1
|
Zhen Z, Xiang L, Li S, Li H, Lei Y, Chen W, Jin JM, Liang C, Tang SY. Designing a whole-cell biosensor applicable for S-adenosyl-l-methionine-dependent methyltransferases. Biosens Bioelectron 2025; 268:116904. [PMID: 39504884 DOI: 10.1016/j.bios.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
This study was undertaken to develop a high-throughput screening strategy using a whole-cell biosensor to enhance methyl-group transfer, a rate-limiting step influenced by intracellular methyl donor availability and methyltransferase efficiency. An l-homocysteine biosensor was designed based on regulatory protein MetR from Escherichia coli, which rapidly reported intracellular l-homocysteine accumulation resulted from S-adenosyl-l-homocysteine (SAH) formation after methyl-group transfer. Using S-adenosyl-l-methionine (SAM) as a methyl donor, this biosensor was applied to caffeic acid 3-O-methyltransferase derived from Arabidopsis thaliana (AtComT). After several rounds of directed evolution, the modified enzyme achieved a 13.8-fold improvement when converting caffeic acid to ferulic acid. The best mutant exhibited a 5.4-fold improvement in catalytic efficiency. Characterization of beneficial mutants showed that improved O-methyltransferase dimerization greatly contributed to enzyme activity. This finding was verified when we switched and compared the N-termini involved in dimerization across different sources. Finally, with tyrosine as a substrate, the evolved AtComT mutant greatly improved ferulic acid biosynthesis, yielding 3448 mg L-1 with a conversion rate of 88.8%. These results have important implications for high-efficiency O-methyltransferase design, which will greatly benefit the biosynthesis of a wide range of natural products. In addition, the l-homocysteine biosensor has the potential for widespread applications in evaluating the efficiency of SAM-based methyl transfer.
Collapse
Affiliation(s)
- Zhen Zhen
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - La Xiang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shizhong Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongji Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanyan Lei
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Chen
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, 100048, Beijing, China.
| | - Chaoning Liang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Shuang-Yan Tang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
2
|
Tahir Khan M, Dumont E, Chaudhry AR, Wei DQ. Free energy landscape and thermodynamics properties of novel mutations in PncA of pyrazinamide resistance isolates of Mycobacterium tuberculosis. J Biomol Struct Dyn 2023; 42:12259-12270. [PMID: 37837425 DOI: 10.1080/07391102.2023.2268216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Pyrazinamide (PZA) is one of the first-line antituberculosis therapy, active against non-replicating Mycobacterium tuberculosis (Mtb). The conversion of PZA into pyrazinoic acid (POA), the active form, required the activity of pncA gene product pyrazinamidase (PZase) activity. Mutations occurred in pncA are the primary cause behind the PZA resistance. However, the resistance mechanism is important to explore using high throughput computational approaches. Here we aimed to explore the mechanism of PZA resistance behind novel P62T, L120R, and V130M mutations in PZase using 200 ns molecular dynamics (MD) simulations. MD simulations were performed to observe the structural changes for these three mutants (MTs) compared to the wild types (WT). Root means square fluctuation, the radius of gyration, free energy landscape, root means square deviation, dynamic cross-correlation motion, and pocket volume were found in variation between WT and MTs, revealing the effects of P62T, L120R, and V130M. The free energy conformational landscape of MTs differs significantly from the WT system, lowering the binding of PZA. The geometric shape complementarity of the drug (PZA) and target protein (PZase) further confirmed that P62T, L120R, and V130M affect the protein structure. These effects on PZase may cause vulnerability to convert PZA into POA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, PR China
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Elise Dumont
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR7272, Nice, France
- Institut Universitaire de France, Paris, France
| | | | | |
Collapse
|
3
|
Vinutha AS, Rajasekaran R. Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment. J Comput Aided Mol Des 2023:10.1007/s10822-023-00516-2. [PMID: 37368161 DOI: 10.1007/s10822-023-00516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, Pseudis paradoxa, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with E. coli bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against E. coli bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.
