1
|
Piyasiri SB, Senanayake S, Smaranayake N, Doh S, Iniguez E, Valenzuela JG, Kamhawi S, Karunaweera ND. Salivary antigens rPagSP02 and rPagSP06 are a reliable composite biomarker for evaluating exposure to Phlebotomus argentipes in Sri Lanka. Sci Rep 2024; 14:25863. [PMID: 39468289 PMCID: PMC11519893 DOI: 10.1038/s41598-024-77666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Phlebotomus argentipes is the established vector of leishmaniasis in the Indian sub-continent. Antibodies to sand fly salivary antigens are biomarkers for vector-host exposure in leishmaniasis-endemic regions. Ph. argentipes transmits Leishmania donovani in Sri Lanka, primarily causing cutaneous leishmaniasis (CL). Our study compared the performance of salivary gland homogenate (SGH) from a lab-reared local strain of Ph. argentipes females to a composite recombinant salivary biomarker (rPagSP02 + rPagSP06) in a CL-endemic population. Sera from 546 healthy individuals, 30 CL patients, and 15 non-endemic individuals were collected. Western blot analysis of Ph. argentipes SGH identified immunogenic bands between 15 kDa and 67 kDa, with bands of predicted molecular weight ∼of 15 kDa (SP02) and ∼28-30 kDa (SP06) as the major antibody targets. Indirect ELISAs using SGH or rPagSP02 + rPagSP06 antigens showed high sensitivity (96.7%) and specificity (100%), detecting comparable seropositivity in endemic populations. rPagSP02 + rPagSP06 exhibited enhanced discriminatory ability, supported by a strong positive correlation (r = 0.869) with SGH. Our findings indicate that the composite rPagSP02 + rPagSP06 salivary biomarker effectively identifies Ph. argentipes exposure in individuals living in Sri Lanka, showing promising potential for use in surveillance. These findings should be further validated to confirm the epidemiological applications in leishmaniasis-endemic regions.
Collapse
Affiliation(s)
- Sachee Bhanu Piyasiri
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Sanath Senanayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Nilakshi Smaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Serena Doh
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Jesus Gilberto Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | | |
Collapse
|
2
|
Piyasiri SB, Senanayake S, Samaranayake N, Doh S, Iniguez E, Kamhawi S, Karunaweera ND. rPagSP02+rPagSP06 recombinant salivary antigen is a reliable biomarker for evaluating exposure to Phlebotomus argentipes in Sri Lanka. RESEARCH SQUARE 2024:rs.3.rs-4633976. [PMID: 39070615 PMCID: PMC11276025 DOI: 10.21203/rs.3.rs-4633976/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Phlebotomus argentipes is the established vector of leishmaniasis in the Indian sub-continent. Antibodies to sand fly salivary antigens are biomarkers for vector-host exposure in leishmaniasis-endemic regions. Ph. argentipes transmits Leishmania donovani in Sri Lanka, primarily causing cutaneous leishmaniasis (CL). Our study compared the performance of salivary gland homogenate (SGH) from a lab-reared local strain of Ph. argentipes females to a composite recombinant salivary biomarker (rPagSP02 + rPagSP06) in a CL-endemic population. Sera from 546 healthy individuals, 30 CL patients, and 15 non-endemic individuals were collected. Western blot analysis of Ph. argentipes SGH identified immunogenic bands between 15 kDa and 67 kDa, with bands of predicted molecular weight õf 15 kDa (SP02) and ~28-30 kDa (SP06) as the major antibody targets. Indirect ELISAs using SGH or rPagSP02 + rPagSP06 antigens showed high sensitivity (96.7%) and specificity (100%), detecting comparable seropositivity in endemic populations. rPagSP02 + rPagSP06 exhibited enhanced discriminatory ability, supported by a strong positive correlation (r = 0.869) with SGH. Our findings indicate that the composite rPagSP02 + rPagSP06 salivary biomarker effectively identifies Ph. argentipes exposure in individuals living in Sri Lanka, showing promising potential for use in surveillance. These findings should be further validated to confirm the epidemiological applications in leishmaniasis-endemic regions.
