1
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
3
|
Feng Z, Zhang S, Han Q, Chu T, Wang H, Yu L, Zhang W, Liu J, Liang W, Xue J, Wu X, Zhang C, Wang Y. Liensinine sensitizes colorectal cancer cells to oxaliplatin by targeting HIF-1α to inhibit autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155647. [PMID: 38703660 DOI: 10.1016/j.phymed.2024.155647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Oxaliplatin is the most common chemotherapeutic agent for patients with colorectal cancer. However, its anti-cancer efficacy is restricted by drug resistance occurring through several mechanisms, including autophagy. Liensinine exerts a considerable anti-tumor effect and can regulate autophagy. Inhibition of autophagy is a strategy to reverse resistance to oxaliplatin. The aim of this study was to check if liensinine can enhance the therapeutic efficacy of oxaliplatin in colorectal cancer and if so, elucidate its mechanism. METHODS Two colorectal cancer cell lines, HCT116 and LoVo, and one normal intestinal epithelial cell, NCM-460 were used for in vitro experiments. Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry assays were used to evaluate the cytotoxicity of liensinine and oxaliplatin. Network pharmacology analysis and Human XL Oncology Array were used to screen targets of liensinine. Transfections and autophagy regulators were used to confirm these targets. The relationship between the target and clinical effect of oxaliplatin was analyzed. Patient-derived xenograft (PDX) models were used to validate the effects of liensinine and oxaliplatin. RESULTS CCK-8 and colony formation assays both showed that the combination treatment of liensinine and oxaliplatin exerted synergistic effects. Results of the network pharmacology analysis and Human XL Oncology Array suggested that liensinine can inhibit autophagy by targeting HIF-1α/eNOS. HIF-1α was identified as the key factor modulated by liensinine in autophagy and induces resistance to oxaliplatin. HIF-1α levels in tumor cells and prognosis for FOLFOX were negatively correlated in clinical data. The results from three PDX models with different HIF-1α levels showed their association with intrinsic and acquired resistance to oxaliplatin in these models, which could be reversed by liensinine. CONCLUSIONS Research on the relationship between HIF-1α levels and the clinical effect of oxaliplatin is lacking, and whether liensinine regulates HIF-1α is unknown. Our findings suggest that liensinine overcomes the resistance of colorectal cancer cells to oxaliplatin by suppressing HIF-1α levels to inhibit autophagy. Our findings can contribute to improving prognosis following colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Shuai Zhang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Qiurong Han
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Tianhao Chu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, PR China
| | - Huaqing Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Li Yu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | | | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, PR China
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Jun Xue
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Xueliang Wu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China; Tianjin Institute of Coloproctology, Tianjin, PR China.
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, PR China.
| |
Collapse
|
4
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
5
|
Shang Q, Jiang Y, Wan Z, Peng J, Xu Z, Li W, Yang D, Zhao H, Xu X, Zhou Y, Zeng X, Chen Q, Xu H. The clinical implication and translational research of OSCC differentiation. Br J Cancer 2024; 130:660-670. [PMID: 38177661 PMCID: PMC10876927 DOI: 10.1038/s41416-023-02566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The clinical value and molecular characteristics of tumor differentiation in oral squamous cell carcinoma (OSCC) remain unclear. There is a lack of a related molecular classification prediction system based on pathological images for precision medicine. METHODS Integration of epidemiology, genomics, experiments, and deep learning to clarify the clinical value and molecular characteristics, and develop a novel OSCC molecular classification prediction system. RESULTS Large-scale epidemiology data (n = 118,817) demonstrated OSCC differentiation was a significant prognosis indicator (p < 0.001), and well-differentiated OSCC was more chemo-resistant than poorly differentiated OSCC. These results were confirmed in the TCGA database and in vitro. Furthermore, we found chemo-resistant related pathways and cell cycle-related pathways were up-regulated in well- and poorly differentiated OSCC, respectively. Based on the characteristics of OSCC differentiation, a molecular grade of OSCC was obtained and combined with pathological images to establish a novel prediction system through deep learning, named ShuffleNetV2-based Molecular Grade of OSCC (SMGO). Importantly, our independent multi-center cohort of OSCC (n = 340) confirmed the high accuracy of SMGO. CONCLUSIONS OSCC differentiation was a significant indicator of prognosis and chemotherapy selection. Importantly, SMGO could be an indispensable reference for OSCC differentiation and assist the decision-making of chemotherapy.
Collapse
Affiliation(s)
- Qianhui Shang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zixin Wan
- Department of Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jiakuan Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ziang Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Weiqi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaoping Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, 310006, PR China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
6
|
Housini M, Dariya B, Ahmed N, Stevens A, Fiadjoe H, Nagaraju GP, Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024; 892:147857. [PMID: 37783294 DOI: 10.1016/j.gene.2023.147857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly detected cancer with a serious global health issue. The rates for incidence and mortality for CRC are alarming, especially since the prognosis is abysmal when the CRC is diagnosed at an advanced or metastatic stage. Both type of (modifiable/ non-modifiable) types of risk factors are established for CRC. Despite the advances in recent technology and sophisticated research, the survival rate is still meager due to delays in diagnosis. Therefore, there is urgently required to identify critical biomarkers aiming at early diagnosis and improving effective therapeutic strategies. Additionally, a complete understanding of the dysregulated pathways like PI3K/Akt, Notch, and Wnt associated with CRC progression and metastasis is very beneficial in designing a therapeutic regimen. This review article focused on the dysregulated signaling pathways, genetics and epigenetics alterations, and crucial biomarkers of CRC. This review also provided the list of clinical trials targeting signaling cascades and therapies involving small molecules. This review discusses up-to-date information on novel diagnostic and therapeutic strategies alongside specific clinical trials.
Collapse
Affiliation(s)
- Mohammad Housini
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, MN 5545, United States
| | - Nadia Ahmed
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Alyssa Stevens
- Missouri Southern State University, Joplin, MO 64801, United States
| | - Hope Fiadjoe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
7
|
Goda H, Nakashiro KI, Sano Y, Adachi T, Tokuzen N, Kuribayashi N, Hino S, Uchida D. KRT13 and UPK1B for differential diagnosis between metastatic lung carcinoma from oral squamous cell carcinoma and lung squamous cell carcinoma. Sci Rep 2023; 13:22626. [PMID: 38114532 PMCID: PMC10730515 DOI: 10.1038/s41598-023-49545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
Oral squamous cell carcinomas unusually show distant metastasis to the lung after primary treatment, which can be difficult to differentiate from primary squamous cell carcinoma of the lung. While the location and number of tumor nodules is helpful in diagnosing cases, differential diagnosis may be difficult even with histopathological examination. Therefore, we attempted to identify molecules that can facilitate accurate differential diagnosis. First, we performed a comprehensive gene expression analysis using microarray data for OSCC-LM and LSCC, and searched for genes showing significantly different expression levels. We then identified KRT13, UPK1B, and nuclear receptor subfamily 0, group B, member 1 (NR0B1) as genes that were significantly upregulated in LSCC and quantified the expression levels of these genes by real-time quantitative RT-PCR. The expression of KRT13 and UPK1B proteins were then examined by immunohistochemical staining. While OSCC-LM showed no KRT13 and UPK1B expression, some tumor cells of LSCC showed KRT13 and UPK1B expression in 10 of 12 cases (83.3%). All LSCC cases were positive for at least one of these markers. Thus, KRT13 and UPK1B might contribute in differentiating OSCC-LM from LSCC.
Collapse
Affiliation(s)
- Hiroyuki Goda
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan.
| | - Koh-Ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshifumi Sano
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Tomoko Adachi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Norihiko Tokuzen
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Nobuyuki Kuribayashi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Satoshi Hino
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Daisuke Uchida
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
8
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Czerwonka A, Kałafut J, Nees M. Modulation of Notch Signaling by Small-Molecular Compounds and Its Potential in Anticancer Studies. Cancers (Basel) 2023; 15:4563. [PMID: 37760535 PMCID: PMC10526229 DOI: 10.3390/cancers15184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is responsible for conveying messages between cells through direct contact, playing a pivotal role in tissue development and homeostasis. The modulation of Notch-related processes, such as cell growth, differentiation, viability, and cell fate, offer opportunities to better understand and prevent disease progression, including cancer. Currently, research efforts are mainly focused on attempts to inhibit Notch signaling in tumors with strong oncogenic, gain-of-function (GoF) or hyperactivation of Notch signaling. The goal is to reduce the growth and proliferation of cancer cells, interfere with neo-angiogenesis, increase chemosensitivity, potentially target cancer stem cells, tumor dormancy, and invasion, and induce apoptosis. Attempts to pharmacologically enhance or restore disturbed Notch signaling for anticancer therapies are less frequent. However, in some cancer types, such as squamous cell carcinomas, preferentially, loss-of-function (LoF) mutations have been confirmed, and restoring but not blocking Notch functions may be beneficial for therapy. The modulation of Notch signaling can be performed at several key levels related to NOTCH receptor expression, translation, posttranslational (proteolytic) processing, glycosylation, transport, and activation. This further includes blocking the interaction with Notch-related nuclear DNA transcription. Examples of small-molecular chemical compounds, that modulate individual elements of Notch signaling at the mentioned levels, have been described in the recent literature.
