1
|
Miao J, Wang HM, Pan XH, Gong Z, Gao XM, Gong FY. hFcγRIIa: a double-edged sword in osteoclastogenesis and bone balance in transgenic mice. Front Immunol 2024; 15:1425670. [PMID: 39281679 PMCID: PMC11392756 DOI: 10.3389/fimmu.2024.1425670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease accompanied by local and systemic bone loss. FcγRs, especially FcγRIIa (hFcγRIIa), have been implicated in the pathogenesis of RA. However, the contribution of hFcγRIIa to bone loss has not been fully elucidated. In the present study, we demonstrated the double-edged sword role of hFcγRIIa on osteoclast differentiation through investigations involving hFcγRIIa-transgenic (hFcγRIIa-Tg) mice. Our findings reveal that hFcγRIIa-Tg mice, previously shown to exhibit heightened susceptibility to collagen-induced arthritis (CIA), displayed increased osteoporosis during CIA or at advanced ages (40 weeks), accompanied by heightened in vivo osteoclast differentiation. Notably, bone marrow cells from hFcγRIIa-Tg mice exhibited enhanced efficiency in differentiating into osteoclasts and bone resorption in vitro compared to wild-type mice when stimulated with receptor activators of NF-κB ligand (RANKL). Additionally, hFcγRIIa-Tg mice exhibited augmented sensitivity to RANKL-induced bone loss in vivo, highlighting the osteoclast-promoting role of hFcγRIIa. Mechanistically, bone marrow cells from hFcγRIIa-Tg mice displayed heightened Syk self-activation, leading to mTOR-pS6 pathway activation, thereby promoting RANKL-driven osteoclast differentiation. Intriguingly, while hFcγRIIa crosslinking hindered RANKL-induced osteoclast differentiation, it activated the kinase cAbl, subsequently triggering STAT5 activation and inhibiting the expression of osteoclast-associated genes. This study provides novel insights into hFcγRIIa-mediated osteoclast biology, suggesting promising therapeutic targets for managing bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Ming Gao
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Yang M, Jiang Y, Shao X. Case Report: A Novel Homozygous Frameshift Mutation of the SKIV2L Gene in a Trichohepatoenteric Syndrome Patient Presenting With Short Stature, Premature Ovarian Failure, and Osteoporosis. Front Genet 2022; 13:879899. [PMID: 35571060 PMCID: PMC9094698 DOI: 10.3389/fgene.2022.879899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Trichohepatoenteric syndrome (THES) is a rare Mendelian autosomal recessive genetic disease characterized by intractable diarrhea, woolly hair, facial abnormality, immune dysfunction, and intrauterine growth restriction. THES mutations are found in the TTC37 and SKIV2L genes, which encode two components of the human superkiller (SKI) complex. Methods and results: We report one case of a 32-year-old woman of Chinese descent with THES, who was born with a low weight (2000 g). She had intractable diarrhea during the neonatal period and was allergic to cow’s milk and condensed milk, but did not require total parenteral nutrition. She experienced menarche at age 12 and amenorrhea at age 28. In May 2019, the patient presented with a left fibular head fracture and was diagnosed with osteoporosis. Genetic testing showed a novel mutation in exon1 [p.E5Afs∗37 (c.12_13del)] of SKIV2L, which is composed of 28 exons. After the diagnosis, hormone replacement therapy was prescribed, in addition to the routine calcium and vitamin D supplements. Conclusion: This case expands the clinical characteristic and phenotype spectrum of THES, providing further understanding of SKIV2L and its autoimmune influence.
