1
|
El-Refaie WM, Ghazy MS, Ateyya FA, Sheta E, Shafek MY, Ibrahim MS, Ismail MM, Gowayed MA. Rhein methotrexate-decorated solid lipid nanoparticles altering adjuvant arthritis progression through endoplasmic reticulum stress-mediated apoptosis. Inflammopharmacology 2023; 31:3127-3142. [PMID: 37526838 PMCID: PMC10692035 DOI: 10.1007/s10787-023-01295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Methotrexate (MTX) and diacerein (DIA) are two of the most potent disease-modifying anti-rheumatic drugs used for the treatment of rheumatoid arthritis (RA). DIA has reflected some GIT and hepatobiliary manifestations in numerous cases. It undergoes biotransformation in the liver into the active metabolite rhein (RH) which is characterized by its excellent anti-inflammatory activity and lower side effects. However, RH's hydrophobic nature and low bioavailability do not encourage its use in RA. The current study aims to use RH in combination with MTX in targeted solid lipid nanoparticles (RH-MTX-SLNs) for better effectiveness and shadowing light on its possible mechanistic pathways. RH-MTX-SLNs were prepared and assessed for their quality attributes. The effect of the formulation was assessed in-vivo in an adjuvant arthritis animal model investigating the role of the endoplasmic reticulum stress (ERS)-induced apoptosis. Results revealed that RH-MTX-SLNs were in the suitable nanosized range with high negative zeta potential indicating good stability. In-vivo, RH-MTX-SLNs significantly improved all measured inflammatory and arthritic markers, confirmed by electron microscopy and histology examination of the joints. Besides, the formulation was able to alter the ERS-mediated apoptosis. In conclusion, RH-MTX-SLNs can represent a promising therapeutic approach for RA showing significant anti-arthritic activity.
Collapse
Affiliation(s)
- Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mostafa S Ghazy
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Fady A Ateyya
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohanad Y Shafek
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mahmoud S Ibrahim
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mahmoud Ma Ismail
- Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El- Mahmoudia Str., Smouha, Alexandria, Egypt.
| |
Collapse
|
2
|
Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022; 11:cells11192953. [PMID: 36230913 PMCID: PMC9564023 DOI: 10.3390/cells11192953] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key immune cells that respond to infections, and modulate pathophysiological conditions such as wound healing. By possessing phagocytic activities and through the secretion of cytokines and growth factors, macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. Macrophages orchestrate the process of wound healing through the transitioning from predominantly pro-inflammatory (M1-like phenotypes), which present early post-injury, to anti-inflammatory (M2-like phenotypes), which appear later to modulate skin repair and wound closure. In this review, different cellular and molecular aspects of macrophage-mediated skin wound healing are discussed, alongside important aspects such as macrophage subtypes, metabolism, plasticity, and epigenetics. We also highlight previous studies demonstrating interactions between macrophages and these factors for optimal wound healing. Understanding and harnessing the activity and capability of macrophages may help to advance new approaches for improving healing of the skin.
Collapse
Affiliation(s)
- Alireza Hassanshahi
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66179-13446, Iran
| | - Saman Ghalamkari
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Moosa Fadaei
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
- Correspondence: (A.J.C.); (M.H.)
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Correspondence: (A.J.C.); (M.H.)
| |
Collapse
|
3
|
Therapeutic Targeting Notch2 Protects Bone Micro-Vasculatures from Methotrexate Chemotherapy-Induced Adverse Effects in Rats. Cells 2022; 11:cells11152382. [PMID: 35954226 PMCID: PMC9367713 DOI: 10.3390/cells11152382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Intensive cancer chemotherapy is well known to cause bone vasculature disfunction and damage, but the mechanism is poorly understood and there is a lack of treatment. Using a rat model of methotrexate (MTX) chemotherapy (five once-daily dosses at 0.75 mg/kg), this study investigated the roles of the Notch2 signalling pathway in MTX chemotherapy-induced bone micro-vasculature impairment. Gene expression, histological and micro-computed tomography (micro-CT) analyses revealed that MTX-induced micro-vasculature dilation and regression is associated with the induction of Notch2 activity in endothelial cells and increased production of inflammatory cytokine tumour necrosis factor alpha (TNFα) from osteoblasts (bone forming cells) and bone marrow cells. Blockade of Notch2 by a neutralising antibody ameliorated MTX adverse effects on bone micro-vasculature, both directly by supressing Notch2 signalling in endothelial cells and indirectly via reducing TNFα production. Furthermore, in vitro studies using rat bone marrow-derived endothelial cell revealed that MTX treatment induces Notch2/Hey1 pathway and negatively affects their ability in migration and tube formation, and Notch2 blockade can partially protect endothelial cell functions from MTX damage.