Collapse
Affiliation(s)
- Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (M.N.)
| | | | | |
Collapse
|
10
|
Golbashirzadeh M, Heidari HR, Aghamolayi AA, Fattahi Y, Talebi M, Khosroushahi AY. In vitro siRNA-mediated GPX4 and AKT1 silencing in oxaliplatin resistance cancer cells induces ferroptosis and apoptosis. Med Oncol 2023; 40:279. [PMID: 37632628 DOI: 10.1007/s12032-023-02130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 08/28/2023]
Abstract
Oxaliplatin is a member of platinum-based chemotherapy drugs frequently used in colorectal cancer (CRC). However, resistance to oxaliplatin causes tumor progression and metastasis. Akt1 and Gpx4 are essential regulator genes of apoptosis and ferroptosis pathways. Inhibition of these genes might eradicate oxaliplatin resistance in resistant CRC cells. We compared two cell death strategies to reverse drug resistance in Caco-2 and HT-29 oxaliplatin-resistant cell lines. We used the AKT1-specific siRNA to induce apoptosis. Also, GPX4-specific siRNA and FIN56 were utilized to generate ferroptosis. The effect of these treatments was assessed by reactive oxygen species (ROS) formation, cell viability, and protein expression level assays. Besides, the expression of GPX4, CoQ10, and NRF2 was assessed in both cell lines after treatments. Correctly measuring the expression of these responsible genes and proteins confirms the occurrence of different types of cell death. In addition, the ability of Akt1/ GPX4 siRNA in resensitizing HT-29 and Caco-2 oxaliplatin resistance cells was evaluated. Our finding showed that the upregulation of GPX4/siRNA caused a reduction in GPX4 and CoQ10 expressions in both cell lines. However, the expression level of NRF2 showed the same level in our cell lines, so we observed a downregulation of NRF2 in resistant CRC cell lines. Cell viability assay indicated that induction of ferroptosis by GPX4/siRNA or FIN56 and apoptosis by Akt1/siRNA in resistant cell lines could reverse the oxaliplatin resistance. We concluded that downregulation of Akt1 or Gpx4 could increase the efficacy of oxaliplatin to overcome the resistance compared to FIN56.
Collapse
Affiliation(s)
- Morteza Golbashirzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. 14766-51664, Tabriz, Iran
| | - Hamid Reza Heidari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. 14766-51664, Tabriz, Iran.
| | - Ali Asghar Aghamolayi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. 14766-51664, Tabriz, Iran
| | - Yasin Fattahi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. 14766-51664, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Daneshgah Street, P.O.Box 51548-53431, Tabriz, Iran.
| |
Collapse
|
11
|
Zhang L, Shi L. The E2F1/MELTF axis fosters the progression of lung adenocarcinoma by regulating the Notch signaling pathway. Mutat Res 2023; 827:111837. [PMID: 37820570 DOI: 10.1016/j.mrfmmm.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) represents the predominant subtype of lung cancer. MELTF, an oncogene, exhibits high expression in various cancer tissues. Nevertheless, the precise role of MELTF in the progression of LUAD remains enigmatic. This work was devised to investigate the effect of MELTF on LUAD progression and its underlying mechanism. METHODS mRNA expression data of LUAD were from The Cancer Genome Atlas database, and the enrichment pathway of MELTF was analyzed. The upstream transcription factors of MELTF were predicted, and the correlation between MELTF and E2F1 as well as the expression of the two in LUAD tissues were dissected by bioinformatics. The expression of MELTF and E2F1 in LUAD tissues and cells was assayed by qRT-PCR. Effects of MELTF/E2F1 on proliferation, migration, and invasion of LUAD cells were tested by CCK-8, colony formation, and Transwell assays. The binding relationship between E2F1 and MELTF was estimated by dual-luciferase reporter gene assay and ChIP assay. Western blot was utilized to assay the expression of Notch signaling pathway-related proteins in different treatment groups. RESULTS Bioinformatics analysis and qRT-PCR results exhibited high expression of E2F1 and MELTF in LUAD tissues and cells, respectively. Dual-luciferase reporter gene assay and ChIP assay ascertained the binding of E2F1 to MELTF. MELTF was ascertained to enrich the Notch signaling pathway by bioinformatics means. In cell experiments, MELTF was shown to foster the malignant progression of LUAD cells and promoted the expression of NOTCH1 and HES1 proteins, but RO4929097 offset the effect of MELTF on cells. Rescue assay confirmed that E2F1 activated MELTF to promote LUAD progression via the Notch signaling pathway. CONCLUSION Together, our outcomes demonstrated that E2F1 fostered LUAD progression by activating MELTF via the Notch signaling activity. Hence, MELTF emerged as a feasible target for treating LUAD.
Collapse
Affiliation(s)
- Lidan Zhang
- Department of Oncology and Hematology, The People's Hospital of Tongliang District, Chongqing 402560, China
| | - Lei Shi
- Department of Oncology and Hematology, The People's Hospital of Tongliang District, Chongqing 402560, China.
| |
Collapse
|
12
|
Pandey P, Khan F, Choi M, Singh SK, Kang HN, Park MN, Ko SG, Sahu SK, Mazumder R, Kim B. Review deciphering potent therapeutic approaches targeting Notch signaling pathway in breast cancer. Biomed Pharmacother 2023; 164:114938. [PMID: 37267635 DOI: 10.1016/j.biopha.2023.114938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the current period of drug development, natural products have provided an unrivaled supply of anticancer medications. By modifying the cancer microenvironment and various signaling pathways, natural products and their derivatives and analogs play a significant role in cancer treatment. These substances are effective against several signaling pathways, particularly the cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch, Wnt, and Hedgehog pathways). Natural products have a long history, but more research is needed to understand their current function in the research and development of cancer treatments and the potential for natural products to serve as a significant source of therapeutic agents in the future. Several target-specific anticancer medications failed to treat cancer, necessitating research into natural compounds with multiple target properties. To help develop a better treatment plan for managing breast cancer, this review has outlined the anticancerous potential of several therapeutic approaches targeting the notch signaling system in breast tumors.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sujeet Kumar Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sanjeev Kumar Sahu
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rupa Mazumder
- Noida Institute of Engineering & Technology (Pharmacy Institute), Greater Noida 201306, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
13
|
Kendzia S, Franke S, Kröhler T, Golob-Schwarzl N, Schweiger C, Toeglhofer AM, Skofler C, Uranitsch S, El-Heliebi A, Fuchs J, Punschart A, Stiegler P, Keil M, Hoffmann J, Henderson D, Lehrach H, Yaspo ML, Reinhard C, Schäfer R, Keilholz U, Regenbrecht C, Schicho R, Fickert P, Lax SF, Erdmann F, Schulz MH, Kiemer AK, Haybaeck J, Kessler SM. A combined computational and functional approach identifies IGF2BP2 as a driver of chemoresistance in a wide array of pre-clinical models of colorectal cancer. Mol Cancer 2023; 22:89. [PMID: 37248468 PMCID: PMC10227963 DOI: 10.1186/s12943-023-01787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
AIM Chemoresistance is a major cause of treatment failure in colorectal cancer (CRC) therapy. In this study, the impact of the IGF2BP family of RNA-binding proteins on CRC chemoresistance was investigated using in silico, in vitro, and in vivo approaches. METHODS Gene expression data from a well-characterized cohort and publicly available cross-linking immunoprecipitation sequencing (CLIP-Seq) data were collected. Resistance to chemotherapeutics was assessed in patient-derived xenografts (PDXs) and patient-derived organoids (PDOs). Functional studies were performed in 2D and 3D cell culture models, including proliferation, spheroid growth, and mitochondrial respiration analyses. RESULTS We identified IGF2BP2 as the most abundant IGF2BP in primary and metastastatic CRC, correlating with tumor stage in patient samples and tumor growth in PDXs. IGF2BP2 expression in primary tumor tissue was significantly associated with resistance to selumetinib, gefitinib, and regorafenib in PDOs and to 5-fluorouracil and oxaliplatin in PDX in vivo. IGF2BP2 knockout (KO) HCT116 cells were more susceptible to regorafenib in 2D and to oxaliplatin, selumitinib, and nintedanib in 3D cell culture. Further, a bioinformatic analysis using CLIP data suggested stabilization of target transcripts in primary and metastatic tumors. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) revealed a decreased basal OCR and an increase in glycolytic ATP production rate in IGF2BP2 KO. In addition, real-time reverse transcriptase polymerase chain reaction (qPCR) analysis confirmed decreased expression of genes of the respiratory chain complex I, complex IV, and the outer mitochondrial membrane in IGF2BP2 KO cells. CONCLUSIONS IGF2BP2 correlates with CRC tumor growth in vivo and promotes chemoresistance by altering mitochondrial respiratory chain metabolism. As a druggable target, IGF2BP2 could be used in future CRC therapy to overcome CRC chemoresistance.
Collapse
Affiliation(s)
- Sandra Kendzia
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Susanne Franke
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tarek Kröhler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Nicole Golob-Schwarzl
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Caroline Schweiger
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna M Toeglhofer
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christina Skofler
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Stefan Uranitsch
- Department of Surgery, Hospital Brothers of Charity Graz, Graz, Austria
| | - Amin El-Heliebi
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Division of Medical Physics and Biophysics, Medical University Graz, Graz, Austria
| | | | - Philipp Stiegler
- Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marlen Keil
- Experimental Pharmacology & Oncology, Berlin GmbH-Berlin-Buch, Germany
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology, Berlin GmbH-Berlin-Buch, Germany
| | | | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Christoph Reinhard
- Eli Lilly & Company, Indianapolis, USA
- CELLphenomics GmbH, Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- Institute for Pathology, University Hospital Göttingen, Göttingen, Germany
| | - Rudolf Schicho
- Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Sigurd F Lax
- Department of Pathology, Hospital Graz South-West and School of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Frank Erdmann
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe-University Hospital, Frankfurt, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sonja M Kessler
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.
- Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria.
