1
|
Forouzandegan M, Sadeghmousavi S, Heidari A, Khaboushan AS, Kajbafzadeh AM, Zolbin MM. Harnessing the potential of tissue engineering to target male infertility: Insights into testicular regeneration. Tissue Cell 2025; 93:102658. [PMID: 39689384 DOI: 10.1016/j.tice.2024.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Male infertility is among one of the most challenging health concerns in the world. Traditional therapeutic interventions such as semen and testicular tissue cryopreservation aim to restore or preserve male fertility. However, these methods are subject to limitations that impact their efficacy and are infeasible in cases such as patients who cannot produce mature sperm due to genetic or pathological disorders. Moreover, with the number of cases of prepubertal boys who must undergo gonadotoxic treatments rising, alternatives have been sought for fertility preservation to enhance reproductive rates in vitro and in vivo. Tissue engineering is a promising area that can address aspects that current therapies may not fully encompass through the creation of bioartificial testicular structures or 3D culture systems that allow the establishment of the essential conditions for sperm production. This study aims to first give a brief overview of stem cell therapy in treating male infertility and then go more in-depth regarding the novel methods and procedures based on tissue engineering that have the potential to offer new treatments for infertility caused by testicular disorders and defects.
Collapse
Affiliation(s)
- Moojan Forouzandegan
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Heidari
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Li F, XinHuang, Wang R, Li Y, Wu L, Qiao X, Zhong Y, Gong G, Huang W. Collagen-based materials in male genitourinary diseases and tissue regeneration. COLLAGEN AND LEATHER 2024; 6:36. [DOI: 10.1186/s42825-024-00185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
AbstractMale genitourinary dysfunction causes serious physical or mental distress, such as infertility and psychological harm, which leads to impaired quality of life. Current conventional treatments involving drug therapy, surgical repair, and tissue grafting have a limited effect on recovering the function and fertility of the genitourinary organs. To address these limitations, various biomaterials have been explored, with collagen-based materials increasingly gaining attention for reconstructing the male genitourinary system due to their superior biocompatibility, biodegradability, low antigenicity, biomimetic 3D matrix characteristics, hemostatic efficacy, and tissue regeneration capabilities. This review covers the recent biomedical applications of collagen-based materials including treatment of erectile dysfunction, premature ejaculation, penile girth enlargement, prostate cancer, Peyronie's disease, chronic kidney disease, etc. Although there are relatively few clinical trials, the promising results of the existing studies on animal models reveal a bright future for collagen-based materials in the treatment of male genitourinary diseases.
Graphic Abstract
Collapse
|
3
|
Keshtmand Z, Eftekhari S, Khodadadi B, Farzollahi B, Khosravimelal S, Shandiz SA, Tavakkoli Yaraki M. Engineering of gelatin scaffold by extracellular matrix of Sertoli cells for embryonic stem cell proliferation. Toxicol In Vitro 2024; 100:105900. [PMID: 39029600 DOI: 10.1016/j.tiv.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Mimicking the microenvironment of seminiferous tubules plays an indispensable role in directing differentiation of stem cells toward germ cells in vitro. In this work, we fabricated electrospun gelatin (EG) mats (i.e., with diameter <500 nm) conditioned with Sertoli cells' extracellular matrix (ECM) to simulate both 3D structures and composition of normal testis tissue. Sertoli cells were isolated from mice testis and represented through immunocytochemistry (ICC) staining for expression of vimentin, a specific marker of Sertoli cells. The morphological characteristics of ECM-coated scaffold were investigated under scanning electron microscope (SEM). The efficient elimination of cells was confirmed by MTT assay. Furthermore, the cyto/biocompatibility of ECM-conditioned EG scaffold was determined for Sertoli cells and embryonic stem cells (ESCs), alone and as in co-culture. According to the results, the designed scaffold provided a mat for cell proliferation with negligible toxicity (almost 100% cell viability). SEM micrographs displayed cells with elongated shape and complete stretching morphology when compared with those cultured on scaffold without ECM. Moreover, an enhanced differentiation of ESCs toward sperm-generating cells was obtained through co-culturing of Sertoli cells and ESCs, where cell viability was found almost 100%. Our findings introduce the ECM-conditioned EG scaffold as a potentially influential engineered substrate for in vitro guidance of stem cells differentiation by mimicking the native microenvironment.
