LncRNA) XIST is one of the genes that exists in different types of cancers. Earlier researches showed that XIST can advance the progression of colorectal cancer. Nevertheless, the potential molecular mechanism of XIST in combination with miR‐93‐5p has not been explored in colorectal cancer. Methods We performed qRT‐PCR to explore the level of XIST. And a serious experiments in vitro and in vivo were performed to explore the function of XIST. The relationship between XIST/HIF‐1A and miR‐93‐5p was confirmed by RIP and dual‐luciferase assays. Results In the present research, our team demonstrated the upregulation of XIST expression, which was related to tumor progression, and the downregulation of miR‐93‐5p in cells and tissues of colorectal cancer. XIST is the competitive endogenous RNA of miR‐93‐5p to promote HIF‐1A, and then the upregulated AXL level facilitates the EMT process, migration, and proliferation of colorectal cancer. At last, we proved that XIST enhanced the in vivo and in vitro activities of colorectal cancer by regulating AXL signaling. Conclusion In summary, the above results indicate that XIST promotes colorectal cancer tumorigenesis by regulating miR‐93‐5p/HIF‐1A/AXL signaling pathway, which will supply a novel perspective to diagnose and treat colorectal cancer disease.
Collapse
Affiliation(s)
- Li-Guang Yang
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| | - Ming-Zheng Cao
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| | - Jie Zhang
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| | - Xiao-Yan Li
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| | - Qin-Li Sun
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| |
Collapse
|
31
|
Li J, Wei L, Han Z, Chen Z, Zhang Q. Long non-coding RNA X-inactive specific transcript silencing ameliorates primary graft dysfunction following lung transplantation through microRNA-21-dependent mechanism. EBioMedicine 2020; 52:102600. [PMID: 31981974 PMCID: PMC6976928 DOI: 10.1016/j.ebiom.2019.102600] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Primary graft dysfunction (PGD) is a known acute lung injury (ALI) and a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in ALI through regulation of microRNAs (miRNAs), their effects on PGD remain undefined. The present study aims to explore the underlying mechanism of lncRNA X-inactive specific transcript (XIST) in PGD after lung transplantation. Methods Initially, the expression of miR-21, IL-12A and XIST was determined by RT-qPCR and western blot analysis. The dual luciferase reporter assay, RNA pull-down and RIP assay were performed to identify the targeting relationship between miR-21 and IL-12A and the binding relationship between miR-21 and XIST. Loss- and gain-of-function investigations were conducted in rats treated with prolonged cold ischemia and polymorphonuclear neutrophils (PMNs). Findings miR-21 was decreased, whilst XIST and IL-12A were increased in the bronchoalveolar lavage fluid of PGD patients after lung transplantation. Enhanced miR-21 expression in rats and PMNs resulted in downregulated expression of pro-inflammatory factors and chemokines, and enhanced the apoptosis of PMNs. XIST was found to upregulate IL-12A expression in a miR-21-dependent manner. Additionally, XIST silencing enhanced the apoptosis of PMNs and inhibited the neutrophil extracellular trap (NET) formation through upregulation of miR-21 but downregulation of IL-12A in vivo. Interpretation In summary, lncRNA XIST upregulates IL-12A by binding to miR-21, thereby inducing NET formation and accelerating PGD after lung transplantation. This suggests that inhibition of XIST and NET may be beneficial for the treatment of PGD.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China.
| | - Zhijun Han
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Zhong Chen
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Quan Zhang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China
| |
Collapse
|
32
|
Rong H, Chen B, Wei X, Peng J, Ma K, Duan S, He J. Long non-coding RNA XIST expedites lung adenocarcinoma progression through upregulating MDM2 expression via binding to miR-363-3p. Thorac Cancer 2020; 11:659-671. [PMID: 31968395 PMCID: PMC7049521 DOI: 10.1111/1759-7714.13310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Lung adenocarcinoma (LAD) is a highly aggressive malignant tumor which threatens the health and life of the population. Long non‐coding RNA X‐inactive specific transcript (XIST) and mouse double minute clone 2 (MDM2) are connected with the tumorigenesis of LAD. Nevertheless, whether MDM2 is regulated by XIST has not previously been reported in LAD. Methods Quantitative real‐time polymerase chain reaction (qRT‐PCR) was employed to detect the expression of XIST, microRNA‐363‐3p (miR‐363‐3p) and MDM2 in LAD tissues and cells. The proliferation, migration, invasion and apoptosis of LAD cells were determined by 3‐(4, 5‐dimethylthiazol‐2‐YI)‐2, 5‐diphenyltetrazolium bromide (MTT), transwell or flow cytometry assay, respectively. MDM2 protein level was detected using western blot analysis. Dual‐luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pulldown assay were performed to determine the interaction among XIST, miR‐363‐3p and MDM2. A xenograft tumor model was constructed to validate the effect of XIST on LAD cells in vivo. Results We found that XIST and MDM2 were remarkably elevated while miR‐363‐3p was reduced in LAD tissues and cells. Both XIST and MDM2 downregulation restrained proliferation, migration and invasion, and facilitated apoptosis of LAD cells in vitro. Importantly, XIST bound to miR‐363‐3p to modulate MDM2 expression in LAD cells. Moreover, miR‐363‐3p knockdown or MDM2 elevation reversed the effects of XIST downregulation on the proliferation, migration, invasion and apoptosis of LAD cells. Furthermore, XIST knockdown constrained tumor growth on LAD cells in vivo. Conclusions XIST knockdown repressed proliferation, migration and invasion, and accelerated apoptosis of LAD cells by downregulating MDM2 expression via binding to miR‐363‐3p. Key points Significant findings of the studyXIST and MDM2 were abnormally enhanced in LAD tissues and cells. Both downregulation of XIST and MDM2 repressed proliferation, migration and invasion, and boosted apoptosis of LAD cells in vitro. XIST bound to miR‐363‐3p to regulate MDM2 expression in LAD cells. Downregulation of XIST impeded tumor growth on LAD cells in vivo. What this study adds This study confirmed that XIST was a potential target for inhibiting the development of LAD, and affords a possible strategy for the treatment of LAD in the future.