Collapse
Affiliation(s)
- A S Vinutha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Chen Y, Huang H, Liu Y, Wang Z, Wang L, Wang Q, Zhang Y, Wang H. Engineering a High-Affinity PD-1 Peptide for Optimized Immune Cell-Mediated Tumor Therapy. Cancer Res Treat 2021; 54:362-374. [PMID: 34352997 PMCID: PMC9016318 DOI: 10.4143/crt.2021.424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose The purpose of this study was to optimize a peptide (nABP284) that binds to PD-1 by a computer-based protocol in order to increase its affinity. Then, this study aimed to determine the inhibitory effects of this peptide on cancer immune escape by coculturing improving cytokine-induced killer (ICIK) cells with cancer cells. Materials and Methods nABP284 that binds to PD-1 was identified by phage display technology in our previous study. AutoDock and PyMOL were used to optimize the sequence of nABP284 to design a new peptide (nABPD1). Immunofluorescence was used to demonstrate that the peptides bound to PD-1. Surface plasmon resonance (SPR) was used to measure the binding affinity of the peptides. The blocking effect of the peptides on PD-1 was evaluated by a neutralization experiment with human recombinant PD-L1 protein. The inhibition of activated lymphocytes by cancer cells was simulated by coculturing of human acute T lymphocytic leukemia cells (Jurkat T cells) with human tongue squamous cell carcinoma cells (Cal27 cells). The anticancer activities were determined by coculturing ICIK cells with Cal27 cells in vitro. Results A high-affinity peptide (nABPD1, KD=11.9 nM) for PD-1 was obtained by optimizing the nABP284 peptide (KD=11.8 µM). nABPD1 showed better efficacy than nABP284 in terms of increasing the secretion of IL-2 by Jurkat T cells and enhancing the in vitro antitumor activity of ICIK cells. Conclusion nABPD1 possesses higher affinity for PD-1 than nABP284, which significantly enhances its ability to block the PD-1/PD-L1 interaction and to increase ICIK cell-mediated antitumor activity by armoring ICIK cells.
Collapse
Affiliation(s)
- Yilei Chen
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongxing Huang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yin Liu
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhanghao Wang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lili Wang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Quanxiao Wang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hua Wang
- Departments Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Flynn J, Ryan A, Hudson SP. Pre-formulation and delivery strategies for the development of bacteriocins as next generation antibiotics. Eur J Pharm Biopharm 2021; 165:149-163. [PMID: 34020021 DOI: 10.1016/j.ejpb.2021.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Bacteriocins, a class of antimicrobial peptide produced by bacteria, may offer a potential alternative to traditional antibiotics, an important step towards mitigating the ever-increasing antimicrobial resistance crisis. They are active against a range of clinically relevant Gram-positive and Gram-negative bacteria. Bacteriocins have been discussed in the literature for over a century. Although they are used as preservatives in food, no medicine based on their antimicrobial activity exists on the market today. In order to formulate them into clinical antibiotics, pre-formulation studies on their biophysical and physicochemical properties that will influence their activity in vivo and their stability during manufacture must be elucidated. Thermal, pH and enzymatic stability of bacteriocins are commonly studied and regularly reported in the literature. Solubility, permeability and aggregation properties on the other hand are less frequently reported for many bacteriocins, which may contribute to their poor clinical progression. Promising cytotoxicity studies report that bacteriocins exhibit few cytotoxic effects on a variety of mammalian cell lines, at active concentrations. This review highlights the lack of quantitative data and in many cases even qualitative data, on bacteriocins' solubility, stability, aggregation, permeability and cytotoxicity. The formulation strategies that have been explored to date, proposed routes of administration, trends in in vitro/in vivo behaviour and efforts in clinical development are discussed. The future promise of bacteriocins as a new generation of antibiotics may require tailored local delivery strategies to fulfil their potential as a force to combat antimicrobial-resistant bacterial infections.
Collapse
Affiliation(s)
- James Flynn
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Aoibhín Ryan
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
6
|
An Overview of Molecular Dynamic Simulation for Corrosion Inhibition of Ferrous Metals. METALS 2020. [DOI: 10.3390/met11010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Molecular dynamics (MD) simulation is a powerful tool to study the molecular level working mechanism of corrosion inhibitors in mitigating corrosion. In the past decades, MD simulation has emerged as an instrument to investigate the interactions at the interface between the inhibitor molecule and the metal surface. Combined with experimental measurement, theoretical examination from MD simulation delivers useful information on the adsorption ability and orientation of the molecule on the surface. It relates the microscopic characteristics to the macroscopic properties which enables researchers to develop high performance inhibitors. Although there has been vast growth in the number of studies that use molecular dynamic evaluation, there is still lack of comprehensive review specifically for corrosion inhibition of organic inhibitors on ferrous metal in acidic solution. Much uncertainty still exists on the approaches and steps in performing MD simulation for corrosion system. This paper reviews the basic principle of MD simulation along with methods, selection of parameters, expected result such as adsorption energy, binding energy and inhibitor orientation, and recent publications in corrosion inhibition studies.