Collapse
Affiliation(s)
- Sachee Bhanu Piyasiri
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Sanath Senanayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | | | | | | | | |
Collapse
|
3
|
Mahapatra SR, Dey J, Kushwaha GS, Puhan P, Mohakud NK, Panda SK, Lata S, Misra N, Suar M. Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella serovars. J Biomol Struct Dyn 2022; 40:11809-11821. [PMID: 34463211 DOI: 10.1080/07391102.2021.1964600] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Overcoming multi drug resistance is one of the crucial challenges to control enteric typhoid fever caused by Salmonella typhi and Salmonella paratyphi. Overexpression of efflux pumps predominantly causes drug resistance in microorganisms. Therefore, immunotherapy targeting the various efflux pumps antigens could be a promising strategy to increase the success of vaccines. An immunoinformatic approach was employed to design a Salmonellosis multi-epitope subunit vaccine peptide consisting of linear B-cell and T-cell epitopes of multidrug resistance protein families including ATP Binding Cassette (ABC), major facilitator superfamily (MFS), resistance nodulation cell division (RND), small multidrug resistance (SMR), and multidrug and toxin extrusion (MATE). The selected epitopes exhibited conservation in both S. typhi and S. paratyphi and thus could be helpful for cross-protection. Further, the final vaccine construct encompassing the peptides, adjuvants and specific linker sequences showed high immunogenicity, solubility, non-allergenic, nontoxic, and wide population coverage due to strong binding affinity to maximum HLA alleles. The three-dimensional structure was predicted, and validated using various structure validation tools. Additionally, protein-protein docking of the chimeric vaccine construct with the TLR-2 protein and molecular dynamics demonstrated stable and efficient binding. Conclusively, the immunoinformatic study showed that the novel multi epitopic vaccine construct can simulate the both T-cell and B-cell immune responses in typhoidal Salmonella serovars and could potentially be used for prophylactic or therapeutic applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Puspasree Puhan
- Science and Technology Department, Government of Odisha, Bhubaneswar, India
| | - Nirmal Kumar Mohakud
- Kalinga Institute of Medical Sciences, KIIT, Deemed to Be University, Bhubaneswar, India
| | - Santosh Kumar Panda
- Kalinga Institute of Medical Sciences, KIIT, Deemed to Be University, Bhubaneswar, India
| | - S Lata
- Kalinga Institute of Dental Sciences, KIIT Deemed to Be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
4
|
Behmard E, Abdulabbas HT, Abdalkareem Jasim S, Najafipour S, Ghasemian A, Farjadfar A, Barzegari E, Kouhpayeh A, Abdolmaleki P. Design of a novel multi-epitope vaccine candidate against hepatitis C virus using structural and nonstructural proteins: An immunoinformatics approach. PLoS One 2022; 17:e0272582. [PMID: 36040967 PMCID: PMC9426923 DOI: 10.1371/journal.pone.0272582] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatitis C virus (HCV) infects the liver and causes chronic infection. Several mutations in the viral genome have been associated with drug resistance development. Currently, there is no approved vaccine against the HCV. The employment of computational biology is the primary and crucial step for vaccine design or antiviral therapy which can substantially reduce the duration and cost of studies. Therefore, in this study, we designed a multi-epitope vaccine using various immunoinformatics tools to elicit the efficient human immune responses against the HCV. Initially, various potential (antigenic, immunogenic, non-toxic and non-allergenic) epitope segments were extracted from viral structural and non-structural protein sequences using multiple screening methods. The selected epitopes were linked to each other properly. Then, toll-like receptors (TLRs) 3 and 4 agonists (50S ribosomal protein L7/L12 and human β-defensin 2, respectively) were added to the N-terminus of the final vaccine sequence to increase its immunogenicity. The 3D structure of the vaccine was modeled. Molecular dynamics simulations studies verified the high stability of final free vaccines and in complex with TLR3 and TLR4. These constructs were also antigenic, non-allergenic, nontoxic and immunogenic. Although the designed vaccine traits were promising as a potential candidate against the HCV infection, experimental studies and clinical trials are required to verify the protective traits and safety of the designed vaccine.