Collapse
Affiliation(s)
- Hao Rong
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Wei
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Jun Peng
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Ke Ma
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Song Duan
- Department of Pathology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jintao He
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| |
Collapse
|
33
|
Zhang L, Wang Y, Zhang L, You G, Li C, Meng B, Zhou M, Zhang M. LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis. Cancer Cell Int 2019; 19:320. [PMID: 31827394 PMCID: PMC6889337 DOI: 10.1186/s12935-019-1036-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Background Pancreatic cancer (PC) is one of the deadliest cancers about the digestive system. Recent researches have validated that long non-coding RNAs (lncRNAs) play vital roles in various cancers, while the function of LINC01006 in PC is rarely clarified. Aim of the study Investigation of the specific role of LINC01006 in PC. Methods LINC01006 expression was examined by RT-qPCR. CCK-8, EdU, transwell, wound healing, and western blot assays were carried out to explore the function of LINC01006 in PC. The interaction among LINC01006, miR-2682-5p and HOXB8 was verified by luciferase reporter, RIP and ChIP assays. Results The expression of LINC01006 was markedly upregulated in PC tissues and cells. Furthermore, LINC01006 knockdown inhibited PC cell proliferation, invasion and migration, and upregulation of LINC01006 led to the opposite results. Besides, miR-2682-5p expression was downregulated and negatively regulated by LINC01006 in PC. Meanwhile, LINC01006 could bind with miR-2682-5p in PC. Moreover, miR-2682-5p negatively regulated HOXB8 expression and there was a binding site between miR-2682-5p and HOXB8 in PC. Additionally, miR-2682-5p overexpression or HOXB8 knockdown rescued the promotive effects of LINC01006 upregulation on PC cell progression. Similarly, miR-2682-5p inhibition or HOXB8 overexpression countervailed the repressive role of LINC01006 downregulation in PC cell progression. In addition, the transcription factor HOXB8 could activate LINC01006 transcription in PC. Conclusions LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis, which may facilitate the treatment for PC.
Collapse
Affiliation(s)
- Luyang Zhang
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Yunjian Wang
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Ling Zhang
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Guohua You
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Congyu Li
- 2Department of Ultrasonography, Affiliated of Cancer Hospital of Zhengzhou University, Zhengzhou, 450008 Henan China
| | - Bo Meng
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Minghe Zhou
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| | - Min Zhang
- 1Department of Hepatobiliary Surgery, Affiliated of Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008 Henan China
| |
Collapse
|
34
|
Yue D, Guanqun G, Jingxin L, Sen S, Shuang L, Yan S, Minxue Z, Ping Y, Chong L, Zhuobo Z, Yafen W. Silencing of long noncoding RNA XIST attenuated Alzheimer's disease-related BACE1 alteration through miR-124. Cell Biol Int 2019; 44:630-636. [PMID: 31743528 DOI: 10.1002/cbin.11263] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. However, its pathogenetic mechanism is still poorly understood. An increasing number of studies have evidenced the important role of long noncoding RNAs (lncRNAs) in AD. The aim of the current study was to investigate the effect and molecular mechanism of the lncRNA X-inactive specific transcript (XIST) in AD. Bilateral common carotid artery occlusion (2VO) was used to induce an AD model in mice. Hydrogen peroxide (H2 O2 ) was used to induce an AD model in N2a cells. The lncRNA XIST, miR-124, and BACE1 messenger RNA expression levels were detected by a real-time polymerase chain reaction. The BACE1 protein expression level was detected by western blot and immunofluorescence assay. The Aβ1-42 expression level was detected using an enzyme-linked immunosorbent assay kit. The expression level of lncRNA XIST was significantly upregulated in AD models, both in vivo and in vitro. Silencing of lncRNA XIST negatively regulated miR-124 and positively regulated BACE1 expression in N2a cells, which is attenuated by cotransfection of anti-miR-124 oligodeoxyribonucleotide (AMO-124). Silencing of lncRNA XIST reversed the effect of H2 O2 on miR-124, BACE1, and Aβ1-42 expression in N2a cells, which was reversed by cotransfection of AMO-124. Silencing of lncRNA XIST attenuated AD-related BACE1 alteration through miR-124. LncRNA XIST may be a new potential target for the treatment of AD.
