1
|
Liang S, Silva JC, Suska O, Lukoszek R, Almohammed R, Cowling V. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2905-2922. [PMID: 35212377 PMCID: PMC8934662 DOI: 10.1093/nar/gkac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
CMTR1 (cap methyltransferase 1) catalyses methylation of the first transcribed nucleotide of RNAPII transcripts (N1 2′-O-Me), creating part of the mammalian RNA cap structure. In addition to marking RNA as self, N1 2′-O-Me has ill-defined roles in RNA expression and translation. Here, we investigated the gene specificity of CMTR1 and its impact on RNA expression in embryonic stem cells. Using chromatin immunoprecipitation, CMTR1 was found to bind to transcription start sites (TSS) correlating with RNAPII levels, predominantly binding at histone genes and ribosomal protein (RP) genes. Repression of CMTR1 expression resulted in repression of RNAPII binding at the TSS and repression of RNA expression, particularly of histone and RP genes. In correlation with regulation of histones and RP genes, CMTR1 repression resulted in repression of translation and induction of DNA replication stress and damage. Indicating a direct role for CMTR1 in transcription, addition of recombinant CMTR1 to purified nuclei increased transcription of the histone and RP genes. CMTR1 was found to be upregulated during neural differentiation and there was an enhanced requirement for CMTR1 for gene expression and proliferation during this process. We highlight the distinct roles of the cap methyltransferases RNMT and CMTR1 in target gene expression and differentiation.
Collapse
Affiliation(s)
- Shang Liang
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joana C Silva
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga Suska
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Radoslaw Lukoszek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Rajaei Almohammed
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- To whom correspondence should be addressed. Tel: +44 1382 386997; Fax: +44 1382 386997;
| |
Collapse
|
2
|
Lu Z, Xiao P, Zhou Y, Li Z, Yu X, Sun J, Shen Y, Zhao B. Identification of HN252 as a potent inhibitor of protein phosphatase PPM1B. J Cell Mol Med 2020; 24:13463-13471. [PMID: 33048454 PMCID: PMC7701510 DOI: 10.1111/jcmm.15975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/20/2020] [Accepted: 09/20/2020] [Indexed: 12/25/2022] Open
Abstract
Protein phosphatase 1B (PPM1B), a member of metal-dependent protein serine/threonine phosphatase family, is involved in the regulation of several signalling pathways. However, our understanding of its substrate interaction and physiological functions is still largely limited. There is no reported PPM1B inhibitor to date. In this study, we identified HN252, a p-terphenyl derivative, as a potent PPM1B inhibitor (Ki = 0.52 ± 0.06 µM). HN252 binding to PPM1B displayed remarkable and specific inhibition of PPM1B in both in vitro and ex vivo. With the aid of this small molecular inhibitor, we identified 30 proteins' serine/threonine phosphorylation as potential substrates of PPM1B, 5 of which were demonstrated by immunoprecipitation, including one known (CDK2) and 4 novel ones (AKT1, HSP90B, β-catenin and BRCA1). Furthermore, GO and KEGG analysis of dramatically phosphorylated proteins by PPM1B inhibition indicated that PPM1B plays roles in the regulation of multiple cellular processes and signalling pathways, such as gene transcription, inflammatory regulation, ageing and tumorigenesis. Our work provides novel insights into further investigation of molecular mechanisms of PPM1B.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|