Collapse
Affiliation(s)
- Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hussein T. Abdulabbas
- Department of Medical Laboratory Techniques, Faculty of Health and Medical Techniques, Imam Ja’afar Al-Sadiq University, Al Muthanna, Iraq
| | | | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- * E-mail: (PA); (AK); (AG)
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Fasa University of Medical Sciences, Fasa, Iran
- * E-mail: (PA); (AK); (AG)
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: (PA); (AK); (AG)
| |
Collapse
|
5
|
Saha S, Vashishtha S, Kundu B, Ghosh M. In-silico design of an immunoinformatics based multi-epitope vaccine against Leishmania donovani. BMC Bioinformatics 2022; 23:319. [PMID: 35931960 PMCID: PMC9354309 DOI: 10.1186/s12859-022-04816-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visceral Leishmaniasis (VL) is a fatal vector-borne parasitic disorder occurring mainly in tropical and subtropical regions. VL falls under the category of neglected tropical diseases with growing drug resistance and lacking a licensed vaccine. Conventional vaccine synthesis techniques are often very laborious and challenging. With the advancement of bioinformatics and its application in immunology, it is now more convenient to design multi-epitope vaccines comprising predicted immuno-dominant epitopes of multiple antigenic proteins. We have chosen four antigenic proteins of Leishmania donovani and identified their T-cell and B-cell epitopes, utilizing those for in-silico chimeric vaccine designing. The various physicochemical characteristics of the vaccine have been explored and the tertiary structure of the chimeric construct is predicted to perform docking studies and molecular dynamics simulations. RESULTS The vaccine construct is generated by joining the epitopes with specific linkers. The predicted tertiary structure of the vaccine has been found to be valid and docking studies reveal the construct shows a high affinity towards the TLR-4 receptor. Population coverage analysis shows the vaccine can be effective on the majority of the world population. In-silico immune simulation studies confirms the vaccine to raise a pro-inflammatory response with the proliferation of activated T and B cells. In-silico codon optimization and cloning of the vaccine nucleic acid sequence have also been achieved in the pET28a vector. CONCLUSION The above bioinformatics data support that the construct may act as a potential vaccine. Further wet lab synthesis of the vaccine and in vivo works has to be undertaken in animal model to confirm vaccine potency.
Collapse
Affiliation(s)
- Subhadip Saha
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Monidipa Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
6
|
Ghosh P, Bhattacharya M, Patra P, Sharma G, Patra BC, Lee SS, Sharma AR, Chakraborty C. Evaluation and Designing of Epitopic-Peptide Vaccine Against Bunyamwera orthobunyavirus Using M-Polyprotein Target Sequences. Int J Pept Res Ther 2021; 28:5. [PMID: 34867129 PMCID: PMC8634745 DOI: 10.1007/s10989-021-10322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
Bunyamwera orthobunyavirus and its serogroup can cause several diseases in humans, cattle, ruminants, and birds. The viral M-polyprotein helps the virus to enter the host body. Therefore, this protein might serve as a potential vaccine target against Bunyamwera orthobunyavirus. The present study applied the immunoinformatics technique to design an epitopic vaccine component that could protect against Bunyamwera infection. Phylogenetic analysis revealed the presence of conserved patterns of M-polyprotein within the viral serogroup. Three epitopes common for both B-cell and T-cell were identified, i.e., YQPTELTRS, YKAHDKEET, and ILGTGTPKF merged with a specific linker peptide to construct an active vaccine component. The low atomic contact energy value of docking complex between human TLR4 (TLR4/MD2 complex) and vaccine construct confirms the elevated protein–protein binding interaction. Molecular dynamic simulation and normal mode analysis illustrate the docking complex’s stability, especially by the higher Eigenvalue. In silico cloning of the vaccine construct was applied to amplify the desired vaccine component. Structural allocation of both the vaccine and epitopes also show the efficacy of the developed vaccine. Hence, the computational research design outcomes support that the peptide-based vaccine construction is a crucial drive target to limit the infection of Bunyamwera orthobunyavirus to an extent.