Collapse
Affiliation(s)
- Du Yue
- Harbin Medical University Fourth Hospital, Neurology, Harbin, 150001, China
| | - Gao Guanqun
- Harbin Medical University Fourth Hospital, Neurology, Harbin, 150001, China
| | - Li Jingxin
- Heilongjiang Provincial Hospital, Neurology, Harbin, Heilongjiang, 150030, China
| | - Suo Sen
- Harbin Medical University Fourth Hospital, Neurology, Harbin, 150001, China
| | - Liu Shuang
- Heilongjiang Provincial Hospital, Neurology, Harbin, Heilongjiang, 150030, China
| | - Sun Yan
- Harbin Medical University Fourth Hospital, Neurology, Harbin, 150001, China
| | - Zhang Minxue
- Harbin Medical University Fourth Hospital, Neurology, Harbin, 150001, China
| | - Yin Ping
- Heilongjiang Provincial Hospital, Neurology, Harbin, Heilongjiang, 150030, China
| | - Lu Chong
- Heilongjiang Provincial Hospital, Neurology, Harbin, Heilongjiang, 150030, China
| | - Zhang Zhuobo
- Harbin Medical University Fourth Hospital, Neurology, Harbin, 150001, China
| | - Wei Yafen
- Heilongjiang Provincial Hospital, Neurology, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
35
|
Luo JZ, Qin L, Zhang LJ. Expression and function of long non-coding RNA LINC01420 in thyroid cancer. Oncol Lett 2019; 19:399-405. [PMID: 31897152 PMCID: PMC6924109 DOI: 10.3892/ol.2019.11076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
The Human Genome Project revealed that >90% of the human genome was found to transcribe non-coding RNAs, including micro RNAs and long non-coding RNAs (lncRNAs). lncRNAs have been identified to play a crucial role in cancer progression. Thyroid cancer (TC) is a common type of endocrine cancer; however, the functional roles of lncRNAs in TC have yet to be fully elucidated. The present study investigated whether LINC01420 was upregulated in TC tissues, compared with normal thyroid tissues, and the results suggested that LINC01420 may play a regulatory role in TC. Bioinformatics analysis demonstrated that LINC01420 was associated with translation, rRNA processing, mRNA splicing, regulation of transcription, DNA repair and double-strand break repair. Furthermore, the exact role of LINC01420 in TC was explored by performing a loss-of-function assay, which revealed that the knockdown of LINC01420 inhibited TC cell proliferation and cell cycle progression. The findings of the present study provide a novel insight into the molecular mechanisms underlying TC development. Moreover, they suggest that LINC01420 may serve as a potential therapeutic target for the treatment of TC, and that increased LINC01420 expression levels show potential as a prognostic marker for the disease.
Collapse
Affiliation(s)
- Jin-Zhu Luo
- Department of Clinical Laboratory, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Lu Qin
- Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Ling-Jie Zhang
- Department of Anesthesiology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
36
|
Yang J, Shen Y, Yang X, Long Y, Chen S, Lin X, Dong R, Yuan J. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol 2019; 317:F1350-F1358. [PMID: 31545928 DOI: 10.1152/ajprenal.00254.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play an important role in diabetic nephropathy (DN). However, the molecular mechanism involved in this process remains poorly understood. Thus, the present study aimed to explore the function and molecular mechanism of dysregulated lncRNA X-inactive specific transcript (XIST) in DN. DN mouse models were established by streptozotocin treatment, and human renal tubular epithelial HK-2 cells were exposed to high glucose to produce an in vitro model. XIST was highly expressed in renal tissues of patients with DN, mice with DN, and high glucose-exposed HK-2 cells. To identify the interaction among XIST, miR-93-5p, and cyclin-dependent kinase inhibitor 1A (CDKN1A) and to analyze the functional significance of their interaction in renal interstitial fibrosis, we altered endogenous expression of XIST and miR-93-5p and CDKN1A. Dual-luciferase reporter assay results suggested that XIST was highly expressed in the kidney tissue of DN mice and high glucose-exposed HK-2 cells. XIST was identified to be a lncRNA that could bind to miR-93-5p, and CDKN1A was a target of miR-93-5p. Downregulated expression of XIST led to an increase in miR-93-5p expression, thereby decreasing CDKN1A and suppressing renal interstitial fibrosis in DN. Consistently, XIST knockdown reduced the expression of fibrosis markers (fibronectin, collagen type IV, and transforming growth factor-β1). Restoration of CDKN1A or decreasing miR-93-5p yielded a reversed effect on renal interstitial fibrosis. In conclusion, our study demonstrated that silenced XIST inducing miR-93-5p-dependent CDKN1A inhibition was beneficial for preventing renal interstitial fibrosis in DN, which may provide a future strategy to prevent the progression of DN.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Yan Shen
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xia Yang
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Yanjun Long
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Shuang Chen
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Rong Dong
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| |
Collapse
|
37
|
Plotnikova O, Baranova A, Skoblov M. Comprehensive Analysis of Human microRNA-mRNA Interactome. Front Genet 2019; 10:933. [PMID: 31649721 PMCID: PMC6792129 DOI: 10.3389/fgene.2019.00933] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs play a key role in the regulation of gene expression. A majority of microRNA–mRNA interactions remain unidentified. Despite extensive research, our ability to predict human microRNA-mRNA interactions using computational algorithms remains limited by a complexity of the models for non-canonical interactions, and an abundance of false-positive results. Here, we present the landscape of human microRNA–mRNA interactions derived from comprehensive analysis of HEK293 and Huh7.5 datasets, along with publicly available microRNA and mRNA expression data. We show that, while only 1–2% of human genes were the most regulated by microRNAs, few cell line–specific RNAs, including EEF1A1 and HSPA1B in HEK293 and AFP, APOB, and MALAT1 genes in Huh7.5, display substantial “sponge-like” properties. We revealed a group of microRNAs that are expressed at a very high level, while interacting with only a few mRNAs, which, indeed, serve as their specific expression regulators. In order to establish reliable microRNA-binding regions, we collected and systematically analyzed the data from 79 CLIP datasets of microRNA-binding sites. We report 46,805 experimentally confirmed mRNA–miRNA duplex regions. Resulting dataset is available at http://score.generesearch.ru/services/mirna/. Our study provides initial insight into the complexity of human microRNA–mRNA interactions.
