1
|
Qiu J, Fang Y, Xiao S, Zeng F. AP2a-Mediated Upregulation of miR-125a-5p Ameliorates Radiation-Induced Oxidative Stress Injury via BRD4/Nrf2/HO-1 Signaling. Radiat Res 2023; 199:148-160. [PMID: 36469904 DOI: 10.1667/rade-22-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022]
Abstract
Radiation therapy is widely used to restrain tumor progression, but it is always accompanied by damage to healthy tissues. We aimed to probe the impact and mechanism of activator protein 2a (AP2a) and miR-125a-5p in radiation-induced oxidative stress injury. Human umbilical vein endothelial cells (HUVECs) were treated with X rays to induce radiation injury in vitro. Cell viability was measured using MTT assays. Flow cytometry assay was employed to detect the apoptosis rate. Oxidative stress markers were evaluated by detection kits. Gene or protein levels were determined by RT-qPCR or Western blotting. Validation of the interaction of miR-125a-5p with BRD4 and AP2a was conducted by dual luciferase assay or ChIP. MiR-125a-5p and AP2a were decreased in irradiated HUVECs, whereas BRD4 was increased. MiR-125a-5p overexpression or BRD4 silencing alleviated the cell viability decline, apoptosis, and oxidative stress injury caused by radiation treatment. MiR-125a-5p repressed the BRD4 level. The protective effects of miR-125a-5p overexpression in the radiation-induced oxidative injury were impeded by BRD4 overexpression. Moreover, AP2a bound to the promoter of miR-125a-5p. MiR-125a-5p inhibition reversed the effects of AP2a overexpression on radiational oxidative injury by modulating Nrf2/HO-1 signaling. AP2a transcriptionally activated miR-125a-5p ameliorated oxidative stress injury of HUVECs caused by radiation through Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Jun Qiu
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| | - Yi Fang
- Department of Anesthesiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410006, Hunan Province, P.R. China
| | - Shengyi Xiao
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| | - Furen Zeng
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| |
Collapse
|
2
|
Hinton T, Karnak D, Tang M, Jiang R, Luo Y, Boonstra P, Sun Y, Nancarrow DJ, Sandford E, Ray P, Maurino C, Matuszak M, Schipper MJ, Green MD, Yanik GA, Tewari M, Naqa IE, Schonewolf CA, Haken RT, Jolly S, Lawrence TS, Ray D. Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis. Transl Oncol 2022; 21:101428. [PMID: 35460942 PMCID: PMC9046881 DOI: 10.1016/j.tranon.2022.101428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Grade 2 and higher radiation pneumonitis (RP2) is a potentially fatal toxicity that limits efficacy of radiation therapy (RT). We wished to identify a combined biomarker signature of circulating miRNAs and cytokines which, along with radiobiological and clinical parameters, may better predict a targetable RP2 pathway. In a prospective clinical trial of response-adapted RT for patients (n = 39) with locally advanced non-small cell lung cancer, we analyzed patients' plasma, collected pre- and during RT, for microRNAs (miRNAs) and cytokines using array and multiplex enzyme linked immunosorbent assay (ELISA), respectively. Interactions between candidate biomarkers, radiobiological, and clinical parameters were analyzed using data-driven Bayesian network (DD-BN) analysis. We identified alterations in specific miRNAs (miR-532, -99b and -495, let-7c, -451 and -139-3p) correlating with lung toxicity. High levels of soluble tumor necrosis factor alpha receptor 1 (sTNFR1) were detected in a majority of lung cancer patients. However, among RP patients, within 2 weeks of RT initiation, we noted a trend of temporary decline in sTNFR1 (a physiological scavenger of TNFα) and ADAM17 (a shedding protease that cleaves both membrane-bound TNFα and TNFR1) levels. Cytokine signature identified activation of inflammatory pathway. Using DD-BN we combined miRNA and cytokine data along with generalized equivalent uniform dose (gEUD) to identify pathways with better accuracy of predicting RP2 as compared to either miRNA or cytokines alone. This signature suggests that activation of the TNFα-NFκB inflammatory pathway plays a key role in RP which could be specifically ameliorated by etanercept rather than current therapy of non-specific leukotoxic corticosteroids.