Collapse
Affiliation(s)
- Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Khodadadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Bahare Farzollahi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
4
|
Bashiri Z, Hosseini SJ, Salem M, Koruji M. In vivo and in vitro sperm production: an overview of the challenges and advances in male fertility restoration. Clin Exp Reprod Med 2024; 51:171-180. [PMID: 38525520 PMCID: PMC11372308 DOI: 10.5653/cerm.2023.06569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 03/26/2024] Open
Abstract
Male infertility can be caused by genetic anomalies, endocrine disorders, inflammation, and exposure to toxic chemicals or gonadotoxic treatments. Therefore, several recent studies have concentrated on the preservation and restoration of fertility to enhance the quality of life for affected individuals. It is currently recommended to biobank the tissue extracted from testicular biopsies to provide a later source of spermatogonial stem cells (SSCs). Another successful approach has been the in vitro production of haploid male germ cells. The capacity of SSCs to transform into sperm, as in testicular tissue transplantation, SSC therapy, and in vitro or ex vivo spermatogenesis, makes them ideal candidates for in vivo fertility restoration. The transplantation of SSCs or testicular tissue to regenerate spermatogenesis and create embryos has been achieved in nonhuman mammal species. Although the outcomes of human trials have yet to be released, this method may soon be approved for clinical use in humans. Furthermore, regenerative medicine techniques that develop tissue or cells on organic or synthetic scaffolds enriched with bioactive molecules have also gained traction. All of these methods are now in different stages of experimentation and clinical trials. However, thanks to rigorous studies on the safety and effectiveness of SSC-based reproductive treatments, some of these techniques may be clinically available in upcoming decades.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility and Infertility Clinic, Hamedan, Iran
| | - Seyed Jamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
7
|
Salem M, Feizollahi N, Jabari A, Golmohammadi MG, Shirinsokhan A, Ghanami Gashti N, Bashghareh A, Nikmahzar A, Abbasi Y, Naji M, Abbasi M. Differentiation of human spermatogonial stem cells using a human decellularized testicular scaffold supplemented by platelet-rich plasma. Artif Organs 2023; 47:840-853. [PMID: 36721957 DOI: 10.1111/aor.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Effective culture systems for attachment, migration, proliferation, and differentiation of spermatogonial stem cells (SSCs) can be a promising therapeutic modality for preserving male fertility. Decellularized extracellular matrix (ECM) from native testis tissue creates a local microenvironment for testicular cell culture. Furthermore, platelet-rich plasma (PRP) contains various growth factors for the proliferation and differentiation of SSCs. METHODS In this study, human testicular cells were isolated and cultured for 4 weeks, and SSCs were characterized using immunocytochemistry (ICC) and flow cytometry. Human testicular tissue was decellularized (0.3% SDS, 1% Triton), and the efficiency of the decellularization process was confirmed by histological staining and DNA content analysis. SSCs were cultured on the human decellularized testicular matrix (DTM) for 4 weeks. The viability and the expression of differentiation genes were evaluated by MTT and real-time polymerase chain reaction (PCR), respectively. RESULTS Histological evaluation and DNA content analysis showed that the components of ECM were preserved during decellularization. Our results showed that after 4 weeks of culture, the expression levels of BAX, BCL-2, PLZF, and SCP3 were unchanged, while the expression of PRM2 significantly increased in the cells cultured on DTM supplemented with PRP (ECM-PRP). In addition, the expression of GFRA1 was significantly decreased in the ECM group compared to the control and PRP groups. Furthermore, the MTT test indicated that viability was significantly enhanced in cells plated on DTM supplemented with PRP. CONCLUSION Our study demonstrated that DTM supplemented with PRP can provide an effective culture system for the differentiation and viability of SSCs.
Collapse
Affiliation(s)
- Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayob Jabari
- Department of Obstetrics and Gynecology, Molud Infertility Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Armaghan Shirinsokhan
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Nasrin Ghanami Gashti
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland
| | - Alieh Bashghareh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Abbasi
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
9
|
Eyni H, Ghorbani S, Nazari H, Hajialyani M, Razavi Bazaz S, Mohaqiq M, Ebrahimi Warkiani M, Sutherland DS. Advanced bioengineering of male germ stem cells to preserve fertility. J Tissue Eng 2021; 12:20417314211060590. [PMID: 34868541 PMCID: PMC8638075 DOI: 10.1177/20417314211060590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
In modern life, several factors such as genetics, exposure to toxins, and aging have resulted in significant levels of male infertility, estimated to be approximately 18% worldwide. In response, substantial progress has been made to improve in vitro fertilization treatments (e.g. microsurgical testicular sperm extraction (m-TESE), intra-cytoplasmic sperm injection (ICSI), and round spermatid injection (ROSI)). Mimicking the structure of testicular natural extracellular matrices (ECM) outside of the body is one clear route toward complete in vitro spermatogenesis and male fertility preservation. Here, a new wave of technological innovations is underway applying regenerative medicine strategies to cell-tissue culture on natural or synthetic scaffolds supplemented with bioactive factors. The emergence of advanced bioengineered systems suggests new hope for male fertility preservation through development of functional male germ cells. To date, few studies aimed at in vitro spermatogenesis have resulted in relevant numbers of mature gametes. However, a substantial body of knowledge on conditions that are required to maintain and mature male germ cells in vitro is now in place. This review focuses on advanced bioengineering methods such as microfluidic systems, bio-fabricated scaffolds, and 3D organ culture applied to the germline for fertility preservation through in vitro spermatogenesis.
