1
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
2
|
Lin DJ, Ng JCK, Huang L, Robinson M, O'Hara J, Wilson JA, Mellor AL. The immunotherapeutic role of indoleamine 2,3-dioxygenase in head and neck squamous cell carcinoma: A systematic review. Clin Otolaryngol 2021; 46:919-934. [PMID: 34053179 PMCID: PMC8600953 DOI: 10.1111/coa.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/31/2021] [Accepted: 04/24/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Novel cancer immunotherapy seeks to harness the body's own immune system and tip the balance in favour of antitumour activity. The intracellular enzyme indoleamine 2,3-dioxygenase (IDO) is a critical regulator of the tumour microenvironment (TME) via tryptophan metabolism. The potential immunotherapeutic role of IDO in head and neck squamous cell carcinoma (HNSCC) requires further exploration. We aim to assess the evidence on IDO in HNSCC. METHODS A systematic review of literature and clinical trials databases. RESULTS We included 40 studies: seven involved cell lines: eight assessed tumour immunohistochemistry: ten measured IDO gene transcription: 15 reported on clinical trials. Increased cell line IDO expression was postulated to adversely affect tumour metabolism and apoptosis. Immunohistochemical IDO expression correlated with worse survival. Gene transcription studies associated IDO with positive PD-L1 and human papillomavirus (HPV) status. Phase I/II clinical trials showed (a) overall response (34%-55%) and disease control rates (62%-70%) for IDO1 inhibitor in combination with a PD-1 inhibitor, (b) similar safety profiles when both are used in combination therapy compared to each as monotherapies and (c) IDO gene expression as a predictive biomarker for response to PD-L1 therapy. CONCLUSIONS IDO expression is increased in the TME of HNSCC, which correlates with poor prognosis. However, the exact mechanism of IDO-driven immune modulation in the TME is an enigma. Future translational studies should map IDO activity during HNSCC treatment and elucidate its precise role in the TME, such research will underpin the development of clinical trials establishing the efficacy of IDO inhibitors in HNSCC.
Collapse
Affiliation(s)
- Daniel J Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| | - James C K Ng
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Max Robinson
- Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK
| | - James O'Hara
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK.,Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Janet A Wilson
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK.,Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew L Mellor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Wang Y, Wang Y, Wang Y, Zhang Y. Identification of prognostic signature of non-small cell lung cancer based on TCGA methylation data. Sci Rep 2020; 10:8575. [PMID: 32444802 PMCID: PMC7244759 DOI: 10.1038/s41598-020-65479-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/29/2020] [Indexed: 12/28/2022] Open
Abstract
Non–small lung cancer (NSCLC) is a common malignant disease with very poor outcome. Accurate prediction of prognosis can better guide patient risk stratification and treatment decision making, and could optimize the outcome. Utilizing clinical and methylation/expression data in The Cancer Genome Atlas (TCGA), we conducted comprehensive evaluation of early-stage NSCLC to identify a methylation signature for survival prediction. 349 qualified cases of NSCLC with curative surgery were included and further grouped into the training and validation cohorts. We identified 4000 methylation loci with prognostic influence on univariate and multivariate regression analysis in the training cohort. KEGG pathway analysis was conducted to identify the key pathway. Hierarchical clustering and WGCNA co-expression analysis was performed to classify the sample phenotype and molecular subtypes. Hub 5′-C-phosphate-G-3′ (CpG) loci were identified by network analysis and then further applied for the construction of the prognostic signature. The predictive power of the prognostic model was further validated in the validation cohort. Based on clustering analysis, we identified 6 clinical molecular subtypes, which were associated with different clinical characteristics and overall survival; clusters 4 and 6 demonstrated the best and worst outcomes. We identified 17 hub CpG loci, and their weighted combination was used for the establishment of a prognostic model (RiskScore). The RiskScore significantly correlated with post-surgical outcome; patients with a higher RiskScore have worse overall survival in both the training and validation cohorts (P < 0.01). We developed a novel methylation signature that can reliably predict prognosis for patients with NSCLC.
Collapse
Affiliation(s)
- Yifan Wang
- Institute of Cancer and Basic medicine (ICBM), Chinese Academy of Sciences, Zhejiang, China.,Ultrasonic Department, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, China.,Ultrasonic Department, Zhejiang Cancer Hospital, Zhejiang, China
| | - Ying Wang
- Department of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Wang
- Institute of Cancer and Basic medicine (ICBM), Chinese Academy of Sciences, Zhejiang, China.,Department of Gynecological Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, China.,Department of Gynecological Oncology, Zhejiang Cancer Hospital, Zhejiang, China
| | - Yongjun Zhang
- Institute of Cancer and Basic medicine (ICBM), Chinese Academy of Sciences, Zhejiang, China. .,Department of Integration of Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, China. .,Department of Integration of Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Zhejiang, China.