- Halle Research Centre for Drug Therapy (HRCDT), Halle, Germany.
| |
Collapse
|
14
|
Hedgehog-GLI and Notch Pathways Sustain Chemoresistance and Invasiveness in Colorectal Cancer and Their Inhibition Restores Chemotherapy Efficacy. Cancers (Basel) 2023; 15:cancers15051471. [PMID: 36900263 PMCID: PMC10000782 DOI: 10.3390/cancers15051471] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality and chemoresistance is a major medical issue. The epithelial-to-mesenchymal transition (EMT) is the primary step in the emergence of the invasive phenotype and the Hedgehog-GLI (HH-GLI) and NOTCH signaling pathways are associated with poor prognosis and EMT in CRC. CRC cell lines harboring KRAS or BRAF mutations, grown as monolayers and organoids, were treated with the chemotherapeutic agent 5-Fluorouracil (5-FU) alone or combined with HH-GLI and NOTCH pathway inhibitors GANT61 and DAPT, or arsenic trioxide (ATO) to inhibit both pathways. Treatment with 5-FU led to the activation of HH-GLI and NOTCH pathways in both models. In KRAS mutant CRC, HH-GLI and NOTCH signaling activation co-operate to enhance chemoresistance and cell motility, while in BRAF mutant CRC, the HH-GLI pathway drives the chemoresistant and motile phenotype. We then showed that 5-FU promotes the mesenchymal and thus invasive phenotype in KRAS and BRAF mutant organoids and that chemosensitivity could be restored by targeting the HH-GLI pathway in BRAF mutant CRC or both HH-GLI and NOTCH pathways in KRAS mutant CRC. We suggest that in KRAS-driven CRC, the FDA-approved ATO acts as a chemotherapeutic sensitizer, whereas GANT61 is a promising chemotherapeutic sensitizer in BRAF-driven CRC.
Collapse
|
15
|
Ebrahimi N, Afshinpour M, Fakhr SS, Kalkhoran PG, Shadman-Manesh V, Adelian S, Beiranvand S, Rezaei-Tazangi F, Khorram R, Hamblin MR, Aref AR. Cancer stem cells in colorectal cancer: Signaling pathways involved in stemness and therapy resistance. Crit Rev Oncol Hematol 2023; 182:103920. [PMID: 36702423 DOI: 10.1016/j.critrevonc.2023.103920] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Colorectal cancer (CRC) is the third cause of cancer death worldwide. Although, in some cases, treatment can increase patient survival and reduce cancer recurrence, in many cases, tumors can develop resistance to therapy leading to recurrence. One of the main reasons for recurrence and therapy resistance is the presence of cancer stem cells (CSCs). CSCs possess a self-renewal ability, and their stemness properties lead to the avoidance of apoptosis, and allow a new clone of cancer cells to emerge. Numerous investigations inidicated the involvment of cellular signaling pathways in embryonic development, and growth, repair, and maintenance of tissue homeostasis, also participate in the generation and maintenance of stemness in colorectal CSCs. This review discusses the role of Wnt, NF-κB, PI3K/AKT/mTOR, Sonic hedgehog, and Notch signaling pathways in colorectal CSCs, and the possible modulating drugs that could be used in treatment for resistant CRC.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of cell and molecular & microbiology, Faculty of Science and technology, University of Isfahan, Isfahan, Iran
| | - Maral Afshinpour
- Department of chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology; Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Hamar, Norway
| | - Paniz Ghasempour Kalkhoran
- Department of Cellular and Molecular Biology_Microbiology, Faculty of Advanced Science and Technology, Tehran Medical science, Islamic Azad University, Tehran, Iran
| | - Vida Shadman-Manesh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA 02210, USA.
| |
Collapse
|
16
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Conte A, Valente V, Paladino S, Pierantoni GM. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell Signal 2023; 101:110491. [PMID: 36241057 DOI: 10.1016/j.cellsig.2022.110491] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates and regulates a plethora of transcriptional regulators and chromatin modifiers. The heterogeneity of its interactome allows HIPK2 to modulate several cellular processes and signaling pathways, ultimately regulating cell fate and proliferation. Because of its p53-dependent pro-apoptotic activity and its downregulation in many tumor types, HIPK2 is traditionally considered a bone fide tumor suppressor gene. However, recent findings revealed that the role of HIPK2 in the pathogenesis of cancer is much more complex, ranging from tumor suppressive to oncogenic, strongly depending on the cellular context. Here, we review the very recent data emerged in the last years about the involvement of HIPK2 in cancer biology and therapy, highlighting the various alterations of this kinase (downregulation, upregulation, mutations and/or delocalization) in dependence on the cancer types. In addition, we discuss the recent advancement in the understanding the tumor suppressive and oncogenic functions of HIPK2, its role in establishing the response to cancer therapies, and its regulation by cancer-associated microRNAs. All these data strengthen the idea that HIPK2 is a key player in many types of cancer; therefore, it could represent an important prognostic marker, a factor to predict therapy response, and even a therapeutic target itself.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
18
|
Peng X, Zhang T, Jia X, Wang T, Lin H, Li G, Li R, Zhang A. Impact of a haplotype (composed of the APC, KRAS, and TP53 genes) on colorectal adenocarcinoma differentiation and patient prognosis. Cancer Genet 2022; 268-269:115-123. [PMID: 36288643 DOI: 10.1016/j.cancergen.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Many types of gene mutation are associated with the drug resistance of cancer cells. XELOX is a new and efficient surgical adjuvant chemotherapy for colorectal adenocarcinoma. However, drug-resistant related genetic mutations associated with this treatment remain unknown. METHODS Next-generation sequencing (NGS) was performed on 36 colorectal cancer patients to identify mutations among patients with residual tumors following preoperative chemotherapy. Enrichment and prognosis of these mutations were evaluated in a TCGA cohort. The pathology of cases with poor prognosis-related mutations was also determined. RESULTS A sequence of SNPs associated with the APC, KRAS, and TP53 genes in 13 of 19 subjects with residual tumors after preoperative chemotherapy was identified. Using survival analysis data from 317 cases in the TCGA database, a prognosis-related haplotype composed of SNPs from APC, KRAS, and TP53 was assembled. Colorectal cancer patients with these mutations had a lower 5-year tumor-specific survival rate than those without (p < 0.05). Most patients with these mutations were at a higher clinical stage (III-IV) of disease. Enrolled subjects with the identified haplotype tended to have poor cancer cell differentiation. CONCLUSIONS The prognosis-related haplotype can be used as a marker of drug resistance and prognosis in colorectal cancer patients after preoperative chemotherapy.
Collapse
Affiliation(s)
- Xinyu Peng
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Tao Zhang
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Xiongjie Jia
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Tong Wang
- General Surgery Department, Laiyuan County Hospital, No. 299, Zhongxin Road, Laiyuan County, Baoding City, Hebei Province, PR China 074399
| | - Hengxue Lin
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Gang Li
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Riheng Li
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000.
| | - Aimin Zhang
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| |
Collapse
|
19
|
Kumar A, Singh AK, Singh H, Thareja S, Kumar P. Regulation of thymidylate synthase: an approach to overcome 5-FU resistance in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:3. [PMID: 36308643 DOI: 10.1007/s12032-022-01864-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/29/2022] [Indexed: 01/17/2023]
Abstract
Thymidylate synthase is the rate-limiting enzyme required for DNA synthesis and overexpression of this enzyme causes resistance to cancer cells. Long treatments with 5-FU cause resistance to Thymidylate synthase targeting drugs. We have also compiled different mechanisms of drug resistance including autophagy and apoptosis, drug detoxification and ABC transporters, drug efflux, signaling pathways (AKT/PI3K, RAS-MAPK, WNT/β catenin, mTOR, NFKB, and Notch1 and FOXM1) and different genes associated with resistance in colorectal cancer. We can overcome 5-FU resistance in cancer cells by regulating thymidylate synthase by natural products (Coptidis rhizoma), HDAC inhibitors, mTOR inhibitors, Folate antagonists, and several other drugs which have been used in combination with TS inhibitors. This review is a compilation of different approaches reported for the regulation of thymidylate synthase to overcome resistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India.
