1
|
Gupta C, Kalafut NC, Clarke D, Choi JJ, Arachchilage KH, Khullar S, Xia Y, Zhou X, Gerstein M, Wang D. Network-based drug repurposing for psychiatric disorders using single-cell genomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.01.24318008. [PMID: 39677458 PMCID: PMC11643187 DOI: 10.1101/2024.12.01.24318008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Neuropsychiatric disorders lack effective treatments due to a limited understanding of underlying cellular and molecular mechanisms. To address this, we integrated population-scale single-cell genomics data and analyzed cell-type-level gene regulatory networks across schizophrenia, bipolar disorder, and autism (23 cell classes/subclasses). Our analysis revealed potential druggable transcription factors co-regulating known risk genes that converge into cell-type-specific co-regulated modules. We applied graph neural networks on those modules to prioritize novel risk genes and leveraged them in a network-based drug repurposing framework to identify 220 drug molecules with the potential for targeting specific cell types. We found evidence for 37 of these drugs in reversing disorder-associated transcriptional phenotypes. Additionally, we discovered 335 drug-associated cell-type eQTLs, revealing genetic variation's influence on drug target expression at the cell-type level. Our results provide a single-cell network medicine resource that provides mechanistic insights for advancing treatment options for neuropsychiatric disorders.
Collapse
|
2
|
Wang L, Lu Y, Li D, Zhou Y, Yu L, Mesa Eguiagaray I, Campbell H, Li X, Theodoratou E. The landscape of the methodology in drug repurposing using human genomic data: a systematic review. Brief Bioinform 2024; 25:bbad527. [PMID: 38279645 PMCID: PMC10818097 DOI: 10.1093/bib/bbad527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/28/2024] Open
Abstract
The process of drug development is expensive and time-consuming. In contrast, drug repurposing can be introduced to clinical practice more quickly and at a reduced cost. Over the last decade, there has been a significant expansion of large biobanks that link genomic data to electronic health record data, public availability of various databases containing biological and clinical information and rapid development of novel methodologies and algorithms in integrating different sources of data. This review aims to provide a thorough summary of different strategies that utilize genomic data to seek drug-repositioning opportunities. We searched MEDLINE and EMBASE databases to identify eligible studies up until 1 May 2023, with a total of 102 studies finally included after two-step parallel screening. We summarized commonly used strategies for drug repurposing, including Mendelian randomization, multi-omic-based and network-based studies and illustrated each strategy with examples, as well as the data sources implemented. By leveraging existing knowledge and infrastructure to expedite the drug discovery process and reduce costs, drug repurposing potentially identifies new therapeutic uses for approved drugs in a more efficient and targeted manner. However, technical challenges when integrating different types of data and biased or incomplete understanding of drug interactions are important hindrances that cannot be disregarded in the pursuit of identifying novel therapeutic applications. This review offers an overview of drug repurposing methodologies, providing valuable insights and guiding future directions for advancing drug repurposing studies.
Collapse
Affiliation(s)
- Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Lu
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Doudou Li
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yajing Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Yu
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ines Mesa Eguiagaray
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Xue Li
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh MRC Institute of Genetics and Cancer, Edinburgh, UK
| |
Collapse
|
3
|
Recent innovations and in-depth aspects of post-genome wide association study (Post-GWAS) to understand the genetic basis of complex phenotypes. Heredity (Edinb) 2021; 127:485-497. [PMID: 34689168 PMCID: PMC8626474 DOI: 10.1038/s41437-021-00479-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
In the past decade, the high throughput and low cost of sequencing/genotyping approaches have led to the accumulation of a large amount of data from genome-wide association studies (GWASs). The first aim of this review is to highlight how post-GWAS analysis can be used make sense of the obtained associations. Novel directions for integrating GWAS results with other resources, such as somatic mutation, metabolite-transcript, and transcriptomic data, are also discussed; these approaches can help us move beyond each individual data point and provide valuable information about complex trait genetics. In addition, cross-phenotype association tests, when the loci detected by GWASs have significant associations with multiple traits, are reviewed to provide biologically informative results for use in real-time applications. This review also discusses the challenges of identifying interactions between genetic mutations (epistasis) and mutations of loci affecting more than one trait (pleiotropy) as underlying causes of cross-phenotype associations; these challenges can be overcome using post-GWAS analysis. Genetic similarities between phenotypes that can be revealed using post-GWAS analysis are also discussed. In summary, different methodologies of post-GWAS analysis are now available, enhancing the value of information obtained from GWAS results, and facilitating application in both humans and nonhuman species. However, precise methods still need to be developed to overcome challenges in the field and uncover the genetic underpinnings of complex traits.
Collapse
|
4
|
Badkas A, De Landtsheer S, Sauter T. Topological network measures for drug repositioning. Brief Bioinform 2021; 22:bbaa357. [PMID: 33348366 PMCID: PMC8294518 DOI: 10.1093/bib/bbaa357] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Drug repositioning has received increased attention since the past decade as several blockbuster drugs have come out of repositioning. Computational approaches are significantly contributing to these efforts, of which, network-based methods play a key role. Various structural (topological) network measures have thereby contributed to uncovering unintuitive functional relationships and repositioning candidates in drug-disease and other networks. This review gives a broad overview of the topic, and offers perspectives on the application of topological measures for network analysis. It also discusses unexplored measures, and draws attention to a wider scope of application efforts, especially in drug repositioning.
Collapse
|
5
|
Zhao X, Li B, Xia W. Visible-Light-Promoted Photocatalyst-Free Hydroacylation and Diacylation of Alkenes Tuned by NiCl2·DME. Org Lett 2020; 22:1056-1061. [DOI: 10.1021/acs.orglett.9b04595] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinxin Zhao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|