| |
Collapse
|
4
|
Serafini MS, Lopez-Perez L, Fico G, Licitra L, De Cecco L, Resteghini C. Transcriptomics and Epigenomics in head and neck cancer: available repositories and molecular signatures. CANCERS OF THE HEAD & NECK 2020; 5:2. [PMID: 31988797 PMCID: PMC6971871 DOI: 10.1186/s41199-020-0047-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 02/06/2023]
Abstract
For many years, head and neck squamous cell carcinoma (HNSCC) has been considered as a single entity. However, in the last decades HNSCC complexity and heterogeneity have been recognized. In parallel, high-throughput omics techniques had allowed picturing a larger spectrum of the behavior and characteristics of molecules in cancer and a large set of omics web-based tools and informative repository databases have been developed. The objective of the present review is to provide an overview on biological, prognostic and predictive molecular signatures in HNSCC. To contextualize the selected data, our literature survey includes a short summary of the main characteristics of omics data repositories and web-tools for data analyses. The timeframe of our analysis was fixed, encompassing papers published between January 2015 and January 2019. From more than 1000 papers evaluated, 61 omics studies were selected: 33 investigating mRNA signatures, 11 and 13 related to miRNA and other non-coding-RNA signatures and 4 analyzing DNA methylation signatures. More than half of identified signatures (36) had a prognostic value but only in 10 studies selection of a specific anatomical sub-site (8 oral cavity, 1 oropharynx and 1 both oral cavity and oropharynx) was performed. Noteworthy, although the sample size included in many studies was limited, about one-half of the retrieved studies reported an external validation on independent dataset(s), strengthening the relevance of the obtained data. Finally, we highlighted the development and exploitation of three gene-expression signatures, whose clinical impact on prognosis/prediction of treatment response could be high. Based on this overview on omics-related literature in HNSCC, we identified some limits and strengths. The major limits are represented by the low number of signatures associated to DNA methylation and to non-coding RNA (miRNA, lncRNA and piRNAs) and the availability of a single dataset with multiple omics on more than 500 HNSCC (i.e. TCGA). The major strengths rely on the integration of multiple datasets through meta-analysis approaches and on the growing integration among omics data obtained on the same cohort of patients. Moreover, new approaches based on artificial intelligence and informatic analyses are expected to be available in the next future.
Collapse
Affiliation(s)
- Mara S Serafini
- 1Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Laura Lopez-Perez
- 2Life Supporting Technologies, Universidad Politécnica de Madrid, Madrid, Spain
| | - Giuseppe Fico
- 2Life Supporting Technologies, Universidad Politécnica de Madrid, Madrid, Spain
| | - Lisa Licitra
- 3Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,4University of Milan, Milan, Italy
| | - Loris De Cecco
- 1Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Carlo Resteghini
- 3Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
5
|
d'Errico M, Alwers E, Zhang Y, Edelmann D, Brenner H, Hoffmeister M. Identification of prognostic DNA methylation biomarkers in patients with gastrointestinal adenocarcinomas: A systematic review of epigenome-wide studies. Cancer Treat Rev 2020; 82:101933. [DOI: 10.1016/j.ctrv.2019.101933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
|
6
|
Das D, Ghosh S, Maitra A, Biswas NK, Panda CK, Roy B, Sarin R, Majumder PP. Epigenomic dysregulation-mediated alterations of key biological pathways and tumor immune evasion are hallmarks of gingivo-buccal oral cancer. Clin Epigenetics 2019; 11:178. [PMID: 31796082 PMCID: PMC6889354 DOI: 10.1186/s13148-019-0782-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gingivo-buccal oral squamous cell carcinoma (OSCC-GB) is the most common cancer among men in India and is associated with high mortality. Although OSCC-GB is known to be quite different from tongue cancer in its genomic presentation and its clinical behavior, it is treated identically as tongue cancer. Predictive markers of prognosis and therapy that are specific to OSCC-GB are, therefore, required. Although genomic drivers of OSCC-GB have been identified by whole exome and whole genome sequencing, no epigenome-wide study has been conducted in OSCC-GB; our study has filled this gap, and has discovered and validated epigenomic hallmarks of gingivobuccal oral cancer. METHODS We have carried out integrative analysis of epigenomic (n = 87) and transcriptomic (n = 72) profiles of paired tumor-normal tissues collected from OSCC-GB patients from India. Genome-wide DNA methylation assays and RNA-sequencing were performed on high-throughput platforms (Illumina) using a half-sample of randomly selected patients to discover significantly differentially methylated probes (DMPs), which were validated on the remaining half-sample of patients. RESULTS About 200 genes showed significant inverse correlation between promoter methylation and expression, of which the most significant genes included genes that act as transcription factors and genes associated with other cancer types. Novel findings of this study include identification of (a) potential immunosuppressive effect in OSCC-GB due to significant promoter hypomethylation driven upregulation of CD274 and CD80, (b) significant dysregulation by epigenetic modification of DNMT3B (upregulation) and TET1 (downregulation); and (c) known drugs that can reverse the direction of dysregulation of gene expression caused by promoter methylation. CONCLUSIONS In OSCC-GB patients, there are significant alterations in expression of key genes that (a) regulate normal cell division by maintenance of balanced DNA methylation and transcription process, (b) maintain normal physiological signaling (PPAR, B cell receptor) and metabolism (arachidonic acid) pathways, and (c) provide immune protection against antigens, including tumor cells. These findings indicate novel therapeutic targets, including immunotherapeutic, for treatment of OSCC-GB.
Collapse
Affiliation(s)
- Debodipta Das
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India
| | | | - Bidyut Roy
- Indian Statistical Institute, Kolkata, India
| | - Rajiv Sarin
- Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India. .,Indian Statistical Institute, Kolkata, India.
| |
Collapse
|