Collapse
Affiliation(s)
- Hossein Eyni
- Department of Anatomical Sciences,
School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center
(iNANO), Aarhus University, Aarhus, Denmark
| | - Hojjatollah Nazari
- Research Center for Advanced
Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of
Medical Sciences, Tehran, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research
Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah,
Iran
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering,
University of Technology Sydney, Sydney, NSW, Australia
| | - Mahdi Mohaqiq
- Institute of Regenerative Medicine,
School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | | | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center
(iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Vardiani M, Ghaffari Novin M, Koruji M, Nazarian H, Goossens E, Aghaei A, Seifalian AM, Ghasemi Hamidabadi H, Asgari F, Gholipourmalekabadi M. Gelatin Electrospun Mat as a Potential Co-culture System for In Vitro Production of Sperm Cells from Embryonic Stem Cells. ACS Biomater Sci Eng 2020; 6:5823-5832. [PMID: 33320586 DOI: 10.1021/acsbiomaterials.0c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering of 3D substrates with maximum similarity to seminiferous tubules would help to produce functional sperm cells in vitro from stem cells. Here, we present a 3D electrospun gelatin (EG) substrate seeded with Sertoli cells and determine its potential for guided differentiation of embryonic stem cells (ESCs) toward germline cells. The EG was fabricated by electrospinning, and its morphology under SEM, as well as cytobiocompatibility for Sertoli cells and ESCs, was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and cell attachment assay. Embryoid bodies (EBs) were formed from ESCs and co-cultured with Sertoli cells, induced with BMP4 for 3 and 7 consecutive days to induce the differentiation of EBs toward germline cells. The differentiation was investigated by immunocytochemistry (ICC), flow cytometry, and RT-PCR in four experimental groups of EBs (EBs cultured in gelatin-coated cell culture plates); Scaffold/EB (EBs cultured on EG); ESCs/Ser (EBs and Sertoli cells co-cultured on gelatin-coated cell culture plates without EG); and Scaffold/EB/Ser (EBs and Sertoli cells co-cultured on EG). All experimental groups exhibited a significantly increased MVH (germline-specific marker) and decreased c-KIT (stemness marker) expression when compared with the EB group. ICC and flow cytometry revealed that Scaffold/EB/Ser had the highest level of MVH and the lowest c-KIT expression at both 3 and 7 days postdifferentiation compared with other groups. RT-PCR results showed a significant increase in the germline marker (Dazl) and a significant decrease in the ESC stemness marker (Nanog) in Scaffold/EB compared to the EB group. The germline markers Gcna, Stella, Mvh, Stra8, Piwil2, and Dazl were significantly increased in Scaffold/EB/Ser compared to the Scaffold/EB group. Our findings revealed that the EG scaffold can provide an excellent substrate biomimicking the micro/nanostructure of native seminiferous tubules and a platform for Sertoli cell-EB communication required for growth and differentiation of ESCs into germline cells.
Collapse
Affiliation(s)
- Mina Vardiani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Reproductive Biotechnology Research Center, Aviccena Research Institute, ACECR, 14115-343 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Hamid Nazarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Ellen Goossens
- Biology of the Testis Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Abbas Aghaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd.), The London BioScience Innovation Centre, NW1 0NH London, United Kingdom
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran
| | - Fatemeh Asgari
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
11
|
Campiglio CE, Contessi Negrini N, Farè S, Draghi L. Cross-Linking Strategies for Electrospun Gelatin Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2476. [PMID: 31382665 PMCID: PMC6695673 DOI: 10.3390/ma12152476] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 01/02/2023]
Abstract
Electrospinning is an exceptional technology to fabricate sub-micrometric fiber scaffolds for regenerative medicine applications and to mimic the morphology and the chemistry of the natural extracellular matrix (ECM). Although most synthetic and natural polymers can be electrospun, gelatin frequently represents a material of choice due to the presence of cell-interactive motifs, its wide availability, low cost, easy processability, and biodegradability. However, cross-linking is required to stabilize the structure of the electrospun matrices and avoid gelatin dissolution at body temperature. Different physical and chemical cross-linking protocols have been described to improve electrospun gelatin stability and to preserve the morphological fibrous arrangement of the electrospun gelatin scaffolds. Here, we review the main current strategies. For each method, the cross-linking mechanism and its efficiency, the influence of electrospinning parameters, and the resulting fiber morphology are considered. The main drawbacks as well as the open challenges are also discussed.
Collapse
Affiliation(s)
- Chiara Emma Campiglio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|