1
|
Gao S, Shan D, Tang Y. Identification biomarkers in disease progression of obstructive sleep apnea from children serum based on WGCNA and Mfuzz. Front Neurol 2024; 15:1452507. [PMID: 39410993 PMCID: PMC11473293 DOI: 10.3389/fneur.2024.1452507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Obstructive sleep apnea (OSA) syndrome is a prevalent form of respiratory sleep disorder, with an increasing prevalence among children. The consequences of OSA include obesity, diabetes, cardiovascular disease, and neuropsychological diseases. Despite its pervasive impact, a significant proportion of individuals especially children remain unaware that they suffer from OSA. Consequently, there is an urgent need for an accessible diagnostic approach. In this study, we conducted a bioinformatic analysis to identify potential biomarkers from a proteomics dataset comprising serum samples from children with OSA in the progression stage. In the Gene Set Enrichment Analysis (GSEA), we observed that the complement and immune response pathways persisted throughout the development of OSA and could be detected in the early stages. Subsequent to soft clustering and WGCNA analysis, it was revealed that the Hippo pathway, including ITGAL and FERMT3, plays a role in mild OSA. The analysis revealed a significant alteration of the complement and coagulation pathways, including TFPI and MLB2, in moderate OSA. In severe OSA, there was an association between hypoxia and the extracellular matrix (ECM) receptor interaction and collagen binding. In summary, it can be posited that the systemic inflammation may persist throughout the progression of OSA. Furthermore, severe OSA is characterized by abnormal vascular endothelial function, which may be attributed to chronic hypoxia. Finally, four potential biomarkers (ITGAL, TFPI, TTR, ANTXR1) were identified based on LASSO regression, and a prediction model for OSA progression was constructed based on the biomarkers.
Collapse
Affiliation(s)
- Simin Gao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Otolaryngology-Head and Neck Surgery, Sleep Medicine Center, West China School of Public Health and West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Shan
- Department of Otolaryngology-Head and Neck Surgery, Sleep Medicine Center, West China School of Public Health and West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuedi Tang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wu R, Xu F, Li J, Wang F, Chen N, Wang X, Chen Q. Circ-CIMIRC inhibition alleviates CIH-induced myocardial damage via FbxL4-mediated ubiquitination of PINK1. iScience 2024; 27:108982. [PMID: 38333696 PMCID: PMC10850785 DOI: 10.1016/j.isci.2024.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep disordered breathing diseases that characterized by chronic intermittent hypoxia (CIH). This work aimed to explore the role of circ-CIMIRC in CIH-induced myocardial injury. CIH aggravated myocardial tissue damage in rats. Circ_CIMIRC overexpression promoted apoptosis and reduced the colocalization of Tom20 and Parkin and mitophagy in CIH-treated H9c2 cells. Additionally, FbxL4 interacted with PINK1, FbxL4 silencing reduced PINK1 ubiquitination in H9c2 cells. Two major ubiquitination sites (K319 and K433) were responsible for ubiquitination of PINK1. Circ_CIMIRC promoted FbxL4-mediated ubiquitination and degradation of PINK1. Furthermore, circ_CIMIRC inhibition alleviated the pathological damage, fibrosis and apoptosis of myocardial tissues, reduced oxidative stress in CIH rats. In conclusion, circ_CIMIRC silencing repressed FbxL4-mediated ubiquitination and degradation of PINK1 and then enhanced PINK1/Parkin-mediated mitophagy, thereby alleviating myocardial damage in CIH rats. Thus, circ_CIMIRC may be a potential strategy to alleviate CIH-induced myocardial damage.