Collapse
|
7
|
Khan MT, Chinnasamy S, Cui Z, Irfan M, Wei DQ. Mechanistic analysis of A46V, H57Y, and D129N in pyrazinamidase associated with pyrazinamide resistance. Saudi J Biol Sci 2020; 27:3150-3156. [PMID: 33100877 PMCID: PMC7569123 DOI: 10.1016/j.sjbs.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Pyrazinamide (PZA) is a component of first-line drugs, active against latent Mycobacterium tuberculosis (MTB) isolates. The prodrug is activated into the active form, pyrazinoic acid (POA) via pncA gene-encoded pyrazinamidase (PZase). Mutations in pncA have been reported, most commonly responsible for PZA-resistance in more than 70% of the resistant cases. In our previous study, we detected many mutations in PZase among PZA-resistance MTB isolates including A46V, H71Y, and D129N. The current study was aimed to investigate the molecular mechanism of PZA-resistance behind mutants (MTs) A46V, H71Y, and D129N in comparison with the wild type (WT) through molecular dynamic (MD) simulation. MTB positive samples were subjected to PZA drug susceptibility testing (DST) against critical concentration (100ug/ml). The resistant samples were subjected to pncA sequencing. Thirty-six various mutations have been observed in the coding region of pncA of PZA-resistant isolates (GenBank accession No. MH461111) including A46V, H71Y, and D129N. The post-simulation analysis revealed a significant variation in MTs structural dynamics as compared to the WT. Root means square deviations (RMSD) and Root means square fluctuation (RMSF) has been found in variation between WT and MTs. Folding effect and pocket volume were altered in MTs when compared with WT. Geometric matching supports the effect of mutation A46V, H71Y, and D129N on PZase structure that may have an insight effect on PZase dynamics, making them vulnerable to convert pro-PZA into active form, POA. In conclusion, the current analyses will provide useful information behind PZA-resistance for better management of drug-resistant TB.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Pakistan
| | - Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilei Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Muhammad Irfan
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Akın-Balı DF, Al-Khafaji K, Aktas SH, Taskin-Tok T. Bioinformatic and computational analysis for predominant mutations of the Nrf2/Keap1 complex in pediatric leukemia. J Biomol Struct Dyn 2020; 39:4290-4303. [PMID: 32469262 DOI: 10.1080/07391102.2020.1775702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The levels of reactive oxygen species (ROS) are tightly controlled and regulated by Nuclear Factor Erythroid-2-Like 2 (Nrf2) transcription factor, which is the main regulator of antioxidant responses and its suppressor protein Kelch-like ECH-associated protein 1 (Keap1). Our previous study has identified six novel changes in Nrf2/Keap1 pathway in pediatric ALL, which were described for the first time. These changes in the pathway are likely to alter the evolutionary process of amino acids and cause structural changes in the final products of genes. In this study, we aimed to compare the pathogenicity of eight determined mutations reported in our previous study by utilizing different programs with different algorithms and molecular dynamics simulation. Since it is too difficult to handle each existing mutation in a wet laboratory, in silico methods may give suggestion to choose the important mutations for further analysis and to establish the appropriate patient population and conduct wet laboratory studies. For this purpose, four different algorithms were used to evaluate the effects of single amino acid mutation. In addition, root-mean-square deviation, root-mean-square fluctuation and free-energy landscape analyses were performed to observe stability, flexibility and energetically favorable conformations, respectively, for each amino acid mutation. As a result, our study emphasizes the importance of Keap1 mutations in pediatric ALL Nrf2/Keap1 pathway, a total of eight mutations, two of which were shown for the first time in our study. Especially the mutations in the Keap1 Broad-Complex, Tramtrack and Bric-à-brac domain are worthy of attention.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dilara Fatma Akın-Balı