Collapse
Affiliation(s)
- Tonaye Hinton
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - David Karnak
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Ming Tang
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ralph Jiang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yi Luo
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Philip Boonstra
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yilun Sun
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Nancarrow
- Department of Surgery, Division of Hematology-Oncology, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Erin Sandford
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Paramita Ray
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Christopher Maurino
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Martha Matuszak
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Matthew J Schipper
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Green
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Gregory A Yanik
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Muneesh Tewari
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Issam El Naqa
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Caitlin A Schonewolf
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Randall Ten Haken
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Shruti Jolly
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Dipankar Ray
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA.
| |
Collapse
|
3
|
Xiong W, Yao W, Gao Z, Liu K. Rs12976445 polymorphism is associated with the risk of post-SAH re-bleeding by modulating the expression of microRNA-125 and ET-1. Sci Rep 2022; 12:2062. [PMID: 35136075 PMCID: PMC8825803 DOI: 10.1038/s41598-021-04330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
This study aimed to study the association between rs12976445 polymorphism and the incidence of IA re-bleeding. Genotype and allele frequency analysis was performed to study the association between rs12976445 polymorphism and the risk of IA re-bleeding. Western blot, ELISA and real-time RT-PCR were conducted to measure the relative expression of miR-125a, ET1 mRNA and ET1 protein. Computational analysis and luciferase assays were utilized to investigate the association between the expression of miR-125a and ET1 mRNA. No significant differences were observed between IA patients with or without symptoms of re-bleeding. Subsequent analyses indicated that the T allele was significantly associated with the reduced risk of IA re-bleeding. In patients carrying the CC genotype, miR-125a level was up-regulated while ET1 mRNA/protein levels were reduced compared with those in patients carrying the CT or TT genotype. And ET1 mRNA was identified as a virtual target gene of miR-125a with a potential miR-125a binding site located on its 3’UTR. Accordingly, the ET mRNA/protein levels could be suppressed by the transfection of miR-125a precursors, but the transfection of ET1 siRNA exhibited no effect on the expression of miR-125a. Therefore, an increased level of miR-125a can lead to the increased risk of IA re-bleeding. Since miR-125a level is higher in CC-genotyped patients, it can be concluded that the presence of T allele in the rs12976445 polymorphism is associated with a lower risk of IA re-bleeding, and miR-125a may be used as a novel diagnostic and therapeutic target for IA rupture.
Collapse
Affiliation(s)
- Wenping Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, China
| | - Weiqi Yao
- Department of Hematology, Union Hospital, Huazhong University of Science and Technology, Hubei Engineering Research Center for Human Stem Cell Preparation and Application and Resource Conservation, Wuhan, 430022, China
| | - Zeyuan Gao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, China
| | - Kui Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
5
|
Śliwińska-Mossoń M, Wadowska K, Trembecki Ł, Bil-Lula I. Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. J Pers Med 2020; 10:jpm10030072. [PMID: 32722546 PMCID: PMC7565537 DOI: 10.3390/jpm10030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2018, lung cancer was the most common cancer and the most common cause of cancer death, accounting for a 1.76 million deaths. Radiotherapy (RT) is a widely used and effective non-surgical cancer treatment that induces remission in, and even cures, patients with lung cancer. However, RT faces some restrictions linked to the radioresistance and treatment toxicity, manifesting in radiation-induced lung injury (RILI). About 30–40% of lung cancer patients will develop RILI, which next to the local recurrence and distant metastasis is a substantial challenge to the successful management of lung cancer treatment. These data indicate an urgent need of looking for novel, precise biomarkers of individual response and risk of side effects in the course of RT. The aim of this review was to summarize both preclinical and clinical approaches in RILI monitoring that could be brought into clinical practice. Next to transforming growth factor-β1 (TGFβ1) that was reported as one of the most important growth factors expressed in the tissues after ionizing radiation (IR), there is a group of novel, potential biomarkers—microRNAs—that may be used as predictive biomarkers in therapy response and disease prognosis.
Collapse
Affiliation(s)
- Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| | - Katarzyna Wadowska
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
- Correspondence:
| | - Łukasz Trembecki
- Department of Radiation Oncology, Lower Silesian Oncology Center, pl. Hirszfelda 12, 53-413 Wroclaw, Poland;
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, pl. Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| |
Collapse
|