Collapse
|
4
|
Zhang YL, Liu L, Su YW, Xian CJ. miR-6315 Attenuates Methotrexate Treatment-Induced Decreased Osteogenesis and Increased Adipogenesis Potentially through Modulating TGF-β/Smad2 Signalling. Biomedicines 2021; 9:biomedicines9121926. [PMID: 34944742 PMCID: PMC8698410 DOI: 10.3390/biomedicines9121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
Methotrexate (MTX) treatment for childhood malignancies has shown decreased osteogenesis and increased adipogenesis in bone marrow stromal cells (BMSCs), leading to bone loss and bone marrow adiposity, for which the molecular mechanisms are not fully understood. Currently, microRNAs (miRNAs) are emerging as vital mediators involved in bone/bone marrow fat homeostasis and our previous studies have demonstrated that miR-6315 was upregulated in bones of MTX-treated rats, which might be associated with bone/fat imbalance by directly targeting Smad2. However, the underlying mechanisms by which miR-6315 regulates osteogenic and adipogenic differentiation require more investigations. Herein, we further explored and elucidated the regulatory roles of miR-6315 in osteogenesis and adipogenesis using in vitro cell models. We found that miR-6315 promotes osteogenic differentiation and it alleviates MTX-induced increased adipogenesis. Furthermore, our results suggest that the involvement of miR-6315 in osteogenesis/adipogenesis regulation might be partially through modulating the TGF-β/Smad2 signalling pathway. Our findings indicated that miR-6315 may be important in regulating osteogenesis and adipogenesis and might be a therapeutic target for preventing/attenuating MTX treatment-associated bone loss and marrow adiposity.
Collapse
|
5
|
Su YW, Fan J, Fan CM, Peymanfar Y, Zhang YL, Xian CJ. Roles of apoptotic chondrocyte-derived CXCL12 in the enhanced chondroclast recruitment following methotrexate and/or dexamethasone treatment. J Cell Physiol 2021; 236:5966-5979. [PMID: 33438203 DOI: 10.1002/jcp.30278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
Intensive use of methotrexate (MTX) and/or dexamethasone (DEX) for treating childhood malignancies is known to cause chondrocyte apoptosis and growth plate dysfunction leading to bone growth impairments. However, mechanisms remain vague and it is unclear whether MTX and DEX combination treatment could have additive effects in the growth plate defects. In this study, significant cell apoptosis was induced in mature ATDC5 chondrocytes after treatment for 48 h with 10-5 M MTX and/or 10-6 M DEX treatment. PCR array assays with treated cells plus messenger RNA and protein expression confirmation analyses identified chemokine CXCL12 having the most prominent induction in each treatment group. Conditioned medium from treated chondrocytes stimulated migration of RAW264.7 osteoclast precursor cells and formation of osteoclasts, and these stimulating effects were inhibited by the neutralizing antibody for CXCL12. Additionally, while MTX and DEX combination treatment showed some additive effects on apoptosis induction, it did not have additive or counteractive effects on CXCL12 expression and its functions in enhancing osteoclastic recruitment and formation. In young rats treated acutely with MTX, there was increased expression of CXCL12 in the tibial growth plate, and more resorbing chondroclasts were found present at the border between the hypertrophic growth plate and metaphysis bone. Thus, the present study showed an association between induced chondrocyte apoptosis and stimulated osteoclastic migration and formation following MTX and/or DEX treatment, which could be potentially or at least partially linked molecularly by CXCL12 induction. This finding may contribute to an enhanced mechanistic understanding of bone growth impairments following MTX and/or DEX therapy.