- Faculty of Medicine, Department of Medical Biology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Khattab Al-Khafaji
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
| | - Sedef Hande Aktas
- Vocational School of Health Services, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Tugba Taskin-Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey.,Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
9
|
Khan MT, Ali S, Zeb MT, Kaushik AC, Malik SI, Wei DQ. Gibbs Free Energy Calculation of Mutation in PncA and RpsA Associated With Pyrazinamide Resistance. Front Mol Biosci 2020; 7:52. [PMID: 32328498 PMCID: PMC7160322 DOI: 10.3389/fmolb.2020.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
A central approach for better understanding the forces involved in maintaining protein structures is to investigate the protein folding and thermodynamic properties. The effect of the folding process is often disturbed in mutated states. To explore the dynamic properties behind mutations, molecular dynamic (MD) simulations have been widely performed, especially in unveiling the mechanism of drug failure behind mutation. When comparing wild type (WT) and mutants (MTs), the structural changes along with solvation free energy (SFE), and Gibbs free energy (GFE) are calculated after the MD simulation, to measure the effect of mutations on protein structure. Pyrazinamide (PZA) is one of the first-line drugs, effective against latent Mycobacterium tuberculosis isolates, affecting the global TB control program 2030. Resistance to this drug emerges due to mutations in pncA and rpsA genes, encoding pyrazinamidase (PZase) and ribosomal protein S1 (RpsA) respectively. The question of how the GFE may be a measure of PZase and RpsA stabilities, has been addressed in the current review. The GFE and SFE of MTs have been compared with WT, which were already found to be PZA-resistant. WT structures attained a more stable state in comparison with MTs. The physiological effect of a mutation in PZase and RpsA may be due to the difference in energies. This difference between WT and MTs, depicted through GFE plots, might be useful in predicting the stability and PZA-resistance behind mutation. This study provides useful information for better management of drug resistance, to control the global TB problem.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Sajid Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | | | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
10
|
Mehmood A, Khan MT, Kaushik AC, Khan AS, Irfan M, Wei DQ. Structural Dynamics Behind Clinical Mutants of PncA-Asp12Ala, Pro54Leu, and His57Pro of Mycobacterium tuberculosis Associated With Pyrazinamide Resistance. Front Bioeng Biotechnol 2019; 7:404. [PMID: 31921809 PMCID: PMC6914729 DOI: 10.3389/fbioe.2019.00404] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 11/15/2022] Open
Abstract
Pyrazinamide (PZA) is one of the main FDA approved drugs to be used as the first line of defense against Mycobacterium Tuberculosis (MTB). It is activated into pyrazinoic acid (POA) via MTB's pncA gene-encoded pyrazinamidase (PZase). Mutations are most commonly responsible for PZA-resistance in nearly 70% of the resistant samples. In the present work, MTB positive samples were chosen for PZA drug susceptibility testing (DST) against critical concentration (100 ug/ml) of PZA. The resistant samples were subjected to pncA sequencing. As a result, 36 various mutations have been observed in the PZA resistant samples, uploaded to the NCBI (GeneBank accession no. MH461111). Here we report the mechanism of PZA resistance behind the three mutants (MTs), Asp12Ala, Pro54Leu, and His57Pro in comparison with the wild type (WT) through molecular dynamics simulation to unveil how these mutations affect the overall conformational stability. The post-simulation analyses revealed notable deviations as compared to the WT structure. Molecular docking studies of PZA with MTs and WT, pocket volume inspection and overall shape complementarity analysis confirmed the deleterious nature of these mutations and gave an insight into the mechanism behind PZA-resistance. These analyses provide vital information regarding MTB drug resistance and could be extremely useful in therapy management and overcoming its global burden.