Collapse
Affiliation(s)
- Pratik Ghosh
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Prasanta Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| |
Collapse
|
7
|
Sanami S, Azadegan-Dehkordi F, Rafieian-Kopaei M, Salehi M, Ghasemi-Dehnoo M, Mahooti M, Alizadeh M, Bagheri N. Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches. Sci Rep 2021; 11:12397. [PMID: 34117331 PMCID: PMC8196015 DOI: 10.1038/s41598-021-91997-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer, caused by human papillomavirus (HPV), is the fourth most common type of cancer among women worldwide. While HPV prophylactic vaccines are available, they have no therapeutic effects and do not clear up existing infections. This study aims to design a therapeutic vaccine against cervical cancer using reverse vaccinology. In this study, the E6 and E7 oncoproteins from HPV16 were chosen as the target antigens for epitope prediction. Cytotoxic T lymphocytes (CTL) and helper T lymphocytes (HTL) epitopes were predicted, and the best epitopes were selected based on antigenicity, allergenicity, and toxicity. The final vaccine construct was composed of the selected epitopes, along with the appropriate adjuvant and linkers. The multi-epitope vaccine was evaluated in terms of physicochemical properties, antigenicity, and allergenicity. The tertiary structure of the vaccine construct was predicted. Furthermore, several analyses were also carried out, including molecular docking, molecular dynamics (MD) simulation, and in silico cloning of the vaccine construct. The results showed that the final proposed vaccine could be considered an effective therapeutic vaccine for HPV; however, in vitro and in vivo experiments are required to validate the efficacy of this vaccine candidate.
Collapse
Affiliation(s)
- Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehran Mahooti
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
Patra P, Bhattacharya M, Sharma AR, Ghosh P, Sharma G, Patra BC, Mallick B, Lee SS, Chakraborty C. Identification and Design of a Next-Generation Multi Epitopes Bases Peptide Vaccine Candidate Against Prostate Cancer: An In Silico Approach. Cell Biochem Biophys 2020; 78:495-509. [PMID: 32347457 DOI: 10.1007/s12013-020-00912-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men and ranked fifth in overall cancer diagnosis. During the past decades, it has arisen as a significant life-threatening disease in men at an older age. At the early onset of illness when it is in localized form, radiation and surgical treatments are applied against this disease. In case of adverse situations androgen deprivation therapy, chemotherapy, hormonal therapy, etc. are widely used as a therapeutic element. However, studies found the occurrences of several side effects after applying these therapies. In current work, several immunoinformatic techniques were applied to formulate a multi-epitopic vaccine from the overexpressed antigenic proteins of PCa. A total of 13 epitopes were identified from the five prostatic antigenic proteins (PSA, PSMA, PSCA, STEAP, and PAP), after validation with several in silico tools. These epitopes were fused to form a vaccine element by (GGGGS)3 peptide linker. Afterward, 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) was used as an adjuvant to initiate and induce STING-mediated cytotoxic cascade. In addition, molecular docking was performed between the vaccine element and HLA class I antigen with the low ACE value of -251 kcal/mol which showed a significant binding. Molecular simulation using normal mode analysis (NMA) illustrated the docking complex as a stable one. Therefore, this observation strongly indicated that our multi epitopes bases peptide vaccine molecule will be an effective candidate for the treatment of the PCa.
Collapse
Affiliation(s)
- Prasanta Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Manojit Bhattacharya
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Pratik Ghosh
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Bidyut Mallick
- Departments of Applied Science, Galgotias College of Engineering and Technology, Greater Noida, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252, Republic of Korea.