| |
Collapse
|
20
|
Yan X, Cheng Y, Zhang X, Hu Y, Huang H, Ren J, Wen B, Yang Y, Xiao K, Hu W, Wang W. NICD3 regulates the expression of MUC5AC and MUC2 by recruiting SMARCA4 and is involved in the differentiation of mucinous colorectal adenocarcinoma. Mol Oncol 2022; 16:3509-3532. [PMID: 35900231 PMCID: PMC9533685 DOI: 10.1002/1878-0261.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/08/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Adenocarcinoma is the most prevalent histological subtype of colorectal cancer (CRC), with mucinous colorectal adenocarcinoma (MCA) being a unique form. Although the mucinous subtype is known to elicit a worse response to chemotherapy and immunotherapy than the nonmucinous subtype, its pathogenesis remains poorly understood. Neurogenic locus notch homolog protein 3 (NOTCH3), a member of the NOTCH subfamilies, is highly expressed in CRC. In the past three decades, many studies have been performed evaluating the biological role of NOTCH3 in CRC. However, the precise activities of NOTCH3 in MCA, as well as the mechanisms involved in its transcriptional control, are yet to be elucidated. Our finding showed that the critical transcriptional regulatory factor transcription activator BRG1 (SMARCA4) directly binds to the intracellular domain of NOTCH3 to control transcriptional regulation. Moreover, RNA‐sequencing results indicated a common targeting effect on the transcriptional activity of mucin‐5AC (MUC5AC) and mucin‐2 (MUC2) in CRC cells by NOTCH3 and SMARCA4. Furthermore, NOTCH3 was found to control the expressions of MUC5AC and MUC2 in a SMARCA4‐dependent manner. MUC5AC and MUC2, which encode two secreted mucins, are located on chromosome 11p15.5, and are linked to the development of MCA. This finding suggests that the interaction between NOTCH3 and SMARCA4 may be involved in MCA differentiation by jointly targeting MUC5AC and MUC2. Patients with MCA are often treated in accordance with CRC guidelines. Determining the relationship between NOTCH3 and SMARCA4 by demonstrating their interactions in the pathophysiology of MCA could provide novel therapeutic targets and help identify potential prognostic markers for MCA.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, 046000, China
| | - Yuan Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xia Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yi Hu
- Fuxing Hospital, Capital Medical University, Beijing, 100038, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jie Ren
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Boye Wen
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuhui Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Keyuan Xiao
- Central laboratory, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, 046000, China
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, 046000, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
21
|
MACC1 Promotes the Progression and Is a Novel Biomarker for Predicting Immunotherapy Response in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8326940. [PMID: 35874635 PMCID: PMC9303487 DOI: 10.1155/2022/8326940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Aims As one of the most prevalent malignant diseases in the world, the mechanisms of metastasis in colon cancer are poorly understood. The aim of this study was to investigate the role of the HGF/c-MET axis in the proliferation and metastasis in colon cancer. Methods The effect of MACC1 on cell proliferation and metastasis was analyzed through a series of in vitro experiments. The role of MACC1 in cancer cells was demonstrated by overexpression and silencing of MACC1 in gain or loss function experiments. To investigate the relationship between MACC1 and c-MET/HGF, we detected c-MET protein expression by disrupting with or overexpressing MACC1. The bioinformatics analysis was used to investigate the correlation between MACC1 and c-MET, and the c-MET expression after the interference of HGF with MACC1 was determined. Subsequently, the function of c-MET was verified in colon cancer cells by a series of experiments. The mouse tumor transplantation model experiment is most suitable in vivo. Results The results indicated that the overexpression of MACC1 could accelerate proliferation and facilitate metastasis in colon cancer cell lines. Furthermore, c-MET was determined to be the downstream regulator of MACC1. The addition of HGF could stimulate the expression of MACC1. With further exploration, we proved that c-MET is downstream of MACC1 in colon cancer and that overexpression of c-MET in colon cancer enhances cell proliferation and migration capability. At last, MACC1 expression level negatively correlates with the infiltration levels and several immune checkpoint biomarkers. High MACC1 expression has a lower response rate with ICIs in COAD. Conclusions We found that, under the regulation of the MACC1/HGF/c-MET axis, the proliferation and metastasis of colorectal cancer are increased by MACC1, which can be a novel biomarker for predicting ICIs response in colorectal cancer. Our findings provide a new idea for the targeted treatment of colorectal cancer.
Collapse
|
22
|
Zitkute V, Kukcinaviciute E, Jonusiene V, Starkuviene V, Sasnauskiene A. Differential effects of 5‐fluorouracil and oxaliplatin on autophagy in chemoresistant colorectal cancer cells. J Cell Biochem 2022; 123:1103-1115. [DOI: 10.1002/jcb.30267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Vilmante Zitkute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
| | - Egle Kukcinaviciute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
| | - Violeta Jonusiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
| | - Vytaute Starkuviene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
- BioQuant Heidelberg University Heidelberg Germany
| | - Ausra Sasnauskiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center Vilnius University Vilnius Lithuania
| |
Collapse
|
23
|
Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung IM, Shariati MA, Rebezov M. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: Current status and future perspectives. Semin Cancer Biol 2022; 86:678-696. [PMID: 35452820 DOI: 10.1016/j.semcancer.2022.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Cancer is one of the dreadful diseases worldwide. Surgery, radiation and chemotherapy, are the three basic standard modes of cancer treatment. However, difficulties in cancer treatment are increasing due to immune escape, spreading of cancer to other places, and resistance of cancer cells to therapies. Various signaling mechanisms, including PI3K/Akt/mTOR, RAS, WNT/β-catenin, TGF-beta, and notch pathways, are involved in cancer resistance. The adaptive inflammatory response is the initial line of defence against infection. However, chronic inflammation can lead to tumorigenesis, malignant transformation, tumor growth, invasion, and metastasis. The most commonly dysregulated inflammatory pathways linked to cancer include NF-κB, MAPK, JAK-STAT, and PI3K/AKT. To overcome major hurdles in cancer therapy, nanomedicine is receiving much attention due to its role as a vehicle for delivering chemotherapeutic agents that specifically target tumor sites. Several biocompatible nanocarriers including polymer and inorganic nanoparticles, liposomes, micellar nanoparticles, nanotubes, and exosomes have been extensively studied. Exosome has been reported as an important potential sytem that could be effectively used as a bioinspired, bioengineered, and biomimetic drug delivery solution considering its toxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system. Exosome-mimetic vesicles are receiving much interest for developing nano-sized delivery systems. In this review, exosomes in detail as well as certain other nanocarriers, and their potential therapeutic roles in cancer therapy has been thoroughly discussed. Additionally, we also reviewed on oncogenic and tumor suppressor proteins, inflammation, and their associated signaling pathways and their interference by exosomes based nanomedicine.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Mohammad Ali Shariati
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow 109316, Russian Federation
| |
Collapse
|
24
|
Azam H, Pierro L, Reina M, Gallagher WM, Prencipe M. Emerging role for the Serum Response Factor (SRF) as a potential therapeutic target in cancer. Expert Opin Ther Targets 2022; 26:155-169. [PMID: 35114091 DOI: 10.1080/14728222.2022.2032652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The Serum Response Factor (SRF) is a transcription factor involved in three hallmarks of cancer: the promotion of cell proliferation, cell death resistance and invasion and metastasis induction. Many studies have demonstrated a leading role in the development and progression of multiple cancer types, thus highlighting the potential of SRF as a prognostic biomarker and therapeutic target, especially for cancers with poor prognosis. AREAS COVERED This review examines the role of SRF in several cancers in promoting cellular processes associated with cancer development and progression. SRF co-factors and signalling pathways are discussed as possible targets to inhibit SRF in a tissue and cancer-specific way. Small-molecule inhibitors of SRF, such as the CCGs series of compounds and lestaurtinib, which could be used as cancer therapeutics, are also discussed. EXPERT OPINION Targeting of SRF and its co-factors represents a promising therapeutic approach. Further understanding of the molecular mechanisms behind the action of SRF could provide a pipeline of novel molecular targets and therapeutic combinations for cancer. Basket clinical trials and the use of SRF immunohistochemistry as companion diagnostics will help testing of these new targets in patients.
Collapse
Affiliation(s)
- Haleema Azam
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland.,UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Lisa Pierro
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland.,UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Martina Reina
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland.,UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland.,UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Maria Prencipe
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland.,UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D4, Dublin, Ireland
| |
Collapse
|
25
|
Han H, Li Y, Qin W, Wang L, Yin H, Su B, Yuan X. miR-199b-3p contributes to acquired resistance to cetuximab in colorectal cancer by targeting CRIM1 via Wnt/β-catenin signaling. Cancer Cell Int 2022; 22:42. [PMID: 35090460 PMCID: PMC8796585 DOI: 10.1186/s12935-022-02460-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
Background Despite advances in the development of efficient chemotherapy, the treatment of colorectal cancer (CRC) remains a challenge due to acquired chemoresistance. It has been reported that microRNAs (miRNAs) dysregulation is associated with the development of chemoresistance. Recently, the expression of miR-199b-3p has been found to be significantly different between cetuximab (CTx)-resistant and -sensitive CRC cells. However, its role and the underlying mechanisms in acquired chemoresistance to CTx in CRC are still obscure. Methods Here we report that miR-199b-3p is significantly up-regulated in both CTx-resistant (CTxR) CRC tissues and cell lines. Results Functional assays showed that suppressing miR-199b-3p could improve the sensitivity of CRC-CTxR cells to CTx, thereby reducing cell proliferation, migration and invasion, and enhancing cell apoptosis. Mechanistic studies revealed that CRIM1 is a direct target of miR-199b-3p in CRC-CTxR cells; and the effect of miR-199b-3p on CTx-resistance was exerted by regulating the Wnt/β-catenin signaling pathway via CRIM1. Furthermore, mice xenograft models were established and confirmed that down-regulating miR-199b-3p restores the inhibition effect of CTx on tumor growth in CRC-CTxR. Collectively, our data suggest that silencing miR-199b-3p could enhance the anti-tumor effects of CTx on CTx-resistant CRC in vitro and in vivo by activating Wnt/β-catenin signaling via the down-regulation of CRIM1. Conclusions Our findings suggest miR-199b-3p might serve as a promising therapeutic target against CTx resistant CRC, and provide scientific information for exploring novel strategies of improving the efficacy of CTx for CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02460-x.