Collapse
Affiliation(s)
- Olga Plotnikova
- Laboratory of Functional Genome Analysis, Moscow Institute of Physics and Technology, Moscow, Russia.,Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ancha Baranova
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, Russia.,School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Mikhail Skoblov
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
38
|
Mao Q, Lv M, Li L, Sun Y, Liu S, Shen Y, Liu Z, Luo S. Long intergenic noncoding RNA 00641 inhibits breast cancer cell proliferation, migration, and invasion by sponging miR-194-5p. J Cell Physiol 2019; 235:2668-2675. [PMID: 31490021 DOI: 10.1002/jcp.29170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs have an essential role in the tumorigenesis of breast cancer (BC). Nonetheless, the consequences of long intergenic noncoding RNA 00641 (LINC00641) in BC remain unidentified. This study shows that LINC00641 expression level was decreased in BC tissues. LINC00641 expression level was negatively related to tumor size, lymph-node metastasis, as well as clinical stage. LINC00641 overexpression inhibited cell proliferation, migration, and invasion but stimulated apoptosis in BC cells. LINC00641 overexpression also remarkably reduced BC growth and metastasis in vivo. LINC00641 acts as a competitive endogenous RNA to sponge miR-194-5p. miR-194-5p level was higher in BC tissues and cells compared with normal-adjacent tissues and normal breast epithelial cell. miR-194-5p expression was negatively correlated with LINC00641 expression in BC tissues. miR-194-5p overexpression reversed the effects of LINC00641 on cell proliferation, cycle, apoptosis, migration, as well as invasion. In conclusion, LINC00641 inhibits BC cell proliferation, migration, as well as invasion by sponging miR-194-5p.
Collapse
Affiliation(s)
- Qixin Mao
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minhao Lv
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lianfang Li
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadong Sun
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shanqing Liu
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Shen
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhen Liu
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Zhou K, Li S, Du G, Fan Y, Wu P, Sun H, Zhang T. LncRNA XIST depletion prevents cancer progression in invasive pituitary neuroendocrine tumor by inhibiting bFGF via upregulation of microRNA-424-5p. Onco Targets Ther 2019; 12:7095-7109. [PMID: 31564894 PMCID: PMC6730611 DOI: 10.2147/ott.s208329] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are vital mediators in human cancers including pituitary neuroendocrine tumor (PitNET) and could function as competing endogenous RNAs (ceRNAs) of microRNAs (miRNAs). The main objective of this study is to identify effect of lncRNA X-inactive specific transcript (XIST) and microRNA-424-5p (miR-424-5p) on PitNET. Methods Microarray analysis was employed to identify the PitNET-related differentially expressed lncRNAs. PitNET tissues, including both invasive and non-invasive subtypes in parallel with normal pituitary tissues were collected for the determination of the expression of XIST, miR-424-5p and basic fibroblast growth factor (bFGF) and the interaction among them. Subsequently, the expression of XIST, miR-424-5p and bFGF in PitNET cells was altered to elucidate their biological significance in the aspects of proliferation, migration, invasion, and the apoptosis. Results Both XIST and bFGF exhibited high expression, but miR-424-5p had a low expression in invasive PitNET tissues as compared to non-invasive PitNET normal pituitary tissues. Additionally, XIST competitively bound to miR-424-5p to elevate the expression of bFGF. Furthermore, depleted XIST or bFGF, or elevated miR-424-5p was revealed to suppress the proliferation, migration, invasion, and promote cell cycle arrest and apoptosis of invasive PitNET cells. miR-424-5p repressed the proliferation, migration, invasion of invasive PitNET cells by targeting bFGF. Conclusion In conclusion, the fundamental findings of the present study suggested that the functional suppression of XIST downregulated bFGF to inhibit the development of PitNET by increasing miR-424-5p expression, proposing XIST as a novel therapeutic target for PitNET.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Shaoshan Li
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Guojia Du
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Yandong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Hongjie Sun
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Tingrong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| |
Collapse
|
40
|
Long non-coding RNA XIST predicting advanced clinical parameters in cancer: A Meta-Analysis and case series study in a single institution. Oncol Lett 2019; 18:2192-2202. [PMID: 31404342 PMCID: PMC6676735 DOI: 10.3892/ol.2019.10592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Dysregulated expression of long non-coding RNA X-inactive specific transcript (lncRNA-XIST) has been indicated in various cancer types. In the present study, a meta-analysis was conducted to evaluate the potential role of lncRNA-XIST in predicting the clinicopathological parameters of patients with cancer. Eligible studies were obtained through a systematic search of PubMed, Web of Science, Embase and the Cochrane Library, of articles published prior to January 2019. The combined odds ratio and 95% confidence interval were calculated to determine the association between lncRNA-XIST expression and patient outcome. In addition, 45 pairs of osteosarcoma (OS) tissues and adjacent healthy tissues from a single institution were analyzed for the expression of lncRNA-XIST, and its association with clinicopathological features; ultimately, a total of 1,869 cancer patients from 25 studies were assessed. The results demonstrated that high expression levels of lncRNA-XIST were significantly associated with lymphatic metastasis, larger tumor size, advanced cancer stage and distant metastasis. However, sex was not associated with lncRNA-XIST expression level. In the OS patient cohort, it was demonstrated that lncRNA-XIST was highly expressed in OS tissues, which negatively correlated with patient prognosis. The present study indicated that lncRNA-XIST may serve as a potential biomarker for advanced clinical parameters in human cancer.
