Nagano H, Ito S, Masuda T, Ohtsuki S. Effect of Insulin Receptor-Knockdown on the Expression Levels of Blood-Brain Barrier Functional Proteins in Human Brain Microvascular Endothelial Cells.
Pharm Res 2021;
39:1561-1574. [PMID:
34811625 DOI:
10.1007/s11095-021-03131-8]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE
The insulin receptor (INSR) mediates insulin signaling to modulate cellular functions. Although INSR is expressed at the blood-brain barrier (BBB), its role in the modulation of BBB function is poorly understood. Therefore, in this study, we aimed to analyze the effect of INSR knockdown on the expression levels of functional proteins at the BBB.
METHODS
We established the INSR-knockdown cell line (shINSR) using human cerebral microvascular endothelial cells (hCMEC/D3). The cellular proteome was analyzed using quantitative proteomics.
RESULTS
INSR mRNA and protein expressions were decreased in shINSR cells. The suppression of INSR-mediated signaling in shINSR cells was evaluated. The proteins involved in glycolysis and glycogenolysis were suppressed in shINSR cells. As amyloid-β peptide-related proteins, the expressions of presenilin-1 was increased, and those of the insulin-degrading enzyme and neprilysin were decreased. The expressions of BBB transporters, including the ABCB1/MDR1, ABCG2/BCRP, and SLCO2A1/OATP2A1 were significantly decreased by more than 50% in shINSR cells. The efflux activity of ABCB1/MDR1 was also suppressed. The expressions of the low-density lipoprotein receptor-related protein 1 were significantly increased, and those of the transferrin receptor were significantly decreased in shINSR cells. The expression of claudin-5 was also suppressed in shINSR cells.
CONCLUSIONS
The present study suggests that INSR-mediated signaling is involved in the regulation of functional protein expression at the BBB and contributes to the maintenance of BBB function. Changes in the expressions of amyloid-β peptide-related proteins may contribute to the development of cerebral amyloid angiopathy via the suppression of INSR-mediated signaling.
Collapse