Collapse
|
26
|
Tan XP, He Y, Huang YN, Zheng CC, Li JQ, Liu QW, He ML, Li B, Xu WW. Lomerizine 2HCl inhibits cell proliferation and induces protective autophagy in colorectal cancer via the PI3K/Akt/mTOR signaling pathway. MedComm (Beijing) 2021; 2:453-466. [PMID: 34766155 PMCID: PMC8554656 DOI: 10.1002/mco2.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies currently. Despite advances in drug development, the survival and response rates in CRC patients are still poor. In our previous study, a library comprised of 1056 bioactive compounds was used for screening of drugs that could suppress CRC. Lomerizine 2HCl, which is an approved prophylactic drug for migraines, was selected for our studies. The results of in vitro and in vivo assays suggested that lomerizine 2HCl suppresses cell growth and promotes apoptosis in CRC cells. Moreover, lomerizine 2HCl inhibits cell migration and invasion of CRC. RNA sequencing analysis and Western blotting confirmed that lomerizine 2HCl can inhibit cell growth, migration, and invasion through PI3K/AKT/mTOR signaling pathway and induces protective autophagy in CRC. Meanwhile, autophagy inhibition by 3‐methyladenine (3‐MA) increases lomerizine 2HCl‐induced cell apoptosis. Taken together, these results imply that lomerizine 2HCl is a potential anticancer agent, and the combination of lomerizine 2HCl and autophagy inhibitors may serve as a novel strategy to increase the antitumor efficacy of agents in the treatment of CRC.
Collapse
Affiliation(s)
- Xiang-Peng Tan
- MOE Key Laboratory of Tumor Molecular Biology National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology and The First Affiliated Hospital of Jinan University Jinan University Guangzhou China
| | - Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Yun-Na Huang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Can-Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
| | - Jun-Qi Li
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Qin-Wen Liu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Ming-Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
| | - Wen-Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| |
Collapse
|
27
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Greco L, Rubbino F, Morelli A, Gaiani F, Grizzi F, de’Angelis GL, Malesci A, Laghi L. Epithelial to Mesenchymal Transition: A Challenging Playground for Translational Research. Current Models and Focus on TWIST1 Relevance and Gastrointestinal Cancers. Int J Mol Sci 2021; 22:ijms222111469. [PMID: 34768901 PMCID: PMC8584071 DOI: 10.3390/ijms222111469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Resembling the development of cancer by multistep carcinogenesis, the evolution towards metastasis involves several passages, from local invasion and intravasation, encompassing surviving anoikis into the circulation, landing at distant sites and therein establishing colonization, possibly followed by the outgrowth of macroscopic lesions. Within this cascade, epithelial to mesenchymal transition (EMT) works as a pleiotropic program enabling cancer cells to overcome local, systemic, and distant barriers against diffusion by replacing traits and functions of the epithelial signature with mesenchymal-like ones. Along the transition, a full-blown mesenchymal phenotype may not be accomplished. Rather, the plasticity of the program and its dependency on heterotopic signals implies a pendulum with oscillations towards its reversal, that is mesenchymal to epithelial transition. Cells in intermixed E⇔M states can also display stemness, enabling their replication together with the epithelial reversion next to successful distant colonization. If we aim to include the EMT among the hallmarks of cancer that could modify clinical practice, the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers needs to be filled. We review the knowledge on EMT, derived from models and mechanistic studies as well as from translational studies, with an emphasis on gastrointestinal cancers (GI).
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Alessandra Morelli
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Alberto Malesci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Correspondence:
| |
Collapse
|
29
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
30
|
Chai JY, Sugumar V, Alshanon AF, Wong WF, Fung SY, Looi CY. Defining the Role of GLI/Hedgehog Signaling in Chemoresistance: Implications in Therapeutic Approaches. Cancers (Basel) 2021; 13:4746. [PMID: 34638233 PMCID: PMC8507559 DOI: 10.3390/cancers13194746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Insight into cancer signaling pathways is vital in the development of new cancer treatments to improve treatment efficacy. A relatively new but essential developmental signaling pathway, namely Hedgehog (Hh), has recently emerged as a major mediator of cancer progression and chemoresistance. The evolutionary conserved Hh signaling pathway requires an in-depth understanding of the paradigm of Hh signaling transduction, which is fundamental to provide the necessary means for the design of novel tools for treating cancer related to aberrant Hh signaling. This review will focus substantially on the canonical Hh signaling and the treatment strategies employed in different studies, with special emphasis on the molecular mechanisms and combination treatment in regard to Hh inhibitors and chemotherapeutics. We discuss our views based on Hh signaling's role in regulating DNA repair machinery, autophagy, tumor microenvironment, drug inactivation, transporters, epithelial-to-mesenchymal transition, and cancer stem cells to promote chemoresistance. The understanding of this Achilles' Heel in cancer may improve the therapeutic outcome for cancer therapy.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Ahmed F. Alshanon
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad 10072, Iraq;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
31
|
Liu J, Fu D, Wang K, Yuan Y, Deng Y, Shi L, Li M, Zhou C, Lu X, Lv Q, Wang G, Wang L, Wang Z. Improving regorafenib's organ target precision via nano-assembly to change its delivery mode abolishes chemoresistance and liver metastasis of colorectal cancer. J Colloid Interface Sci 2021; 607:229-241. [PMID: 34500422 DOI: 10.1016/j.jcis.2021.08.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Distant metastases and chemotherapy repellency are the key causes of colorectal cancer (CRC)-related mortality. Regorafenib, an oral multi-kinase inhibitor approved for treating advanced CRC with distant metastases and/or chemo-resistance, however only improves median overall survival by 1.4 months. Such limited therapeutic effect is likely due to the low bioavailability of orally administered hydrophobic regorafenib. A regorafenib nanodrug is fabricated by one-step self-assembly with a clinically often-used fluorescent agent (indocyanine green) for overcoming regorafenib's limitations, towards improving regorafenib's therapeutic efficacy in advanced CRC. This nanodrug (nanoRF) was characterized, and its antitumor effects were assessed in three preclinical CRC models. NanoRF converts regorafenib's delivery approach from oral to intravenous with a significantly high encapsulation efficacy of regorafenib (96%) and a long-time colloidal stability. Nanodrug (nanoRF) markedly prolongs regorafenib's blood circulation by halving clearance rate, and enhances regorafenib's tumor accumulation. Across three preclinical CRC models (xenografted tumor, chemodrug-resistant xenografted tumor, and liver metastasis), nanoRF drastically enhances regorafenib's tumor inhibiting efficacy by 0.5-4 folds and effectively extends survival by 0.5-5 folds. This regorafenib nanodrug is a simple, safe, and efficient therapeutic nanodrug for treating advanced CRC with a ready-to-be-clinically-translated potential.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daan Fu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kang Wang
- Hubei Province Tobacco Quality Supervision and Test Station, Wuhan 430030, China
| | - Ye Yuan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingyi Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohuan Lu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
Abstract
Oxidative stress and reactive oxygen species (ROS) are central to many physiological and pathophysiological processes. However, due to multiple technical challenges, it is hard to capture a comprehensive readout of the cell, involving both biochemical and functional status. We addressed this problem by developing a fully parallelized workflow for metabolomics (providing absolute quantities for > 100 metabolites including TCA cycle, pentose phosphate pathway, purine metabolism, glutathione metabolism, cysteine and methionine metabolism, glycolysis and gluconeogenesis) and live cell imaging microscopy. The correlative imaging strategy was applied to study morphological and metabolic adaptation of cancer cells upon short-term hydrogen peroxide (H2O2) exposure in vitro. The combination provided rich metabolic information at the endpoint of exposure together with imaging of mitochondrial effects. As a response, superoxide concentrations were elevated with a strong mitochondrial localization, and multi-parametric image analysis revealed a shift towards fragmentation. In line with this, metabolism reflected both the impaired mitochondrial function and shifts to support the first-line cellular defense and compensate for energy loss. The presented workflow combining high-end technologies demonstrates the applicability for the study of short-term oxidative stress, but it can be suitable for the in-depth study of various short-term oxidative and other cellular stress-related phenomena.
Collapse
|
33
|
A Bioactive Compound from Sanguisorba officinalis L. Inhibits Cell Proliferation and Induces Cell Death in 5-Fluorouracil-Sensitive/Resistant Colorectal Cancer Cells. Molecules 2021; 26:molecules26133843. [PMID: 34202548 PMCID: PMC8270258 DOI: 10.3390/molecules26133843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer in the world. The first line chemotherapeutic agent, 5-fluorouracil (5-FU), plays a predominant role in the clinical treatment of CRC. However, with the wide use of 5-FU, more and more CRC patients have been obtaining drug resistance to 5-FU, which leads to a large amount of treatment failures. One of the effective strategies to overcome this obstacle is to find bioactive natural products from traditional medicine. In our previous work, Sanguisorba officinalis L. was found to exert a strong anti-proliferative activity against 5-FU-senstive/resistant CRC cells. Therefore, several compounds were isolated from this herb and screened for their anti-CRC effects to find promising compounds. Among them, a triterpenoid compound named 3β-[(α-l-arabinopyranosyl) oxy]-urs-12,18(19)-dien-28-oic acid β-d-glucopyranosyl ester (AGE), showed strong activity against both 5-FU-senstive and resistant CRC cells. In order to further study the mechanism of AGE on CRC cells, flow cytometer analysis, mitochondrial membrane potential (MMP) measurement, Western blotting, and RT-PCR assays were performed. Results demonstrated that AGE induced cell death by apoptosis pathway and autophagy, and inhibited cell proliferation via cell cycle arrest in G0-G1 phase mediated by Wnt signaling pathway. Therefore, AGE may be a potential bioactive compound for CRC treatment in clinic.
Collapse
|
34
|
Guo F, Hall AR, Tape CJ, Ling S, Pointon A. Intra- and intercellular signaling pathways associated with drug-induced cardiac pathophysiology. Trends Pharmacol Sci 2021; 42:675-687. [PMID: 34092416 DOI: 10.1016/j.tips.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Cardiac physiology and homeostasis are maintained by the interaction of multiple cell types, via both intra- and intercellular signaling pathways. Perturbations in these signaling pathways induced by oncology therapies can reduce cardiac function, ultimately leading to heart failure. As cancer survival increases, related cardiovascular complications are becoming increasingly prevalent, thus identifying the perturbations and cell signaling drivers of cardiotoxicity is increasingly important. Here, we discuss the homotypic and heterotypic cellular interactions that form the basis of intra- and intercellular cardiac signaling pathways, and how oncological agents disrupt these pathways, leading to heart failure. We also highlight the emerging systems biology techniques that can be applied, enabling a deeper understanding of the intra- and intercellular signaling pathways across multiple cell types associated with cardiovascular toxicity.