Collapse
Affiliation(s)
- Aamir Mehmood
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Anwar Sheed Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Irfan
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Dong-Qing Wei
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Khan MT, Malik SI. Structural dynamics behind variants in pyrazinamidase and pyrazinamide resistance. J Biomol Struct Dyn 2019; 38:3003-3017. [PMID: 31357912 DOI: 10.1080/07391102.2019.1650113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pyrazinamide (PZA) is an important component of first-line anti-tuberculosis (anti-TB) drugs. The anti-TB agent is activated into an active form, pyrazinoic acid (POA), by Mycobacterium tuberculosis (MTB) pncA gene encoding pyrazinamidase (PZase). The major cause of PZA-resistance has been associated with mutations in the pncA gene. We have detected several novel mutations including V131F, Q141P, R154T, A170P, and V180F (GeneBank Accession No. MH461111) in the pncA gene of PZA-resistant isolates during PZA drug susceptibility testing followed by pncA gene sequencing. Here, we investigated molecular mechanism of PZA-resistance by comparing the results of experimental and molecular dynamics. The mutants (MTs) and wild type (WT) PZase structures in apo and complex with PZA were subjected to molecular dynamic simulations (MD) at the 40 ns. Multiple factors, including root mean square deviations (RMSD), binding pocket, total energy, dynamic cross correlation, and root mean square fluctuations (RMSF) of MTs and WT were compared. The MTs attained a high deviation and fluctuation compared to WT. Binding pocket volumes of the MTs, were found, lower than the WT, and the docking scores were high than WT while shape complementarity scores were lower than that of the WT. Residual motion in MTs are seemed to be dominant in anti-correlated motion. Mutations at locations, V131F, Q141P, R154T, A170P, and V180F, might be involved in the structural changes, possibly affecting the catalytic property of PZase to convert PZA into POA. Our study provides useful information that will enhance the understanding for better management of TB. AbbreviationsDSTdrug susceptibility testingΔelecelectrostatic energyLJLowenstein-Jensen mediumMGITmycobacterium growth indicator tubesMTsmutantsMDmolecular dynamic simulationsMTBMycobacterium tuberculosisNALC-NaOHN-acetyl-l-cysteine-sodium hydroxideNIHNational Institutes of HealthNPTamount of substance (N), pressure (P) temperature (T)NVTmoles (N), volume (V) temperature (T)PZasepyrazinamidaseΔpspolar solvation energyPTRLProvincial Tuberculosis Reference LaboratoryRMSDroot mean square deviationsRMSFroot mean square fluctuationsΔSASAsolvent accessible surface area energyTBtuberculosisGTotaltotal binding free energyΔvdWVan der Waals energyWTwild typeCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
12
|
Khan MT, Khan A, Rehman AU, Wang Y, Akhtar K, Malik SI, Wei DQ. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Sci Rep 2019; 9:7482. [PMID: 31097767 PMCID: PMC6522564 DOI: 10.1038/s41598-019-44013-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/29/2019] [Indexed: 02/04/2023] Open
Abstract
Resistance to key first-line drugs is a major hurdle to achieve the global end tuberculosis (TB) targets. A prodrug, pyrazinamide (PZA) is the only drug, effective in latent TB, recommended in drug resistance and susceptible Mycobacterium tuberculosis (MTB) isolates. The prodrug conversion into active form, pyrazinoic acid (POA), required the activity of pncA gene encoded pyrazinamidase (PZase). Although pncA mutations have been commonly associated with PZA resistance but a small number of resistance cases have been associated with mutationss in RpsA protein. Here in this study a total of 69 PZA resistance isolates have been sequenced for pncA mutations. However, samples that were found PZA resistant but pncA wild type (pncAWT), have been sequenced for rpsA and panD genes mutation. We repeated a drug susceptibility testing according to the WHO guidelines on 18 pncAWT MTB isolates. The rpsA and panD genes were sequenced. Out of total 69 PZA resistant isolates, 51 harbored 36 mutations in pncA gene (GeneBank Accession No. MH46111) while, fifteen different mutations including seven novel, were detected in the fourth S1 domain of RpsA known as C-terminal (MtRpsACTD) end. We did not detect any mutations in panD gene. Among the rpsA mutations, we investigated the molecular mechanism of resistance behind mutations, D342N, D343N, A344P, and I351F, present in the MtRpsACTD through molecular dynamic simulations (MD). WT showed a good drug binding affinity as compared to mutants (MTs), D342N, D343N, A344P, and I351F. Binding pocket volume, stability, and fluctuations have been altered whereas the total energy, protein folding, and geometric shape analysis further explored a significant variation between WT and MTs. In conclusion, mutations in MtRpsACTD might be involved to alter the RpsA activity, resulting in drug resistance. Such molecular mechanism behind resistance may provide a better insight into the resistance mechanism to achieve the global TB control targets.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Abbas Khan
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Ashfaq Ur Rehman
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Wang
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid Akhtar
- National University of Science and Technology, Islamabad, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan.
| | - Dong-Qing Wei
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Rehman AU, Khan MT, Liu H, Wadood A, Malik SI, Chen HF. Exploring the Pyrazinamide Drug Resistance Mechanism of Clinical Mutants T370P and W403G in Ribosomal Protein S1 of Mycobacterium tuberculosis. J Chem Inf Model 2019; 59:1584-1597. [DOI: 10.1021/acs.jcim.8b00956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Biotechnology, Abdul Wali Khan University Marden, Mardan 23200, Pakistan
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abdul Wadood
- Department of Biotechnology, Abdul Wali Khan University Marden, Mardan 23200, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai, 200235, China
| |
Collapse
|