Collapse
Affiliation(s)
- Runhua Wu
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Fengsheng Xu
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Jingyi Li
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Feng Wang
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Naijie Chen
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Xiaoting Wang
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Qin Chen
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| |
Collapse
|
3
|
Li J, Lv Q, Sun H, Yang Y, Jiao X, Yang S, Yu H, Qin Y. Combined Association Between ADIPOQ, PPARG, and TNF Genes Variants and Obstructive Sleep Apnea in Chinese Han Population. Nat Sci Sleep 2022; 14:363-372. [PMID: 35264890 PMCID: PMC8901229 DOI: 10.2147/nss.s343205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Obstructive sleep apnea (OSA) is a common chronic polygenic disease. Multiple genetic markers associated with OSA have been identified by genome-wide association studies. Here, we aimed to construct a polygenic risk score (PRS) and examine the association with the presence of OSA in a Chinese Han Population. PATIENTS AND METHODS This study included 1057 individuals who were genotyped for nine susceptibility loci from three genes (ADIPOQ, PPARG, and TNF), from which each individual's PRS was calculated by summing the number of risk alleles. The associations between PRS and OSA were determined by logistic regression analyses. Model discrimination was assessed by a receiver operating characteristic (ROC) curve using bootstrapping with 1000 resamples. RESULTS The subjects included 874 with OSA and 183 controls. A higher PRS was associated with an increased apnea-hypopnea index (AHI). The PRS was an important risk factor for the development of OSA (OR = 1.237 per SD, P = 0.030). Subjects with higher PRS had a 2.88-fold (95% CI: 1.393-5.955, P = 0.004) and 5.402-fold (95% CI: 2.311-12.624, P<0.001) greater risk for having OSA and moderate-to-severe OSA, respectively, compared with those with lower genetic risk. More importantly, compared with determination of risk based solely on clinical factors, addition of the PRS increased discriminatory accuracy for both OSA (AUC from 0.75 to 0.78, P = 0.02) and moderate-to-severe OSA (AUC from 0.80 to 0.83, P = 0.02). CONCLUSION Our study suggests that the PRS is independently associated with AHI and OSA. Combining PRS with conventional risk factors could improve the discrimination of OSA.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, People's Republic of China.,Emergency Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Qianwen Lv
- Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Haili Sun
- Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Yunyun Yang
- Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Xiaolu Jiao
- Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Song Yang
- Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Huahui Yu
- Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, 100029, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| |
Collapse
|
4
|
Christensson E, Mkrtchian S, Ebberyd A, Österlund Modalen Å, Franklin KA, Eriksson LI, Jonsson Fagerlund M. Whole blood gene expression signature in patients with obstructive sleep apnea and effect of continuous positive airway pressure treatment. Respir Physiol Neurobiol 2021; 294:103746. [PMID: 34302993 DOI: 10.1016/j.resp.2021.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The molecular mechanisms of obstructive sleep apnea (OSA), in particular the gene expression patterns in whole blood of patients with OSA, can shed more light on the underlying pathophysiology of OSA and suggest potential biomarkers. In the current study, we have enrolled thirty patients with untreated moderate-severe OSA together with 20 BMI, age, and sex-matched controls and 15 normal-weight controls. RNA-sequencing of whole blood and home sleep apnea testing were performed in the untreated state and after three and twelve months of continuous positive airway pressure (CPAP) treatment. Analysis of the whole blood transcriptome of the patients with OSA revealed a unique pattern of differential expression with a significant number of downregulated immune-related genes including many heavy and light chain immunoglobulins and interferon-inducible genes. This was confirmed by the gene ontology analysis demonstrating enrichment with the biological processes associated with various immune functions. Expression of these genes was recovered after three months of CPAP treatment. After 12 months of CPAP treatment, the overall gene expression profile returns to the initial, untreated level. In addition, we have confirmed the importance of choosing BMI-matched controls as a reference group as opposed to normal-weight healthy individuals based on the significantly different gene expression signatures between these two groups.
Collapse
Affiliation(s)
- Eva Christensson
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Souren Mkrtchian
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Karl A Franklin
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Lars I Eriksson
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Gharib SA, Hurley AL, Rosen MJ, Spilsbury JC, Schell AE, Mehra R, Patel SR. Obstructive sleep apnea and CPAP therapy alter distinct transcriptional programs in subcutaneous fat tissue. Sleep 2021; 43:5686164. [PMID: 31872261 DOI: 10.1093/sleep/zsz314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea (OSA) has been linked to dysregulated metabolic states, and treatment of sleep apnea may improve these conditions. Subcutaneous adipose tissue is a readily samplable fat depot that plays an important role in regulating metabolism. However, neither the pathophysiologic consequences of OSA nor the effects of continuous positive airway pressure (CPAP) in altering this compartment's molecular pathways are understood. This study aimed to systematically identify subcutaneous adipose tissue transcriptional programs modulated in OSA and in response to its effective treatment with CPAP. Two subject groups were investigated: Study Group 1 was comprised of 10 OSA and 8 controls; Study Group 2 included 24 individuals with OSA studied at baseline and following CPAP. For each subject, genome-wide gene expression measurement of subcutaneous fat was performed. Differentially activated pathways elicited by OSA (Group 1) and in response to its treatment (Group 2) were determined using network and Gene Set Enrichment Analysis (GSEA). In Group 2, treatment of OSA with CPAP improved apnea-hypopnea index, daytime sleepiness, and blood pressure, but not anthropometric measures. In Group 1, GSEA revealed many up-regulated gene sets in OSA subjects, most of which were involved in immuno-inflammatory (e.g. interferon-γ signaling), transcription, and metabolic processes such as adipogenesis. Unexpectedly, CPAP therapy in Group 2 subjects was also associated with up-regulation of several immune pathways as well as cholesterol biosynthesis. Collectively, our findings demonstrate that OSA alters distinct inflammatory and metabolic programs in subcutaneous fat, but these transcriptional signatures are not reversed with short-term effective therapy.