Collapse
Affiliation(s)
- Fei Guo
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK; Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Andrew R Hall
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Christopher J Tape
- Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK.
| |
Collapse
|
35
|
Mechanisms of Immune Escape and Resistance to Checkpoint Inhibitor Therapies in Mismatch Repair Deficient Metastatic Colorectal Cancers. Cancers (Basel) 2021; 13:cancers13112638. [PMID: 34072037 PMCID: PMC8199207 DOI: 10.3390/cancers13112638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary A subset of colorectal cancers (CRCs) is characterized by a mismatch repair deficiency that is frequently associated with microsatellite instability (MSI). The compromised DNA repair machinery leads to the accumulation of tumor neoantigens affecting the sensitivity of MSI metastatic CRC to immune checkpoint inhibitors (CPIs), both upfront and in later lines of treatment. However, up to 30% of MSI CRCs exhibit primary resistance to frontline immune based therapy, and an additional subset develops acquired resistance. Here, we first discuss the clinical and molecular features of MSI CRCs and then we review how the loss of antigenicity, immunogenicity, and a hostile tumor microenvironment could influence primary and acquired resistance to CPIs. Finally, we describe strategies to improve the outcome of MSI CRC patients upon CPI treatment. Abstract Immune checkpoint inhibitors (CPIs) represent an effective therapeutic strategy for several different types of solid tumors and are remarkably effective in mismatch repair deficient (MMRd) tumors, including colorectal cancer (CRC). The prevalent view is that the elevated and dynamic neoantigen burden associated with the mutator phenotype of MMRd fosters enhanced immune surveillance of these cancers. In addition, recent findings suggest that MMRd tumors have increased cytosolic DNA, which triggers the cGAS STING pathway, leading to interferon-mediated immune response. Unfortunately, approximately 30% of MMRd CRC exhibit primary resistance to CPIs, while a substantial fraction of tumors acquires resistance after an initial benefit. Profiling of clinical samples and preclinical studies suggests that alterations in the Wnt and the JAK-STAT signaling pathways are associated with refractoriness to CPIs. Intriguingly, mutations in the antigen presentation machinery, such as loss of MHC or Beta-2 microglobulin (B2M), are implicated in initial immune evasion but do not impair response to CPIs. In this review, we outline how understanding the mechanistic basis of immune evasion and CPI resistance in MMRd CRC provides the rationale for innovative strategies to increase the subset of patients benefiting from CPIs.
Collapse
|
36
|
Micallef I, Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Noncoding RNA 2021; 7:24. [PMID: 33807355 PMCID: PMC8103280 DOI: 10.3390/ncrna7020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal malignancies which has quite a high mortality rate. Despite the advances made in CRC treatment, effective therapy is still quite challenging, particularly due to resistance arising throughout the treatment regimen. Several studies have been carried out to identify CRC chemoresistance mechanisms, with research showing different signalling pathways, certain ATP binding cassette (ABC) transporters and epithelial mesenchymal transition (EMT), among others to be responsible for the failure of CRC chemotherapies. In the last decade, it has become increasingly evident that certain non-coding RNA (ncRNA) families are involved in chemoresistance. Research investigations have demonstrated that dysregulation of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute towards promoting resistance in CRC via different mechanisms. Considering the currently available data on this phenomenon, a better understanding of how these ncRNAs participate in chemoresistance can lead to suitable solutions to overcome this problem in CRC. This review will first focus on discussing the different mechanisms of CRC resistance identified so far. The focus will then shift onto the roles of miRNAs, lncRNAs and circRNAs in promoting 5-fluorouracil (5-FU), oxaliplatin (OXA), cisplatin and doxorubicin (DOX) resistance in CRC, specifically using ncRNAs which have been recently identified and validated under in vivo or in vitro conditions.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta;
| |
Collapse
|
37
|
Kim YE, Kim EK, Song MJ, Kim TY, Jang HH, Kang D. SILAC-Based Quantitative Proteomic Analysis of Oxaliplatin-Resistant Pancreatic Cancer Cells. Cancers (Basel) 2021; 13:cancers13040724. [PMID: 33578797 PMCID: PMC7916634 DOI: 10.3390/cancers13040724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Resistance to oxaliplatin remains a major challenge in pancreatic cancer therapy. However, molecular mechanisms underlying oxaliplatin resistance in pancreatic cancer is still unclear. The aim of this study was to identify global changes of proteins involved in oxaliplatin resistance in pancreatic cancer cells, thereby elucidating the multiple mechanisms of oxaliplatin resistance in pancreatic cancer. We presented the quantitative proteomic profiling of oxaliplatin-resistant pancreatic cancer cells via a stable isotope labelling by amino acids in cell culture (SILAC)-based shotgun proteomic approach. Multiple biological processes including DNA repair, cell cycle process, and type I interferon signaling pathway were enriched in oxaliplatin-resistant pancreatic cancer cells. Furthermore, we demonstrated that both Wntless homolog protein (WLS) and myristoylated alanine-rich C-kinase substrate (MARCKS) could participate in oxaliplatin resistance in pancreatic cancer cells. Abstract Oxaliplatin is a commonly used chemotherapeutic drug for the treatment of pancreatic cancer. Understanding the cellular mechanisms of oxaliplatin resistance is important for developing new strategies to overcome drug resistance in pancreatic cancer. In this study, we performed a stable isotope labelling by amino acids in cell culture (SILAC)-based quantitative proteomics analysis of oxaliplatin-resistant and sensitive pancreatic cancer PANC-1 cells. We identified 107 proteins whose expression levels changed (thresholds of 2-fold changes and p-value ≤ 0.05) between oxaliplatin-resistant and sensitive cells, which were involved in multiple biological processes, including DNA repair, cell cycle process, and type I interferon signaling pathway. Notably, myristoylated alanine-rich C-kinase substrate (MARCKS) and Wntless homolog protein (WLS) were upregulated in oxaliplatin-resistant cells compared to sensitive cells, as confirmed by qRT-PCR and Western blot analysis. We further demonstrated the activation of AKT and β-catenin signaling (downstream targets of MARCKS and WLS, respectively) in oxaliplatin-resistant PANC-1 cells. Additionally, we show that the siRNA-mediated suppression of both MARCKS and WLS enhanced oxaliplatin sensitivity in oxaliplatin-resistant PANC-1 cells. Taken together, our results provide insights into multiple mechanisms of oxaliplatin resistance in pancreatic cancer cells and reveal that MARCKS and WLS might be involved in the oxaliplatin resistance.
Collapse
Affiliation(s)
- Young Eun Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Korea;
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Eun-Kyung Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (E.-K.K.); (M.-J.S.)
| | - Min-Jeong Song
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (E.-K.K.); (M.-J.S.)
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (E.-K.K.); (M.-J.S.)
- Correspondence: (H.H.J.); (D.K.)
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Korea;
- Correspondence: (H.H.J.); (D.K.)
| |
Collapse
|
38
|
In vitro anticancer activity of hydrogen sulfide and nitric oxide alongside nickel nanoparticle and novel mutations in their genes in CRC patients. Sci Rep 2021; 11:2536. [PMID: 33510426 PMCID: PMC7843626 DOI: 10.1038/s41598-021-82244-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
This study was carried out to assess the impact of nickel nanoparticles (NiNPs) as well as scorpion venom on colorectal cancer (CRC) cells in the presence and/or absence of 5-fluorouracil (5-FU), hydrogen sulfide (H2S), and nitric oxide (NO) donors and to determine alterations in endothelial NO synthase (eNOS) and cystathionine γ-lyase (CSE) enzyme-producing genes in CRC patients. The IC50 of both H2S and NO donors, along with NiNPs, were determined. The CRC cells were treated for 24hrs, and the cytotoxic activities were assessed using the MTT test. Moreover, the apoptosis was determined after 24hrs and 48hrs using TUNEL assay. Furthermore, the mutations in the eNOS gene (intron 4, -786T>C and 894 G>T) and CSE gene (1364GT) were determined using direct sequencing. The IC50 values for sodium disulfide (Na2S) and sodium nitroprusside (SNP) at 24hrs treatment were found to be 5 mM and 10−6 M, respectively, while the IC50 value for 5-FU was reached after 5-days of treatment in CRC cell line. Both black and yellow scorpion venoms showed no inhibition of cell proliferation after 24hrs treatment. Furthermore, Na2S showed a significant decrease in cell proliferation and an increase in apoptosis. Moreover, a co-treatment of SNP and 5-FU resulted in inhibition of the cytotoxic effect of 5-FU, while a combination treatment of NiNPs with Na2S, SNP, and 5-FU caused highly significant cytotoxicity. Direct sequencing reveals new mutations, mainly intronic variation in eNOS gene that has not previously been described in the database. These findings indicate that H2S promotes the anticancer efficiency of 5-FU in the presence of NiNPs while NO has antiapoptotic activity in CRC cell lines.