Collapse
Affiliation(s)
- Minyi Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
3
|
Suzuki A, Iwata J. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone 2021; 146:115881. [PMID: 33578033 PMCID: PMC8462526 DOI: 10.1016/j.bone.2021.115881] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Bone is an active organ that is continuously remodeled throughout life via formation and resorption; therefore, a fine-tuned bone (re)modeling is crucial for bone homeostasis and is closely connected with energy metabolism. Amino acids are essential for various cellular functions as well as an energy source, and their synthesis and catabolism (e.g., metabolism of carbohydrates and fatty acids) are regulated through numerous enzymatic cascades. In addition, the intracellular levels of amino acids are maintained by autophagy, a cellular recycling system for proteins and organelles; under nutrient deprivation conditions, autophagy is strongly induced to compensate for cellular demands and to restore the amino acid pool. Metabolites derived from amino acids are known to be precursors of bioactive molecules such as second messengers and neurotransmitters, which control various cellular processes, including cell proliferation, differentiation, and homeostasis. Thus, amino acid metabolism and autophagy are tightly and reciprocally regulated in our bodies. This review discusses the current knowledge and potential links between bone diseases and deficiencies in amino acid metabolism and autophagy.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Zhao B, Peng Q, Poon EHL, Chen F, Zhou R, Shang G, Wang D, Xu Y, Wang R, Qi S. Leonurine Promotes the Osteoblast Differentiation of Rat BMSCs by Activation of Autophagy via the PI3K/Akt/mTOR Pathway. Front Bioeng Biotechnol 2021; 9:615191. [PMID: 33708763 PMCID: PMC7940513 DOI: 10.3389/fbioe.2021.615191] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Background Leonurine, a major bioactive component from Herba leonuri, has been shown to exhibit anti-inflammatory and antioxidant effects. The aim of this study was to investigate the effect of leonurine on bone marrow-derived mesenchymal stem cells (BMSCs) as a therapeutic approach for treating osteoporosis. Materials and Methods Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were isolated from 4-weeks-old Sprague–Dawley rats. The cytocompatibility of leonurine on rBMSCs was tested via CCK-8 assays and flow cytometric analyses. The effects of leonurine on rBMSC osteogenic differentiation were analyzed via ALP staining, Alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Additionally, autophagy-related markers were examined via qRT-PCR and Western blot analyses of rBMSCs during osteogenic differentiation with leonurine and with or without 3-methyladenine (3-MA) as an autophagic inhibitor. Finally, the PI3K/Akt/mTOR signaling pathway was evaluated during rBMSC osteogenesis. Results Leonurine at 2–100 μM promoted the proliferation of rBMSCs. ALP and Alizarin red staining results showed that 10 μM leonurine promoted rBMSC osteoblastic differentiation, which was consistent with the qRT-PCR and Western blot results. Compared with those of the control group, the mRNA and protein levels of Atg5, Atg7, and LC3 were upregulated in the rBMSCs upon leonurine treatment. Furthermore, leonurine rescued rBMSC autophagy after inhibition by 3-MA. Additionally, the PI3K/AKT/mTOR pathway was activated in rBMSCs upon leonurine treatment. Conclusion Leonurine promotes the osteoblast differentiation of rBMSCs by activating autophagy, which depends on the PI3K/Akt/mTOR pathway. Our results suggest that leonurine may be a potential treatment for osteoporosis.
Collapse
Affiliation(s)
- Bingkun Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Peng
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Enoch Hin Lok Poon
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Wang XY, Gong LJ, Huang JM, Jiang C, Yan ZQ. Pinocembrin alleviates glucocorticoid-induced apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway in osteocytes. Eur J Pharmacol 2020; 880:173212. [PMID: 32470335 DOI: 10.1016/j.ejphar.2020.173212] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are widely used in clinical practice, but are associated with potentially severe side effects like glucocorticoid-induced osteoporosis (GIOP) and glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Glucocorticoid-induced osteocyte apoptosis plays critical roles in the pathological processes of both GIOP and GA-ONFH. Pinocembrin is a natural flavonoid that may exert protective effects on osteocytes. The present study investigated the effects of pinocembrin on glucocorticoid-induced apoptosis of murine long bone osteocyte Y4 (MLO-Y4) cells and sought to elucidate the underlying molecular mechanism. We found that pinocembrin attenuated glucocorticoid-induced cell viability injury and apoptosis of MLO-Y4 cells. Moreover, pinocembrin increased Beclin-1 and LC3B-II level, but decreased p62 expression, suggesting that pinocembrin activates autophagy in glucocorticoid-treated MLO-Y4 cells. The protective effects of pinocembrin on glucocorticoid-induced apoptosis of MLO-Y4 cells were mimicked by a known stimulator of autophagy but prevented by a known inhibitor of autophagy. Pinocembrin also suppressed the PI3K/Akt/mTOR signaling pathway, which regulates cell autophagy, in glucocorticoid-treated MLO-Y4 cells. In conclusion, the results indicate that pinocembrin alleviates glucocorticoid-induced osteocyte apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway. Pinocembrin may represent a potential natural agent for preventing and treating GIOP and GA-ONFH.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Lin-Jing Gong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jun-Ming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zuo-Qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yang Y, Liu Q, Zhang L, Fu X, Chen J, Hong D. A modified tape transfer approach for rapidly preparing high-quality cryosections of undecalcified adult rodent bones. J Orthop Translat 2020; 26:92-100. [PMID: 33437628 PMCID: PMC7773961 DOI: 10.1016/j.jot.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