Collapse
|
41
|
Zou H, Xu X, Luo L, Zhang Y, Luo L, Yao Y, Xiang G, Huang X, Wang G. Hsa_circ_0101432 promotes the development of hepatocellular carcinoma (HCC) by adsorbing miR-1258 and miR-622. Cell Cycle 2019; 18:2398-2413. [PMID: 31095447 PMCID: PMC6739047 DOI: 10.1080/15384101.2019.1618120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present research was major in investigating the regulation association among hsa_circ_0101432 (has_circ_RPPH1), miR-1258, miR-622 and MAPK1 in hepatocellular carcinoma (HCC), and we explored the mechanism underlying pathogenesis of HCC. Microarray analysis was employed to detect hsa_circ_0101432 expression in HCC. Hsa_circ_0101432 was verified as a circRNA by testing divergent primers and RNase R. And qRT-PCR was performed to determine the expression of hsa_circ_0101432, miR-1258, miR-622 and MAPK1 mRNA. Furthermore, miRanda predicted that mRNAs targeted miR-1258 and miR-622. CCK-8 assay, colony formation assay, flow cytometry as well as transwell assay were performed to detect cell viability, proliferation, apoptosis and invasive ability, respectively. Xenograft in nude mice was applied to observe tumor growth in vivo. Up-regulated hsa_circ_0101432 and down-regulated miR-1258 and miR-622 were detected in HCC while Hsa_circ_0101432 enhanced expression of MAPK1 mRNA by targeting miR-1258 and miR-622. Knocking down hsa_circ_0101432 or overexpressing miR-1258 and miR-622 inhibited proliferation and invasive ability of HCC cell and promoted cell apoptosis. Hsa_circ_0101432 was confirmed to promote tumor growth via inhibiting miR-1258 and miR-622 expression and promoting MAPK1 mRNA expression by in vivo experiment. Hsa_circ_0101432 inhibited HCC cell apoptosis, promoted cell proliferation, invasive ability and HCC tumor growth by targeting miR-1258 and miR-622 and upregulating MAPK1 mRNA expression.
Collapse
Affiliation(s)
- Haibo Zou
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu , Sichuan , China
| | - Xiangang Xu
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital , Guiyang , Guizhou , China
| | - Lanyun Luo
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu , Sichuan , China
| | - Yu Zhang
- Graduate School, Chengdu Medical College , Chengdu , Sichuan , China
| | - Le Luo
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu , Sichuan , China
| | - Yutong Yao
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu , Sichuan , China
| | - Guangming Xiang
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu , Sichuan , China
| | - Xiaolun Huang
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu , Sichuan , China
| | - Guan Wang
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu , Sichuan , China
| |
Collapse
|
42
|
Cai B, Wang X, Liu H, Ma S, Zhang K, Zhang Y, Li Q, Wang J, Yao M, Guan F, Yin G. Up-regulated lncRNA5322 elevates MAPK1 to enhance proliferation of hair follicle stem cells as a ceRNA of microRNA-19b-3p. Cell Cycle 2019; 18:1588-1600. [PMID: 31203719 DOI: 10.1080/15384101.2019.1624111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hair follicle stem cells (HFSCs), located in the bulge region of the follicle, maintain hair follicle growth and cycling. Long non-coding RNAs (lncRNAs), non-protein coding transcripts, are widely known to play critical roles in differentiation and proliferation of stem cells. Therefore, the current study aimed to explore the regulatory roles of lncRNA5322 in HFSCs proliferation and the underlying regulatory mechanisms. Initially, the expression patterns of lncRNA5322 and microRNA-19b-3p (miR-19b-3p) in HFSCs were detected. Subsequently, gain-and loss-of-functions analyses were conducted to explore the roles of lncRNA5322, miR-19b-3p and mitogen-activated protein kinase 1 (MAPK1) in cell proliferation, colony formation and apoptosis of HFSCs, with the expression of cyclin-dependent kinase (CDK)1 and CDK2 examined. Also, the interaction relationships among lncRNA5322, miR-19b-3p and MAPK1 were explored. Furthermore, a mouse model was established to detect the roles of lncRNA5322, miR-19b-3p, and MAPK1 in wound contraction and epidermal regeneration. Over-expressed lncRNA5322 was found to promote proliferation, colony formation ability but inhibit apoptosis of HFSCs, in addition to up-regulation of the expression of CDK1 and CDK2. LncRNA5322 was found to act as a ceRNA of miR-19b-3p which directly targeted MAPK1. Furthermore, up-regulation of lncRNA5322 enhanced wound contraction and epidermal regeneration in vivo by increasing the expression of MAPK1 through functioning as a ceRNA of miR-19b-3p. In summary, the results in this study suggested that lncRNA5322 serves as a ceRNA of miR-19b-3p to elevate the expression of MAPK1, ultimately promoting HFSCs proliferation, wound contraction and epidermal regeneration of mouse model.