Collapse
Affiliation(s)
- Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Chia-Ming Fan
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ya-Li Zhang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia.,Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Ahmadi D, Zarei M, Rahimi M, Khazaie M, Asemi Z, Mir SM, Sadeghpour A, Karimian A, Alemi F, Rahmati-Yamchi M, Salehi R, Jadidi-Niaragh F, Yousefi M, Khelgati N, Majidinia M, Safa A, Yousefi B. Preparation and in-vitro evaluation of pH-responsive cationic cyclodextrin coated magnetic nanoparticles for delivery of methotrexate to the Saos-2 bone cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101584] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Hoshyar R, Sebzari A, Balforoush M, Valavi M, Hosseini M. The impact of Crocus sativus stigma against methotrexate-induced liver toxicity in rats. ACTA ACUST UNITED AC 2019; 17:/j/jcim.ahead-of-print/jcim-2019-0201/jcim-2019-0201.xml. [DOI: 10.1515/jcim-2019-0201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
AbstractBackgroundThe adverse effects of methotrexate (MTX) mainly hepatotoxicity restrict its clinical use. This study was designed to investigate the protective effects of saffron (Crocus sativus) (CS) extract on MTX-induced hepatotoxicity.MethodsTwenty-eight male Wistar rats randomly divided into four equal groups. Except for control, all groups received a single intraperitoneal (i.p.) injection of MTX on the 3rd day of study. The CS extract was given (80 mg/kg i.p.) to rats 3 days before MTX and continued for the next 7 days (Pre&Post-CS group) or administrated after MTX injection and lasted for 7 days (Post-CS group). On the 11th day, all rats were sacrificed and their plasma levels of liver enzymes including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were determined. Also, liver histopathology and hepatic levels of malondialdehyde (MDA), nitric oxide (NO) and super oxidase dismutase (SOD) were evaluated.ResultsThe results showed that MTX significantly incremented plasma levels of AST, ALT, ALP and LDH (all p<0.001) and hepatic MDA and NO levels; whereas, decreased SOD activity. Histological alterations such as early fatty changes were evident in the MTX group. Administration of CS extract at both methods could ameliorate liver enzyme elevation, oxidative/nitrosative stresses and morphological alterations of the liver. Pre-and-post treatment with CS extract showed better protective effects than only post-treatment.ConclusionThe present findings provide showing CS could effectively alleviate MTX-induced hepatotoxicity in rats. Further investigations are recommended to determine the exact mechanisms underlying the hepatoprotective potential of saffron.
Collapse
Affiliation(s)
- Reyhane Hoshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmadreza Sebzari
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohadeseh Balforoush
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoomeh Valavi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Hassanshahi M, Su YW, Khabbazi S, Fan CM, Tang Q, Wen X, Fan J, Chen KM, Xian CJ. Retracted: Icariin attenuates methotrexate chemotherapy-induced bone marrow microvascular damage and bone loss in rats. J Cell Physiol 2019; 234:16549-16561. [PMID: 30784063 DOI: 10.1002/jcp.28326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Methotrexate (MTX), a widely used antimetabolite in paediatric cancer to treatment, has been widely reported to cause bone loss and bone marrow (BM) microvascular (particularly sinusoids) damage. Investigations must now investigate how MTX-induced bone loss and microvasculature damage can be attenuated/prevented. In the present study, we examined the potency of icariin, an herbal flavonoid, in reducing bone loss and the dilation/damage of BM sinusoids in rats caused by MTX treatment. Groups of young rats were treated with five daily MTX injections (0.75 mg/kg) with and without icariin oral supplementation until Day 9 after the first MTX injection. Histological analyses showed a significant reduction in the bone volume/tissue volume (BV/TV) fraction (%) and trabecular number in the metaphysis trabecular bone of MTX-treated rats, but no significant changes in trabecular thickness and trabecular spacing. However, the BV/TV (%) and trabecular number were found to be significantly higher in MTX + icariin-treated rats than those of MTX alone-treated rats. Gene expression analyses showed that icariin treatment maintained expression of osteogenesis-related genes but suppressed the induction of adipogenesis-related genes in bones of MTX-treated rats. In addition, icariin treatment attenuated MTX-induced dilation of BM sinusoids and upregulated expression of endothelial cell marker CD31 in the metaphysis bone of icariin + MTX-treated rats. Furthermore, in vitro studies suggest that icariin treatment can potentially enhance the survival of cultured rat sinusoidal endothelial cells against cytotoxic effect of MTX and promote their migration and tube formation abilities, which is associated with enhanced production of nitric oxide.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Chia-Ming Fan
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Qian Tang
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Xuesen Wen
- Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia.,Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Hassanshahi M, Khabbazi S, Peymanfar Y, Hassanshahi A, Hosseini-Khah Z, Su YW, Xian CJ. Critical limb ischemia: Current and novel therapeutic strategies. J Cell Physiol 2019; 234:14445-14459. [PMID: 30637723 DOI: 10.1002/jcp.28141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Alireza Hassanshahi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Hosseini-Khah
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
10
|
Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow. Crit Rev Oncol Hematol 2019; 137:43-56. [DOI: 10.1016/j.critrevonc.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
|
11
|
Tang Q, Su YW, Fan CM, Chung R, Hassanshahi M, Peymanfar Y, Xian CJ. Release of CXCL12 From Apoptotic Skeletal Cells Contributes to Bone Growth Defects Following Dexamethasone Therapy in Rats. J Bone Miner Res 2019; 34:310-326. [PMID: 30395366 DOI: 10.1002/jbmr.3597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/31/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
Dexamethasone (Dex) is known to cause significant bone growth impairment in childhood. Although previous studies have suggested roles of osteocyte apoptosis in the enhanced osteoclastic recruitment and local bone loss, whether it is so in the growing bone following Dex treatment requires to be established. The current study addressed the potential roles of chemokine CXCL12 in chondroclast/osteoclast recruitment and bone defects following Dex treatment. Significant apoptosis was observed in cultured mature ATDC5 chondrocytes and IDG-SW3 osteocytes after 48 hours of 10-6 M Dex treatment, and CXCL12 was identified to exhibit the most prominent induction in Dex-treated cells. Conditioned medium from the treated chondrocytes/osteocytes enhanced migration of RAW264.7 osteoclast precursor cells, which was significantly inhibited by the presence of the anti-CXCL12 neutralizing antibody. To investigate the roles of the induced CXCL12 in bone defects caused by Dex treatment, young rats were orally gavaged daily with saline or Dex at 1 mg/kg/day for 2 weeks, and received an intraperitoneal injection of anti-CXCL12 antibody or control IgG (1 mg/kg, three times per week). Aside from oxidative stress induction systemically, Dex treatment caused reductions in growth plate thickness, primary spongiosa height, and metaphysis trabecular bone volume, which are associated with induced chondrocyte/osteocyte apoptosis and enhanced chondroclast/osteoclast recruitment and osteoclastogenic differentiation potential. CXCL12 was induced in apoptotic growth plate chondrocytes and metaphyseal bone osteocytes. Anti-CXCL12 antibody supplementation considerably attenuated Dex-induced chondroclast/osteoclast recruitment and loss of growth plate cartilage and trabecular bone. CXCL12 neutralization did not affect bone marrow osteogenic potential, adiposity, and microvasculature. Thus, CXCL12 was identified as a potential molecular linker between Dex-induced skeletal cell apoptosis and chondroclastic/osteoclastic recruitment, as well as growth plate cartilage/bone loss, revealing a therapeutic potential of CXCL12 functional blockade in preventing bone growth defects during/after Dex treatment. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qian Tang
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Chia-Ming Fan
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.,Ningbo No. 6 Hospital, Ningbo, 315040, China
| |
Collapse
|
12
|
Hassanshahi A, Hassanshahi M, Khabbazi S, Hosseini‐Khah Z, Peymanfar Y, Ghalamkari S, Su Y, Xian CJ. Adipose‐derived stem cells for wound healing. J Cell Physiol 2018; 234:7903-7914. [DOI: 10.1002/jcp.27922] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alireza Hassanshahi
- Department of Genetics Faculty of Basic Sciences, Islamic Azad University Shahrekord Iran
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Zahra Hosseini‐Khah
- Department of Immunology School of Medicine, Mazandaran University of Medical Sciences Sari Iran
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | | | - Yu‐Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Cory J. Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| |
Collapse
|
13
|
Hassanshahi M, Su Y, Khabbazi S, Fan C, Chen K, Wang J, Qian A, Howe PR, Yan D, Zhou H, Xian CJ. Flavonoid genistein protects bone marrow sinusoidal blood vessels from damage by methotrexate therapy in rats. J Cell Physiol 2018; 234:11276-11286. [DOI: 10.1002/jcp.27785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Yu‐Wen Su
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Chia‐Ming Fan
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Ke‐Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA Lanzhou China
| | - Ju‐Fang Wang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou Gansu China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University Xi’an Shaanxi China
| | - Peter R. Howe
- Institute for Resilient Regions, University of Southern Queensland Springfield Queensland Australia
- Clinical Nutrition Research Centre, University of Newcastle Callaghan New South Wales Australia
| | - De‐Wen Yan
- Department of Endocrinology The First Affiliated Hospital of Shenzhen University Shenzhen Guangdong China
| | - Hou‐De Zhou
- Department of Endocrinology and Metabolism National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Cory J. Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| |
Collapse
|