- Adamas University, North, 24 Parganas, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
9
|
Yadav S, Prakash J, Shukla H, Das KC, Tripathi T, Dubey VK. Design of a multi-epitope subunit vaccine for immune-protection against Leishmania parasite. Pathog Glob Health 2020; 114:471-481. [PMID: 33161887 DOI: 10.1080/20477724.2020.1842976] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Visceral Leishmaniasis (VL) is an insect-borne neglected disease caused by the protozoan parasite Leishmania donovani. In the absence of a commercial vaccine against VL, chemotherapy is currently the only option used for the treatment of VL. Vaccination has been considered as the most effective and powerful tool for complete eradication and control of infectious diseases. In this study, we aimed to design a peptide-based vaccine against L. donovani using immuno-bioinformatic tools. We identified 6 HTL, 18 CTL, and 25 B-cell epitopes from three hypothetical membrane proteins of L. donovani. All these epitopes were used to make a vaccine construct along with linkers. An adjuvant was also added at the N-terminal to enhance its immunogenicity. After that, we checked the quality of this vaccine construct and found that it is nontoxic, nonallergic, and thermally stable. A 3D structure of the vaccine construct was also generated by homology modeling to evaluate its interaction with innate immune receptors (TLR). Molecular docking was performed, which confirmed its binding with a toll-like receptor-2 (TLR-2). The stability of vaccine-TLR-2 complex and underlying interactions were evaluated using molecular dynamic simulation. Lastly, we carried out in silico cloning to check the expression of the final designed vaccine. The designed vaccine construct needs further experimental and clinical investigations to develop it as a safe and effective vaccine against VL infection.
Collapse
Affiliation(s)
- Sunita Yadav
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| | - Jay Prakash
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Kanhu Charan Das
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| |
Collapse
|
10
|
Ojha R, Pandey RK, Prajapati VK. Vaccinomics strategy to concoct a promising subunit vaccine for visceral leishmaniasis targeting sandfly and leishmania antigens. Int J Biol Macromol 2020; 156:548-557. [DOI: 10.1016/j.ijbiomac.2020.04.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
|
11
|
Ropón-Palacios G, Chenet-Zuta ME, Otazu K, Olivos-Ramirez GE, Camps I. Novel multi-epitope protein containing conserved epitopes from different Leishmania species as potential vaccine candidate: Integrated immunoinformatics and molecular dynamics approach. Comput Biol Chem 2019; 83:107157. [PMID: 31751887 DOI: 10.1016/j.compbiolchem.2019.107157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Leishmaniosis, caused by intracellular parasites of the genus Leishmania, has become a serious public health problem around the world, and for which there are currently extensive limitations. In this work, a theoretical model was proposed for the development of a multi-epitope vaccine. The protein GP63 of the parasite was selected for epitopes prediction, due to its important biological role for the infection process and abundance. IEDB tools were used to determine epitopes B and T in Leishmania braziliensis; besides, other conserved epitopes in three species were selected. To improve immunogenicity, 50S ribosomal protein L7 / L12 (ID: P9WHE3) was used as a domain of adjuvant in the assembly process. The folding arrangement of the vaccine was obtained through homologous modeling multi-template with MODELLER v9.21, and a Ramachandran plot analysis was done. Furthermore, physicochemical properties were described with the ProtParam tool and secondary structure prediction combining GOR-IV and SOPMA tools. Finally, a molecular dynamics simulation (50 ns) was performed to establish flexibility and conformational changes. The analysis of the results indicates high conservancy in the epitopes predicted among the four species. Moreover, Ramachandran plot, physicochemical parameters, and secondary structure prediction suggest a stable conformation of the vaccine, after a minimum conformational change that was evaluated with the free energy landscape. The conformational change does not drive any substantial change for epitope exposition on the surface. The vaccine proposed could be tested experimentally to guide new approaches in the development of pan-vaccines; vaccines with regions conserved in multiple species.