Collapse
|
39
|
Younis MA, Khalil IA, Elewa YHA, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Control Release 2021; 331:335-349. [PMID: 33484779 DOI: 10.1016/j.jconrel.2021.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease with limited therapeutic choices. The stroma-rich tumor microenvironment hinders the in vivo delivery of most nanomedicines. Ultra-small lipid nanoparticles (usLNPs) were designed for the selective co-delivery of the cytotoxic drug, sorafenib (SOR), and siRNA against the Midkine gene (MK-siRNA) to HCC in mice. The usLNPs composed of a novel pH-sensitive lipid, a diversity of phospholipids and a highly-selective targeting peptide. A microfluidic device, iLiNP, was used and a variety of factors were controlled to tune particle size aiming at maximizing tumor penetration efficiency. Optimizing the composition and physico-chemical properties of the usLNPs resulted in an enhanced tumor accumulation, selectivity and in vivo gene silencing. The optimized usLNPs exerted potent gene silencing in the tumor (median effective dose, ED50~0.1 mg/Kg) with limited effect on the healthy liver. The novel combination synergistically-eradicated HCC in mice (~85%) at a surprisingly-low dose of SOR (2.5 mg/Kg) which could not be achieved via individual monotherapy. Toxicity studies revealed the biosafety of the usLNPs upon either acute or chronic treatment. Furthermore, the SOR-resistant HCC established in mice was eradicated by 70% using this approach. We conclude that our strategy is promising for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Ikramy A Khalil
- Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
40
|
Zhu GX, Gao D, Shao ZZ, Chen L, Ding WJ, Yu QF. Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol Med Rep 2020; 23:105. [PMID: 33300082 PMCID: PMC7723170 DOI: 10.3892/mmr.2020.11744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in humans. Chemotherapy is used for the treatment of CRC. However, the effect of chemotherapy remains unsatisfactory due to drug resistance. Growing evidence has shown that the presence of highly metastatic tumor stem cells, regulation of non-coding RNAs and the tumor microenvironment contributes to drug resistance mechanisms in CRC. Wnt/β-catenin signaling mediates the chemoresistance of CRC in these three aspects. Therefore, the present study analyzed the abundant evidence of the contribution of Wnt/β-catenin signaling to the development of drug resistance in CRC and discussed its possible role in improving the chemosensitivity of CRC, which may provide guidelines for its clinical treatment.
Collapse
Affiliation(s)
- Gui-Xian Zhu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Jie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong-Fang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
41
|
Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res 2020; 8:52. [PMID: 33072328 PMCID: PMC7559774 DOI: 10.1186/s40364-020-00233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
The tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are newly discovered noncoding RNAs in recent years. They are derived from specific cleavage of mature and pre-tRNAs and expressed in various cancers. They enhance cell proliferation and metastasis or inhibit cancer progression. Many studies have investigated their roles in the diagnosis, progression, metastasis, and prognosis of various cancers, but the mechanisms through which they are involved in resistance to cancer treatment are unclear. This review outlines the classification of tRFs and tiRNAs and their mechanisms in cancer drug resistance, thus providing new ideas for cancer treatment.
Collapse
|
42
|
Zhang Y, Yuan Z, Shen R, Jiang Y, Xu W, Gu M, Gu X. Identification of biomarkers predicting the chemotherapeutic outcomes of capecitabine and oxaliplatin in patients with gastric cancer. Oncol Lett 2020; 20:290. [PMID: 33029206 PMCID: PMC7530885 DOI: 10.3892/ol.2020.12153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
The capecitabine and oxaliplatin (CapeOX) regimen is a commonly used adjuvant chemotherapeutic regimen for gastric cancer (GC). However, some patients exhibit a poor chemotherapy response due to genetic differences among individuals. Therefore, finding an effective sensitization strategy for CapeOX is important in the treatment of GC. The present study aimed to investigate the predictive biomarkers of the CapeOX chemotherapeutic outcomes for patients with GC. A total of 30 differentially expressed genes (DEGs) were identified using the gene expression profiles from The Cancer Genome Atlas capecitabine and oxaliplatin treatment GC cases and seven key DEGs [uroplakin-1b (UPK1B), fatty acid-binding protein, heart (FABP3), cystatin-M, caspase-5 (CASP5), corticosteroid 11-β-dehydrogenase isozyme 2, cytochrome P450 4X1 (CYP4X1) and epidermal growth factor receptor kinase substrate 8-like protein 3] were associated with survival. Gene validation was performed in clinical samples divided into recurrence and nonrecurrence groups. Patients with high or low expression of UPK1B, FABP3, CASP5 and CYP4X1 had markedly different overall survival rates. A model was established and the area under the curve of the receiver operating characteristic reached 0.875 (0.793–0.957), indicating that the model had good sensitivity and specificity.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Zhen Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Renbin Shen
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Yannan Jiang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Wei Xu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Menghui Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
43
|
Ruiz de Porras V, Layos L, Martínez-Balibrea E. Curcumin: A therapeutic strategy for colorectal cancer? Semin Cancer Biol 2020; 73:321-330. [PMID: 32942023 DOI: 10.1016/j.semcancer.2020.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second cause of cancer death worldwide. The metastatic disease is mainly treated with aggressive therapies consisting on combinations of cytotoxic chemotherapy plus anti-EGFR or anti-VEGF drugs. In spite of the improvements in clinical outcomes achieved in the last decade, these are the result of multiple new combinations using the existing therapeutic options and the introduction of regorafenib and TAS-102 in second or later lines of treatment. As immunotherapies are limited to less than 5% of CRC patients harboring tumors with deficient mismatch repair, there is an urgent need of finding new drugs to increase our patients' survival opportunities. Among all the natural products that are candidates to be used for the treatment of CRC cancer, curcumin (the golden spice) is in the spotlight. Used for centuries in the Ayurveda medicine, its demonstrated anticancer properties and low toxicity profile made it the focus of hundreds of preclinical and clinical investigations. So far we know that it can be combined with most of the aforementioned drugs in a safe and synergistic way. Regretfully, its poor bioavailability has been one of the main issues for its successful introduction in the clinic. Nevertheless, a plethora of new formulations with a huge increase in bioavailability are under study with promising results. In this review we discuss the possibility of incorporating curcumin in the treatment of CRC; specifically, we review preclinical and clinical data supporting its possible combination with current therapies as well as new formulations under clinical study. It is time for the golden spice revolution.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- B-ARGO Group, Medical Oncology Service, Catalan Institute of Oncology, Ctra. Del Canyet s/n, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain.
| | - Laura Layos
- B-ARGO Group, Medical Oncology Service, Catalan Institute of Oncology, Ctra. Del Canyet s/n, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain; Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain.
| | - Eva Martínez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain; Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain; Program of Predictive and Personalized Cancer Medicine (PMPPC), IGTP, Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain.
| |
Collapse
|
44
|
Ashrafizadeh M, Taeb S, Hushmandi K, Orouei S, Shahinozzaman M, Zabolian A, Moghadam ER, Raei M, Zarrabi A, Khan H, Najafi M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol Res 2020; 161:105159. [PMID: 32818654 DOI: 10.1016/j.phrs.2020.105159] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors are potential targets in disease therapy, particularly in cancer. This is due to the fact that transcription factors regulate a variety of cellular events, and their modulation has opened a new window in cancer therapy. Sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are potential transcription factors that are involved in developmental processes such as embryogenesis. It has been reported that abnormal expression of SOX proteins is associated with development of different cancers, particularly ovarian cancer (OC). In the present review, our aim is to provide a mechanistic review of involvement of SOX members in OC. SOX members may suppress and/or promote aggressiveness and proliferation of OC cells. Clinical studies have also confirmed the potential of transcription factors as diagnostic and prognostic factors in OC. Notably, studies have demonstrated the relationship between SOX members and other molecular pathways such as ST6Ga1-I, PI3K, ERK and so on, leading to more complexity. Furthermore, SOX members can be affected by upstream mediators such as microRNAs, long non-coding RNAs, and so on. It is worth mentioning that the expression of each member of SOX proteins is corelated with different stages of OC. Furthermore, their expression determines the response of OC cells to chemotherapy. These topics are discussed in this review to shed some light on role of SOX transcription factors in OC.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
45
|
Vaghari-Tabari M, Majidinia M, Moein S, Qujeq D, Asemi Z, Alemi F, Mohamadzadeh R, Targhazeh N, Safa A, Yousefi B. MicroRNAs and colorectal cancer chemoresistance: New solution for old problem. Life Sci 2020; 259:118255. [PMID: 32818543 DOI: 10.1016/j.lfs.2020.118255] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies with a significant mortality rate. Despite the great advances in cancer treatment in the last few decades, effective treatment of CRC is still under challenge. One of the main problems associated with CRC treatment is the resistance of cancer cells to chemotherapy drugs. METHODS Many studies have been carried out to identify CRC chemoresistance mechanisms, and shed light on the role of ATP-binding cassette transporters (ABC transporters), enzymes as thymidylate synthase, some signaling pathways, and cancer stem cells (CSC) in chemoresistance and failed CRC chemotherapies. Other studies have also been recently carried out to find solutions to overcome chemoresistance. Some of these studies have identified the role of miRNAs in chemoresistance of the CRC cells and the effective use of these micro-molecules to CRC treatment. RESULTS Considering the results of these studies, more focus on miRNAs likely leads to a proper solution to overcome CRC chemoresistance. CONCLUSION The current study has reviewed the related literature while discussing the efficacy of miRNAs as potential clinical tools for overcoming CRC chemoresistance and reviewing the most important chemoresistance mechanisms in CRC cells.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Soheila Moein
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Mohamadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nilofar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Barth DA, Juracek J, Slaby O, Pichler M, Calin GA. lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers (Basel) 2020; 12:cancers12082148. [PMID: 32756406 PMCID: PMC7463785 DOI: 10.3390/cancers12082148] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Available systemic treatment options for cancers of the genitourinary system have experienced great progress in the last decade. However, a large proportion of patients eventually develop resistance to treatment, resulting in disease progression and shorter overall survival. Biomarkers indicating the increasing resistance to cancer therapies are yet to enter clinical routine. Long non-coding RNAs (lncRNA) are non-protein coding RNA transcripts longer than 200 nucleotides that exert multiple types of regulatory functions of all known cellular processes. Increasing evidence supports the role of lncRNAs in cancer development and progression. Additionally, their involvement in the development of drug resistance across various cancer entities, including genitourinary malignancies, are starting to be discovered. Consequently, lncRNAs have been suggested as factors in novel therapeutic strategies to overcome drug resistance in cancer. In this review, the existing evidences on lncRNAs and their involvement in mechanisms of drug resistance in cancers of the genitourinary system, including renal cell carcinoma, bladder cancer, prostate cancer, and testicular cancer, will be highlighted and discussed to facilitate and encourage further research in this field. We summarize a significant number of lncRNAs with proposed pathways in drug resistance and available reported studies.