Collapse
Affiliation(s)
- Bingjie Cai
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Xinxin Wang
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Hongtao Liu
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Shanshan Ma
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Kun Zhang
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Yanting Zhang
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Qinghua Li
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Junmin Wang
- c College of Basic Medical Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Minghao Yao
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Fangxia Guan
- b School of Life Sciences , Zhengzhou University , Zhengzhou , P.R. China
| | - Guangwen Yin
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , P.R. China
| |
Collapse
|
43
|
Knockdown of hsa_circ_0023028 inhibits cell proliferation, migration, and invasion in laryngeal cancer by sponging miR-194-5p. Biosci Rep 2019; 39:BSR20190177. [PMID: 31123169 PMCID: PMC6567676 DOI: 10.1042/bsr20190177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Emerging evidences have proposed that circular RNAs (circRNAs) play a major role in carcinogenesis. Hsa_circ_0023028 has been reported to be aberrantly expressed in laryngeal cancer (LCa). However, the role and the mechanism of hsa_circ_0023028 in LCa have not been adequately studied. In the present study, we demonstrated that hsa_circ_0023028 expression was up-regulated in LCa tissues and cell lines. miR-194-5p was down-regulated in LCa cells. Functionally, knockdown of hsa_circ_0023028 inhibited the proliferation, migration, and invasion of LCa cells, as evidenced by the reduced number of 5-Ethynyl-2'-deoxyuridine (EdU)-positive cells and decreased number of migrated and invaded cells. Additionally, hsa_circ_0023028 was identified as an miR-194-5p sink. A negative correlation between miR-194-5p and hsa_circ_0023028 expression was observed in LCa tissues. Besides, down-regulation of miR-194-5p attenuated the inhibitory effects of hsa_circ_0023028 silencing on LCa cell proliferation, migration, and invasion. In summary, hsa_circ_0023028 functions as an miR-194-5p sponge to promote the proliferation, migration, and invasion of LCa cells.
Collapse
|
44
|
Lyu X, Ma Y, Wu F, Wang L, Wang L. LncRNA NKILA Inhibits Retinoblastoma by Downregulating lncRNA XIST. Curr Eye Res 2019; 44:975-979. [PMID: 30995132 DOI: 10.1080/02713683.2019.1606253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: Although retinoblastoma is rare but can be deadly in some severe cases. To find novel therapeutic targets for retinoblastoma, we explored the potential role of lncRNA NKILA in retinoblastoma. Results: We found that, comparing to healthy controls, NKILA was downregulated, while lncRNA XIST was upregulated in plasma of retinoblastoma patients and they were inversely correlated. Downregulation of NKILA distinguished early-stage patients from healthy controls. Overexpression of lncRNA NKILA mediated the downregulation of XIST in retinoblastoma cells, while XIST overexpression failed to significantly affect NKILA. Overexpression of NKILA resulted in decreased, while XIST overexpression resulted in increased proliferation, migration and invasion rates of retinoblastoma cells. In addition, rescue experiment showed that XIST overexpression attenuated the effects of NKILA overexpression on cancer cell behaviors. Conclusions: Therefore, NKILA inhibits retinoblastoma possibly by downregulating XIST, but the causality has not been fully validated.
Collapse
Affiliation(s)
- Xueman Lyu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , PR. China
| | - Yunqing Ma
- Intensive Care Unit, Second Hospital of Jilin University , Changchun , Jilin , PR. China
| | - Fei Wu
- Department of Gynecology and Obstetrics, Second Hospital of Jilin University , Changchun , Jilin , PR. China
| | - Ling Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , PR. China
| | - Lina Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , PR. China
| |
Collapse
|
45
|
Wang Y, Yang L, Chen T, Liu X, Guo Y, Zhu Q, Tong X, Yang W, Xu Q, Huang D, Tu K. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Mol Cancer 2019; 18:28. [PMID: 30782188 PMCID: PMC6381672 DOI: 10.1186/s12943-019-0957-7] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant liver tumor with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been revealed to be implicated in the carcinogenesis and progression of HCC. However, the expressions, clinical significances, and roles of most lncRNAs in HCC are still unknown. Methods The expression of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in HCC tissues and cell lines was detected by qRT-PCR and fluorescence in situ hybridization. Immunoblotting, CCK-8, EdU, colony formation and flow cytometry were performed to investigate the role of MCM3AP-AS1 in HCC cell proliferation, cell cycle and apoptosis in vitro. A subcutaneous tumor mouse model was constructed to analyze in vivo growth of HCC cells after MCM3AP-AS1 knockdown. The interactions among MCM3AP-AS1, miR-194-5p and FOXA1 were measured by RNA pull-down, RNA immunoprecipitation and luciferase reporter assay. Results We revealed a novel oncogenic lncRNA MCM3AP-AS1, which is overexpressed in HCC and positively correlated with large tumor size, high tumor grade, advanced tumor stage and poor prognosis of HCC patients. MCM3AP-AS1 knockdown suppressed HCC cell proliferation, colony formation and cell cycle progression, and induced apoptosis in vitro, and depletion of MCM3AP-AS1 inhibited tumor growth of HCC in vivo. Mechanistically, MCM3AP-AS1 directly bound to miR-194-5p and acted as competing endogenous RNA (ceRNA), and subsequently facilitated miR-194-5p’s target gene forkhead box A1 (FOXA1) expression in HCC cells. Interestingly, FOXA1 restoration rescued MCM3AP-AS1 knockdown induced proliferation inhibition, G1 arrest and apoptosis of HCC cells. Conclusions Our results recognized MCM3AP-AS1 as a novel oncogenic lncRNA, which indicated poor clinical outcomes in patients with HCC. MCM3AP-AS1 exerted an oncogenic role in HCC via targeting miR-194-5p and subsequently promoted FOXA1 expression. Our findings suggested that MCM3AP-AS1 could be a potential prognostic biomarker and therapeutic target for HCC. Electronic supplementary material The online version of this article (10.1186/s12943-019-0957-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Xin Liu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China
| | - Yang Guo
- BengBu Medical College, Bengbu, 233030, Anhui Province, China
| | - Qiaojuan Zhu
- Department of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China.