Collapse
Affiliation(s)
- Georcki Ropón-Palacios
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas Minas Gerais, Brazil
| | - Manuel E Chenet-Zuta
- Facultad de Psicología, Universidad Nacional Autónoma de México, Avenida Universitaria N°3004 Distrito Federal, Mexico
| | - Kewin Otazu
- Facultad de Ciencias Biológicas, Universidad Nacional del Altiplano, Av. Floral No1153, Puno, Peru
| | - Gustavo E Olivos-Ramirez
- Laboratorio de Evaluación de los Recursos Acuáticos y Cultivo de Especies Auxiliares, Departamento Académico de Biología, Microbiología y Biotecnología, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Peru
| | - Ihosvany Camps
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas Minas Gerais, Brazil.
| |
Collapse
|
12
|
Ojha R, Pareek A, Pandey RK, Prusty D, Prajapati VK. Strategic Development of a Next-Generation Multi-Epitope Vaccine To Prevent Nipah Virus Zoonotic Infection. ACS OMEGA 2019; 4:13069-13079. [PMID: 31460434 PMCID: PMC6705194 DOI: 10.1021/acsomega.9b00944] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Nipah virus (NiV) is an emerging zoonotic pathogen, reported for the recent severe outbreaks of encephalitis and respiratory illness in humans and animals, respectively. Many antiviral drugs have been discovered to inhibit this pathogen, but none of them were that much efficient. To overcome the complications associated with this severe pathogenic virus, we have designed a multi-epitope subunit vaccine using computational immunology strategies. Identification of structural and nonstructural proteins of Nipah virus assisted in the vaccine designing. The selected proteins are known to be involved in the survival of the virus. The antigenic binders (B-cell, HTL, and CTL) from the selected proteins were prognosticated. These antigenic binders will be able to generate the humoral as well as cell-mediated immunity. All the epitopes were united with the help of suitable linkers and with an adjuvant at the N-terminal of the vaccine, for the enhancement of immunogenicity. The physiological characterization, along with antigenicity and allergenicity of the designed vaccine candidates, was estimated. The 3D structure prediction and its validation were performed. The validated vaccine model was then docked and simulated with the TLR-3 receptor to check the stability of the docked complex. This next-generation approach will provide a new vision for the development of a high immunogenic vaccine against the NiV.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Aditi Pareek
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Rajan K. Pandey
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Dhaneswar Prusty
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Vijay K. Prajapati
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| |
Collapse
|
13
|
Khatoon N, Pandey RK, Ojha R, Aathmanathan VS, Krishnan M, Prajapati VK. Exploratory algorithm to devise multi-epitope subunit vaccine by investigating Leishmania donovani membrane proteins. J Biomol Struct Dyn 2018; 37:2381-2393. [DOI: 10.1080/07391102.2018.1484815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nazia Khatoon
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Muthukalingan Krishnan
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, IndiaCommunicated by Ramaswamy H. Sarma
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
14
|
Pandey RK, Ojha R, Chatterjee N, Upadhyay N, Mishra A, Prajapati VK. Combinatorial screening algorithm to engineer multiepitope subunit vaccine targeting human T-lymphotropic virus-1 infection. J Cell Physiol 2018; 234:8717-8726. [PMID: 30370533 DOI: 10.1002/jcp.27531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
Human T-lymphotropic virus (HTLV), the first human retrovirus has been discovered which is known to cause the age-old assassinating disease HTLV-1 associated myelopathy. Cancer caused by this virus is adult T cell leukemia/lymphoma which targets 10-20 million throughout the world. The effect of this virus extends to the fact that it causes chronic disease to the spinal cord resulting in loss of sensation and further causes blood cancer. So, to overcome the complications, we designed a subunit vaccine by the assimilation of B-cell, cytotoxic T-lymphocyte , and helper T-lymphocyte epitopes. The epitopes were joined together along with adjuvant and linkers and a vaccine was fabricated which was further subjected to 3D modeling. The physiochemical properties, allergenicity, and antigenicity were evaluated. Molecular docking and dynamics were performed with the obtained 3D model against toll like receptor (TLR-3) immune receptor. Lastly, in silico cloning was performed to ensure the expression of the designed vaccine in pET28a(+) expression vector. The future prospects of the study entailed the in vitro and in vivo experimental analysis for evaluating the immune response of the designed vaccine construct.