Background/Objective Histology-based analyses are important tools to dissect cellular and molecular mechanisms of skeletal homeostasis, diseases, and regeneration. The success of these efforts is highly dependent on rapidly obtaining high-quality sections of mineralized skeletal tissues suitable for various analyses. However, the current techniques for preparing such sections are still far from satisfactory. This study aimed to develop a new approach for preparing high-quality undecalcified bone sections applicable to various histological analyses. Methods Two important modifications were made to the conventional Cryojane Tape-Transfer System, including utilization of an optimized adhesive to prepare adhesive glass slides for improving the transfer efficiency, and a cheap conventional benchtop UV transilluminator for UV curing. Cryosections of undecalcified rodent bones were prepared using this modified tape transfer approach, and their tissue morphology and structural integrity were visually examined. A variety of histological analyses, including calcein labeling, Von kossa staining, immunofluorescence, and enzymatic activity staining as well as 5-Ethynyl-2’-deoxyuridine (EdU) and TUNEL assays, were performed on these sections. Results We developed a modified version of tape transfer approach that can prepare cryosections of undecalcified rodent adult bones within 4 days at a low cost. Bone sections prepared by this approach exhibited good tissue morphology and structural integrity. Moreover, these sections were applicable to a variety of histological analyses, including calcein labeling, Von kossa staining, immunofluorescence, and enzymatic activity staining as well as EdU and TUNEL assays. Conclusion The tape transfer approach we developed provides a rapid, affordable, and easy learning method for preparing high-quality undecalcified bone sections valuable for bone research. The translational potential of this article Our research provides a rapid, affordable, and easy learning method for preparing high-quality undecalcified bone sections that can be potentially used for accurate diagnosis of various bone disorders and evaluation of the efficacy of different therapies in the treatment of these diseases.
Collapse
Affiliation(s)
- Yanjun Yang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingbai Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, Lianshui County People's Hospital, Huaian, Jiangsu, China
| | - Liwei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xuejie Fu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dun Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
7
|
Tao ZS, Lu HL, Ma NF, Zhang RT, Li Y, Yang M, Xu HG. Rapamycin could increase the effects of melatonin against age-dependent bone loss. Z Gerontol Geriatr 2019; 53:671-678. [PMID: 31781847 DOI: 10.1007/s00391-019-01659-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Previous studies have demonstrated the beneficial effect of melatonin (MEL) on bone tissue and bone metabolism. Rapamycin (RAP) promotes osteoblast proliferation and inhibits osteoclast proliferation, and positively affects bone regeneration; however, reports about effects of RAP on bone loss for aged female rats with MEL administration are limited. This study investigated the impact of treatment with RAP on bone loss for aged female rats with MEL administration. Female Sprague-Dawley rats weighing approximately 520 g were randomly divided into 3 groups of 10: group CON, group MEL and group MEL + RAP and received saline, MEL, RAP plus MEL treatment until death at 12 weeks, respectively. The results of maintaining bone mass and bone strength with RAP plus MEL administration were evaluated by histology, microcomputerized tomography (Micro-CT), gene expression analysis and biomechanical testing. Results from this study indicated that MEL + RAP had stronger effects on the prevention and treatment of osteoporosis than MEL administration. Administration of MEL + RAP produced the strongest effects on bone parameters and strength for distal femurs and regulation of OPG/RANKL signalling pathway-related gene expression. These results seemed to indicate that RAP could increase the effects of MEL on age-dependent bone loss.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Han-Li Lu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Neng-Feng Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Rou-Tian Zhang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Yang Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China.
| | - Hong-Guang Xu
- Spine Research Center of Wannan Medical College; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution; Dept of Spine Surgery, Yijishan hospital of Wannan Medical College, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China.
| |
Collapse
|
8
|
The Role of Macrophage in the Pathogenesis of Osteoporosis. Int J Mol Sci 2019; 20:ijms20092093. [PMID: 31035384 PMCID: PMC6539137 DOI: 10.3390/ijms20092093] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a systemic disease with progressive bone loss. The bone loss is associated with an imbalance between bone resorption via osteoclasts and bone formation via osteoblasts. Other cells including T cells, B cells, macrophages, and osteocytes are also involved in the pathogenesis of osteoporosis. Different cytokines from activated macrophages can regulate or stimulate the development of osteoclastogenesis-associated bone loss. The fusion of macrophages can form multinucleated osteoclasts and, thus, cause bone resorption via the expression of IL-4 and IL-13. Different cytokines, endocrines, and chemokines are also expressed that may affect the presentation of macrophages in osteoporosis. Macrophages have an effect on bone formation during fracture-associated bone repair. However, activated macrophages may secrete proinflammatory cytokines that induce bone loss by osteoclastogenesis, and are associated with the activation of bone resorption. Targeting activated macrophages at an appropriate stage may help inhibit or slow the progression of bone loss in patients with osteoporosis.
Collapse
|