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
46
|
Sun K, Jia Z, Duan R, Yan Z, Jin Z, Yan L, Li Q, Yang J. Long non-coding RNA XIST regulates miR-106b-5p/P21 axis to suppress tumor progression in renal cell carcinoma. Biochem Biophys Res Commun 2019; 510:416-420. [PMID: 30717973 DOI: 10.1016/j.bbrc.2019.01.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 01/26/2019] [Indexed: 01/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to exert important roles in cancer development and progression. The biological function of lncRNA X-inactive specific transcript (XIST) in the development of renal cell carcinoma (RCC) and the underlying mechanisms are still largely unknown. In this study, we found that XIST was down-regulated in RCC tissues and cells. Overexpression of XIST significantly suppressed cell proliferation and induced cell G0/G1 arrest in vitro and inhibited tumor growth in vivo. We further found that XIST could directly interact with miR-106b-5p and increase the expression of P21. Thus, XIST positively regulated the expression of P21 through sponging miR-106b-5p, and played a tumor suppressor role in RCC. Moreover, we found that curcumin could regulate XIST/miR-106b-5p/P21 axis in RCC cells. Our study exhibits the role of XIST as a miRNA sponge in RCC and supports the potential application of XIST in RCC therapy.
Collapse
Affiliation(s)
- Ke Sun
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China; Urological Institute of Henan, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China
| | - Zechen Yan
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China; Urological Institute of Henan, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China; Urological Institute of Henan, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Liang Yan
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China; Urological Institute of Henan, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Qi Li
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China; Urological Institute of Henan, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China; Urological Institute of Henan, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
47
|
Wang Y, Liang Y, Yang G, Lan Y, Han J, Wang J, Yin D, Song R, Zheng T, Zhang S, Pan S, Liu X, Zhu M, Liu Y, Cui Y, Meng F, Zhang B, Liang S, Guo H, Liu Y, Hassan MK, Liu L. Tetraspanin 1 promotes epithelial-to-mesenchymal transition and metastasis of cholangiocarcinoma via PI3K/AKT signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:300. [PMID: 30514341 PMCID: PMC6280496 DOI: 10.1186/s13046-018-0969-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Numerous studies have demonstrated that tetraspanin 1 (TSPAN1), a transmembrane protein, functions as an oncoprotein in many cancer types. However, its role and underlying molecular mechanism in cholangiocarcinoma (CCA) progression remain unclear. METHODS In the present study, the expression of TSPAN1 in human CCA and adjacent nontumor tissues was examined using real-time PCR, western blot and immunohistochemistry. The effect of TSPAN1 on proliferation and metastasis was evaluated by functional assays both in vitro and in vivo. A luciferase reporter assay was performed to investigate the interaction between microRNA-194-5p (miR-194-5p) and TSPAN1 3'-untranslated region. Co-immunoprecipitation (co-IP) was used to confirm the interaction between TSPAN1 protein and integrin α6β1 and western blot was used to explore TSPAN1 mechanism. RESULTS We found that TSPAN1 was frequently upregulated in CCA and high levels of TSPAN1 correlated with TNM stage, especially metastasis in CCA. TSPAN1 overexpression promoted CCA growth, metastasis, and induced epithelial-to-mesenchymal transition (EMT), while its silencing had the opposite effect both in vitro and in vivo. To explore the differential expression of TSPAN1, we screened miR-194-5p as the upstream regulator of TSPAN1. A combination of high-level TSPAN1 and low-level miR-194-5p predicted poor prognosis in patients with CCA. Furthermore, in accordance with the functional characteristics of the TSPAN superfamily, we proved that TSPAN1 interacted with integrin α6β1 to amplify the phosphoinositide-3-kinase (PI3K)/AKT/glycogen synthase kinase (GSK)-3β/Snail family transcriptional repressor (Snail)/phosphatase and tensin homolog (PTEN) feedback loop. CONCLUSION The results indicate that TSPAN1 could be a potential therapeutic target for CCA.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yingjian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Guangchao Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yaliang Lan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Jiabei Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Dalong Yin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shugeng Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shangha Pan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Mingxi Zhu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yao Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yifeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shuhang Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Hongrui Guo
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yufeng Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Md Khaled Hassan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China. .,Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
| |
Collapse
|
48
|
Liu JL, Zhang WQ, Zhao M, Huang MY. Upregulation of long noncoding RNA XIST is associated with poor prognosis in human cancers. J Cell Physiol 2018; 234:6594-6600. [PMID: 30341910 DOI: 10.1002/jcp.27400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/17/2018] [Indexed: 01/01/2023]