Collapse
Affiliation(s)
- Rajan K Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Nina Chatterjee
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Nitesh Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
15
|
Ojha R, Nandani R, Prajapati VK. Contriving multiepitope subunit vaccine by exploiting structural and nonstructural viral proteins to prevent Epstein-Barr virus-associated malignancy. J Cell Physiol 2018; 234:6437-6448. [PMID: 30362500 DOI: 10.1002/jcp.27380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 01/02/2023]
Abstract
Cancer is one of the common lifestyle diseases and is considered to be the leading cause of death worldwide. Epstein-Barr virus (EBV)-infected individuals remain asymptomatic; but under certain stress conditions, EBV may lead to the development of cancers such as Burkitt's and Hodgkin's lymphoma and nasopharyngeal carcinoma. EBV-associated cancers result in a large number of deaths in Asian and African population, and no effective cure has still been developed. We, therefore, tried to devise a subunit vaccine with the help of immunoinformatic approaches that can be used for the prevention of EBV-associated malignancies. The epitopes were predicted through B-cell, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) from the different oncogenic proteins of EBV. A vaccine was designed by combining the B-cell and T-cell (HTL and CTL) epitopes through linkers, and for the enhancement of immunogenicity, an adjuvant was added at the N-terminal. Further, homology modeling was performed to generate the 3D structure of the designed vaccine. Moreover, molecular docking was performed between the designed vaccine and immune receptor (TLR-3) to determine the interaction between the final vaccine construct and the immune receptor complex. In addition, molecular dynamics was performed to analyze the stable interactions between the ligand final vaccine model and receptor TLR-3 molecule. Lastly, to check the expression of our vaccine construct, we performed in silico cloning. This study needed experimental validation to ensure its effectiveness and potency to control malignancy.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Raj Nandani
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
16
|
Pandey RK, Ali M, Ojha R, Bhatt TK, Prajapati VK. Development of multi-epitope driven subunit vaccine in secretory and membrane protein of Plasmodium falciparum to convey protection against malaria infection. Vaccine 2018; 36:4555-4565. [PMID: 29921492 DOI: 10.1016/j.vaccine.2018.05.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 10/28/2022]
Abstract
Malaria infection is the severe health concern for a long time. As per the WHO reports, the malarial infection causes huge mortality all around the world and is incomparable with any other infectious diseases. The absence of effective treatment options and increasing drug resistance to the available therapeutics like artemisinin and other derivatives demand an efficient alternative to overcome this death burden. Here, we performed the literature survey and sorted the Plasmodium falciparum secretory and membrane proteins to design multi-epitope subunit vaccine using an adjuvant, B-cell- and T-cell epitopes. Every helper T-lymphocyte (HTL) epitope was IFN-γ positive and IL-4 non-inducer. The physicochemical properties, allergenicity, and antigenicity of designed vaccine were analyzed for the safety concern. Homology modeling and refinement were performed to obtain the functional tertiary structure of vaccine protein followed by its molecular docking with the toll-like receptor-4 (TLR-4) immune receptor. Molecular dynamics simulation was performed to check the interaction and stability of the receptor-ligand complex. Lastly, in silico cloning was performed to generate the restriction clone of designed vaccine for the futuristic expression in a microbial expression system. This way, we designed the multi-epitope subunit vaccine to serve the people living in the global endemic zone.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Mudassar Ali
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
17
|
Kumar Pandey R, Ojha R, Mishra A, Kumar Prajapati V. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J Cell Biochem 2018; 119:7631-7642. [PMID: 29900580 DOI: 10.1002/jcb.27110] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022]
Abstract