Collapse
Affiliation(s)
- Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA.,Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA
| | | | - Michael J Rosen
- Department of Surgery, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH
| | - James C Spilsbury
- Department of Population & Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Amy E Schell
- Department of Otolaryngology, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH.,Division of Pulmonary, Critical Care, and Sleep Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Reena Mehra
- Sleep Disorders Center of the Neurologic Institute, Respiratory Institute, Heart and Vascular Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Sanjay R Patel
- Center for Sleep and Cardiovascular Outcomes Research, University of Pittsburgh, Pittsburgh, PA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Chen W, Guo X, Jin Z, Li R, Shen L, Li W, Cai W, Zhang G. Transcriptional alterations of genes related to fertility decline in male rats induced by chronic sleep restriction. Syst Biol Reprod Med 2020; 66:99-111. [DOI: 10.1080/19396368.2019.1678694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenyang Chen
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Xingdao Guo
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Zhiping Jin
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Runan Li
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Lixia Shen
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Wei Li
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Wangting Cai
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Guirong Zhang
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| |
Collapse
|
7
|
Peng J, Song J, Zhou J, Yin X, Song J. Effects of CPAP on the transcriptional signatures in patients with obstructive sleep apnea via coexpression network analysis. J Cell Biochem 2019; 120:9277-9290. [PMID: 30719767 PMCID: PMC6593761 DOI: 10.1002/jcb.28203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/15/2018] [Indexed: 01/17/2023]
Abstract
A growing number of studies provide epidemiological evidence linking obstructive sleep apnea (OSA) with a number of chronic disorders. Transcriptional analyses have been conducted to analyze the gene expression data. However, the weighted gene coexpression network analysis (WGCNA) method has not been applied to determine the transcriptional consequence of continuous positive airway pressure (CPAP) therapy in patients with severe OSA. The aim of this study was to identify key pathways and genes in patients with OSA that are influenced by CPAP treatment and uncover/unveil potential molecular mechanisms using WGCNA. We analyzed the microarray data of OSA (GSE 49800) listed in the Gene Expression Omnibus database. Coexpression modules were constructed using WGCNA. In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were also conducted. After the initial data processing, 5101 expressed gene profiles were identified. Next, a weighted gene coexpression network was established and 16 modules of coexpressed genes were identified. The interaction analysis demonstrated a relative independence of gene expression in these modules. The black module, tan module, midnightblue module, pink module, and greenyellow module were significantly associated with the alterations in circulating leukocyte gene expression at baseline and after exposure to CPAP. The five hub genes were considered to be candidate OSA-related genes after CPAP treatment. Functional enrichment analysis revealed that steroid biosynthesis, amino sugar and nucleotide sugar metabolism, protein processing in the endoplasmic reticulum, and the insulin signaling pathway play critical roles in the development of OSA in circulating leukocyte gene expression at baseline and after exposure to CPAP. Using this new systems biology approach, we identified several genes and pathways that appear to be critical to OSA after CPAP treatment, and these findings provide a better understanding of OSA pathogenesis.
Collapse
Affiliation(s)
- Juxiang Peng
- Department of Orthodontics, Guiyang Hospital of StomatologyGuiyangChina
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical UniversityChongqingChina
| | - Jukun Song
- Department of Oral and Maxillofacial SurgeryGuizhou Provincial People’s HospitalGuiyangGuizhouChina
| | - Jing Zhou
- Department of Orthodontics, Guiyang Hospital of StomatologyGuiyangChina
| | - Xinhai Yin
- Department of Oral and Maxillofacial SurgeryGuizhou Provincial People’s HospitalGuiyangGuizhouChina
| | - Jinlin Song
- Department of Orthodontics, Guiyang Hospital of StomatologyGuiyangChina
- College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical UniversityChongqingChina
| |
Collapse
|