Abstract
Growing evidence from recent studies has shown that the X-inactive specific transcript (XIST), a well-known long noncoding RNA involved in early embryonic development, is aberrantly regulated in various human cancers. However, the prognostic value of XIST in cancers remains uncharacterized. In this study, we searched PubMed, Web of Science, and Embase to collect all relevant studies, and a meta-analysis was performed to explore the association of XIST expression with overall survival (OS) and clinicopathological parameters. We demonstrated that high XIST expression was associated with poor OS (hazard ratio = 1.76; 95% confidence intervals [CI], 1.56-1.98; p < 0.001). In addition, increased XIST expression was found to be associated with lymph node metastasis (odds ratio [OR] = 2.06; 95% CI, 1.46-1.90; p < 0.001), distant metastasis (OR = 2.93; 95% CI, 2.00-4.28; p < 0.001), tumor size (OR = 2.66; 95% CI, 1.86-3.81; p < 0.001), poor differentiation (OR = 1.45; 95% CI, 1.00-2.10; p = 0.049), and advanced tumor stage (OR = 3.35; 95% CI, 2.25-5.00; p < 0.001), but not with age (OR = 0.82; 95% CI, 0.59-1.15; p = 0.251) or gender (OR = 0.92; 95% CI, 0.70-1.19; p = 0.512). Our meta-analysis showed that XIST may be a useful common biomarker for predicting prognosis in patients with cancer.
Collapse
Affiliation(s)
- Ji-Long Liu
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Qian Zhang
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miao Zhao
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming-Yu Huang
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Sun W, Shi Y, Wang Z, Zhang J, Cai H, Zhang J, Huang D. Interaction of long-chain non-coding RNAs and important signaling pathways on human cancers (Review). Int J Oncol 2018; 53:2343-2355. [PMID: 30272345 DOI: 10.3892/ijo.2018.4575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/24/2018] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) usually refer to non-coding RNA transcripts >200 nucleotides in length. In terms of the full genomic transcript, the proportion of lncRNAs far exceeds that of coding RNA. Initially, lncRNAs were considered to be the transcriptional noise of genes, but it has since been demonstrated that lncRNAs serve an important role in the regulation of cellular activities through interaction with DNA, RNA and protein. Numerous studies have demonstrated that various intricate signaling pathways are closely related to lncRNAs. Here, we focus on a large number of studies regarding the interaction of lncRNAs with important signaling pathways. It is comprehensively illustrated that lncRNAs regulate key metabolic components and regulatory factors of signaling pathways to affect the biological activities of tumor cells. Evidence suggests that the abnormal expression or mutation of lncRNAs in human tumor cells, and their interaction with signaling pathways, may provide a basis and potential target for the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Wei Sun
- Department of Postgraduates, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Ying Shi
- Department of Obstetrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhifei Wang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiye Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Hanhui Cai
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jungang Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
50
|
Wang XL, Shi M, Xiang T, Bu YZ. Long noncoding RNA DGCR5 represses hepatocellular carcinoma progression by inactivating Wnt signaling pathway. J Cell Biochem 2018; 120:275-282. [PMID: 30230592 DOI: 10.1002/jcb.27342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022]
Abstract
Increasing studies have indicated that long noncoding RNAs (lncRNAs) exert important roles in hepatocellular carcinoma (HCC). Therefore, it is of great significance to identify the dysregulated lncRNAs in HCC. According to the previous reports, it has been suggested that DiGeorge syndrome critical region gene 5 (DGCR5) might participate in HCC and can serve as potential biomarker for HCC. In our current study, we concentrated on the biological function and roles of lncRNA-DGCR5 in HCC. It was indicated that DGCR5 was decreased in HCC tissues and HCC cells including HepG2, Hep3B, MHCC-97L, SNU-449, and SNU-182 cells compared with the normal human liver cell line LO2. Overexpression of DGCR5 was able to restrain HCC growth, migration, and invasion capacity in HepG2 and SNU-449 cells. In addition, whether lncRNA-DGCR5 can regulate Wnt/β-catenin pathway during HCC progression is unclear. In our study, it was found that upregulation of DGCR5 inactivated Wnt signaling pathway through inhibiting β-catenin, cyclin D1 and increasing GSK-3β levels. Subsequently, in vivo tumor xenografts were established using HepG2 cells to investigate the function of DGCR5 in HCC development. Inconsistent with the in vitro findings, increase of DGCR5 dramatically suppressed HCC tumor progression in vivo. Taken these together, it was uncovered in our research that DGCR5 could play tumor suppressive role by targeting Wnt signaling in HCC progression.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Shi
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Xiang
- Department of Clinical Laboratory Center, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Yan-Zhi Bu
- Department of General Surgery, Lianshui County People's Hospital, Huai'an, China
| |
Collapse
|