Collapse
Affiliation(s)
- Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (D.A.B.); (M.P.)
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaroslav Juracek
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (D.A.B.); (M.P.)
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
47
|
Moore G, Annett S, McClements L, Robson T. Top Notch Targeting Strategies in Cancer: A Detailed Overview of Recent Insights and Current Perspectives. Cells 2020; 9:cells9061503. [PMID: 32575680 PMCID: PMC7349363 DOI: 10.3390/cells9061503] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Evolutionarily conserved Notch plays a critical role in embryonic development and cellular self-renewal. It has both tumour suppressor and oncogenic activity, the latter of which is widely described. Notch-activating mutations are associated with haematological malignancies and several solid tumours including breast, lung and adenoid cystic carcinoma. Moreover, upregulation of Notch receptors and ligands and aberrant Notch signalling is frequently observed in cancer. It is involved in cancer hallmarks including proliferation, survival, migration, angiogenesis, cancer stem cell renewal, metastasis and drug resistance. It is a key component of cell-to-cell interactions between cancer cells and cells of the tumour microenvironment, such as endothelial cells, immune cells and fibroblasts. Notch displays diverse crosstalk with many other oncogenic signalling pathways, and may drive acquired resistance to targeted therapies as well as resistance to standard chemo/radiation therapy. The past 10 years have seen the emergence of different classes of drugs therapeutically targeting Notch including receptor/ligand antibodies, gamma secretase inhibitors (GSI) and most recently, the development of Notch transcription complex inhibitors. It is an exciting time for Notch research with over 70 cancer clinical trials registered and the first-ever Phase III trial of a Notch GSI, nirogacestat, currently at the recruitment stage.
Collapse
Affiliation(s)
- Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
| | - Lana McClements
- The School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
- Correspondence:
| |
Collapse
|
48
|
Zhao Q, Zhuang K, Han K, Tang H, Wang Y, Si W, Yang Z. Silencing DVL3 defeats MTX resistance and attenuates stemness via Notch Signaling Pathway in colorectal cancer. Pathol Res Pract 2020; 216:152964. [PMID: 32414668 DOI: 10.1016/j.prp.2020.152964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 01/17/2023]
Abstract
Chemoresistance and recurrence of colorectal cancer are mainly caused by the existence of cancer stem-like cells. Dishevelled-3 (DVL3) is a common member of both Wnt/β-catenin pathway and the Notch signaling pathway, which were involved in cancer progression, chemoresistance and even maintenance of stem cell-like properties. However, the underlying biological function of DVL3 still remains unclear. In this study, we proposed DVL3 was simultaneously involved in Methotrexate (MTX) resistance and Colorectal cancer (CRC) stemness by bioinformatic analysis. We also demonstrated DVL3 knockdown sensitized CRC cells to MTX and inhibited their stem cell-like properties by functional experiments. As for the mechanism, DVL3 silencing attenuated the activated Notch signaling by down-regulating Notch intracellular domain (NICD) as well as its downstream targets. Additionally, we demonstrated that CRC cancer tissues had greater DVL3 expression than adjacent non-cancer tissues and patients' overall survival was closely associated with DVL3 according to the data in our clinical center. Accordingly, our data suggest that DVL3 is a key regulator in CRC stemness and chemoresistance and targeting DVL3 could be a potential strategy for CRC therapy.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Kun Zhuang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710061, PR China
| | - Kun Han
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710061, PR China
| | - Hailing Tang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710061, PR China
| | - Yu Wang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710061, PR China
| | - Wangli Si
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710061, PR China
| | - Zhenwei Yang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
49
|
Feifei W, Hui G, Ruiqiang Z, Qunxiang J, Yu'an X. MAGP2, a Component of Extracellular Matrix, Is Upregulated in Colorectal Cancer and Negatively Modulated by miR-200b-3p. Technol Cancer Res Treat 2020; 18:1533033819870777. [PMID: 31426719 PMCID: PMC6702771 DOI: 10.1177/1533033819870777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Colorectal cancer is one of the leading causes of cancer-related death worldwide, but its mechanism has not been clarified clearly. Microfibrial-associated glycoprotein 2 is mainly located in extracellular matrix, and its role in colorectal cancer is obscure. Methods: Immunohistochemical staining and quantitative real-time polymerase chain reaction were used to compare the expression level of microfibrial-associated glycoprotein 2 in colorectal cancer tissues and adjacent tissues. Western blot was used to detect the expression of microfibrial-associated glycoprotein 2 in colorectal cancer cell lines and normal colonic epithelium cell line. Kaplan-Meier analysis and χ2 test were applied to evaluate the potential of microfibrial-associated glycoprotein 2 to function as cancer biomarker. Lentiviral transduction was used to induce microfibrial-associated glycoprotein 2 overexpression in HCT116 cells and NCM460 cells, followed by detecting cell proliferation, migration, and invasion. Quantitative real-time polymerase chain reaction was used to investigate the changes in downstream genes after microfibrial-associated glycoprotein 2 overexpression. Luciferase assay was conducted to validate whether miR-200b-3p can directly target microfibrial-associated glycoprotein 2. Results: We validated that microfibrial-associated glycoprotein 2 was upregulated in colorectal cancer samples and cells. We also demonstrated its upregulation was associated with several clinicopathologic features such as Dukes stage (P = .048), differentiation status (P = .034), and local lymphatic metastasis (P = .036) of patients with colorectal cancer, and its high expression indicated shorter overall survival of the patients. Microfibrial-associated glycoprotein 2 overexpression remarkably promoted cell proliferation and metastasis via regulating the downstream genes of Notch, including hes family bHLH transcription factor 1 (HES1), Slug, Snail, matrix metalloproteinase 2, matrix metalloproteinase 9, and Kruppel-like factor 4. We also identified miR-200b-3p as a posttranscriptional regulator of microfibrial-associated glycoprotein 2, which partly explain the high expression mechanism of microfibrial-associated glycoprotein 2 in cancer tissues. Conclusion: Microfibrial-associated glycoprotein 2, negatively modulated by miR-200b-3p, is an oncogene of colorectal cancer associated with patients’ prognosis. It may function as a potential biomarker and therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Wei Feifei
- 1 Department of Experimental Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Guo Hui
- 1 Department of Experimental Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhao Ruiqiang
- 2 Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, China
| | - Jiang Qunxiang
- 1 Department of Experimental Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xie Yu'an
- 1 Department of Experimental Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
50
|
Gasiulė S, Dreize N, Kaupinis A, Ražanskas R, Čiupas L, Stankevičius V, Kapustina Ž, Laurinavičius A, Valius M, Vilkaitis G. Molecular Insights into miRNA-Driven Resistance to 5-Fluorouracil and Oxaliplatin Chemotherapy: miR-23b Modulates the Epithelial–Mesenchymal Transition of Colorectal Cancer Cells. J Clin Med 2019; 8:E2115. [PMID: 31810268 PMCID: PMC6947029 DOI: 10.3390/jcm8122115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Although treatment of colorectal cancer with 5-florouracil and oxaliplatin is widely used, it is frequently followed by a relapse. Therefore, there is an urgent need for profound understanding of chemotherapy resistance mechanisms as well as the profiling of predictive markers for individualized treatment. In this study, we identified the changes in 14 miRNAs in 5-fluouracil and 40 miRNAs in oxaliplatin-resistant cell lines by miRNA sequencing. The decrease in miR-224-5p expression in the 5-fluorouracil-resistant cells correlated with drug insensitivity due to its overexpression-induced drug-dependent apoptosis. On the other hand, the miR-23b/27b/24-1 cluster was overexpressed in oxaliplatin-resistant cells. The knockout of miR-23b led to the partial restoration of oxaliplatin susceptibility, showing the essential role of miR-23b in the development of drug resistance by this cluster. Proteomic analysis identified target genes of miR-23b and showed that endothelial-mesenchymal transition (EMT) was implicated in oxaliplatin insensibility. Data revealed that EMT markers, such as vimentin and SNAI2, were expressed moderately higher in the oxaliplatin-resistant cells and their expression increased further in the less drug-resistant cells, which had miR-23b knockout. This establishes that the balance of EMT contributes to the drug resistance, showing the importance of the miR-23b-mediated fine-tuning of EMT in oxaliplatin-resistant cancer cells.
Collapse
Affiliation(s)
- Stasė Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Nadezda Dreize
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Algirdas Kaupinis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Raimundas Ražanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Laurynas Čiupas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Žana Kapustina
- Thermo Fisher Scientific Baltics, Vilnius LT-02241, Lithuania;
| | - Arvydas Laurinavičius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius LT-08406, Lithuania;
- Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| |
Collapse
|