The Zika virus is a rapidly spreading Aedes mosquito-borne sickness, which creates an unanticipated linkage birth deformity and neurological turmoil. This study represents the use of the combinatorial immunoinformatics approach to develop a multiepitope subunit vaccine using the structural and nonstructural proteins of the Zika virus. The designed subunit vaccine consists of cytotoxic T-lymphocyte and helper T-lymphocyte epitopes accompanied by suitable adjuvant and linkers. The presence of humoral immune response specific B-cell epitopes was also confirmed by B-cell epitope mapping among vaccine protein. Further, the vaccine protein was characterized for its allergenicity, antigenicity, and physiochemical parameters and found to be safe and immunogenic. Molecular docking and molecular dynamics studies of the vaccine protein with the toll-like receptor-3 were performed to ensure the binding affinity and stability of their complex. Finally, in silico cloning was performed for the effective expression of vaccine construct in the microbial system (Escherichia coli K12 strain). Aforementioned approaches result in the multiepitope subunit vaccine which may have the ability to induce cellular as well as humoral immune response. Moreover, this study needs the experimental validation to prove the immunogenic and protective behavior of the developed subunit vaccine.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
18
|
Pandey RK, Ojha R, Aathmanathan VS, Krishnan M, Prajapati VK. Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine 2018; 36:2262-2272. [PMID: 29571972 DOI: 10.1016/j.vaccine.2018.03.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 01/05/2023]
Abstract
The end goal of HIV vaccine designing requires novel strategies to elicit a strong humoral and cell-mediated immune response. The emergence of drug resistance and the requirement of next line treatment necessitate the finding of the potential and immunogenic vaccine candidate. This study employed a novel immunoinformatics approach to design multi-epitope subunit vaccine against HIV infection. Here, we designed the subunit vaccine by the combination of CTL, HTL and BCL epitopes along with suitable adjuvant and linkers. Physiochemical characterization of subunit vaccine was assessed to ensure its thermostability, theoretical PI, and amphipathic behavior. In further assessment, subunit vaccine was found to be immunogenic with the capability to generate humoral and cell-mediated immune response. Further, homology modeling and refinement was performed and the refined modeled structure was used for molecular docking with the immune receptor (TLR-3) present on lymphocyte cells. Consequently, molecular dynamics simulation ensured the molecular interaction between TLR-3 and subunit vaccine candidate. Disulfide engineering was performed by placing the cysteine residues in the region of high mobility to enhance the vaccine stability. At last, in silico cloning was performed to warrant the translational efficiency and microbial expression of the designed vaccine.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | | | - Muthukalingan Krishnan
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India; Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
19
|
Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29535024 DOI: 10.1016/j.meegid.2018.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chikungunya infection has been a cause of countless deaths worldwide. Due to lack of permanent treatment and prevention of this disease, the mortality rate remains very high. Therefore, we followed an immunoinformatics approach for the development of multi-epitope subunit vaccine which is able to elucidate humoral, cell-mediated and innate immune responses inside the host body. Both structural and non-structural proteins of chikungunya virus were utilized for prediction of B-cell and T-cell binding epitopes along with interferon-γ (IFN-γ) inducing epitopes. The vaccine construct is composed of β-defensin as an adjuvant at the N-terminal followed by Cytotoxic T-Lymphocytes (CTL) and Helper T-Lymphocyte (HTL) epitopes. The same vaccine construct was also utilized for the prediction of B-cell binding epitopes and IFN-γ inducing epitopes. This was followed by the 3D model generation, refinement and validation of the vaccine construct. Later on, the interaction of modeled vaccine with the innate immune receptor (TLR-3) was explored by performing molecular docking and molecular dynamics simulation studies. Also to check the efficiency of expression of this vaccine construct in an expression vector, in silico cloning was performed at the final stage of vaccine development. Further, designed multi-epitope subunit vaccine necessitates experimental and clinical investigation to develop as an immunogenic vaccine candidate.
Collapse
|