1
|
Kolodziejczyk-Czepas J, Czepas J. Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity-A Review. Molecules 2023; 28:molecules28041677. [PMID: 36838662 PMCID: PMC9965408 DOI: 10.3390/molecules28041677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Functionality of the fibrinolytic system is based on activity of its central enzyme, plasmin, responsible for the removal of fibrin clots. Besides the hemostasis, fibrinolytic proteins are also involved in many other physiological and pathological processes, including immune response, extracellular matrix degradation, cell migration, and tissue remodeling. Both the impaired and enhanced activity of fibrinolytic proteins may result in serious physiological consequences: prothrombotic state or excessive bleeding, respectively. However, current medicine offers very few options for treating fibrinolytic disorders, particularly in the case of plasmin inhibition. Although numerous attempts have been undertaken to identify natural or to develop engineered fibrinolytic system modulators, structural similarities within serine proteases of the hemostatic system and pleiotropic activity of fibrinolytic proteins constitute a serious problem in discovering anti- or profibrinolytic agents that could precisely affect the target molecules and reduce the risk of side effects. Therefore, this review aims to present a current knowledge of various classes of natural inhibitors and stimulators of the fibrinolytic system being well-defined low-molecular plant secondary metabolites or constituents of plant extracts as well as plant peptides. This work also discusses obstacles caused by low specificity of most of natural compounds and, hence, outlines recent trends in studies aimed at finding more efficient modulators of plasmin activity, including investigation of modifications of natural pharmacophore templates.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| | - Jan Czepas
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Sustainable valorization of papaya peels for thrombolytic cysteine protease isolation by ultrasound assisted disruptive liquid phase microextraction with task specific switchable natural deep eutectic solvents. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Schwarz MGA, Antunes D, Brêda GC, Valente RH, Freire DMG. Revisiting Jatropha curcas Monomeric Esterase: A Dienelactone Hydrolase Compatible with the Electrostatic Catapult Model. Biomolecules 2021; 11:1486. [PMID: 34680119 PMCID: PMC8533429 DOI: 10.3390/biom11101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Jatropha curcas contains seeds with a high oil content, suitable for biodiesel production. After oil extraction, the remaining mass can be a rich source of enzymes. However, data from the literature describing physicochemical characteristics for a monomeric esterase from the J. curcas seed did not fit the electrostatic catapult model for esterases/lipases. We decided to reevaluate this J. curcas esterase and extend its characterization to check this apparent discrepancy and gain insights into the enzyme's potential as a biocatalyst. After anion exchange chromatography and two-dimensional gel electrophoresis, we identified the enzyme as belonging to the dienelactone hydrolase family, characterized by a cysteine as the nucleophile in the catalytic triad. The enzyme displayed a basic optimum hydrolysis pH of 9.0 and an acidic pI range, in contrast to literature data, making it well in line with the electrostatic catapult model. Furthermore, the enzyme showed low hydrolysis activity in an organic solvent-containing medium (isopropanol, acetonitrile, and ethanol), which reverted when recovering in an aqueous reaction mixture. This enzyme can be a valuable tool for hydrolysis reactions of short-chain esters, useful for pharmaceutical intermediates synthesis, due to both its high hydrolytic rate in basic pH and its stability in an organic solvent.
Collapse
Affiliation(s)
- Marcos Gustavo Araujo Schwarz
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Gabriela Coelho Brêda
- Laboratório de Microbiologia Molecular e Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941909, Brazil;
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Denise Maria Guimarães Freire
- Laboratório de Biotecnologia Microbiana, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941909, Brazil;
| |
Collapse
|
4
|
Manjuprasanna VN, Urs AP, Rudresha GV, Milan Gowda MD, Jayachandra K, Hiremath V, Rajaiah R, Vishwanath BS. Drupin, a thrombin-like protease prompts platelet activation and aggregation through protease-activated receptors. J Cell Biochem 2021; 122:870-881. [PMID: 33748988 DOI: 10.1002/jcb.29917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 11/10/2022]
Abstract
Hemostasis is a proteolytically regulated process that requires activation of platelets and the blood coagulation cascade upon vascular injury. Activated platelets create a thrombogenic environment and amplify the coagulation process. Plant latex proteases (PLPs) have been used as therapeutic components to treat various ailments by folk healers. One of the main applications of plant latices is to stop bleeding from minor injuries and to enhance wound healing activity. Although many studies have reported the pro-coagulant activities of PLPs, an in-depth investigation is required to understand the mechanism of action of PLPs on platelets. Here, the effect of PLPs on platelet aggregation was studied systematically to validate the observed pharmacological effect by folk healers. Among 29 latices from the Ficus genus tested, Ficus drupacea exhibited potent pro-coagulant and thrombin-like activity. Drupin, a thrombin-like cysteine protease responsible for platelet aggregation was purified from F. drupacea latex. Drupin exhibits pro-coagulant activity and reduces the bleeding time in mice tail. It induces platelet aggregation by activating mitogen-activated protein kinases and the nuclear factor-κB and PI3K/Akt signalling cascade, which, in turn, phosphorylats, cytosolic phospholipase A2 leading to the release of thromboxane A2 from the granules to activate the nearby platelets to aggregate. Furthermore, we investigated the involvement of protease-activated receptors in drupin-induced platelet aggregation using specific protease activated receptor 1 (PAR1) and PAR4 receptor antagonists. The results confirmed that the drupin-induced platelet aggregation was mediated by both PAR1 and PAR4, synergistically. Overall, drupin reduces the bleeding time by exerting pro-coagulant activity and induces platelet aggregation by activating the intracellular signalling cascade.
Collapse
Affiliation(s)
| | - Amog P Urs
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - Gotravalli V Rudresha
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | | | - Krishnegowda Jayachandra
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - Vilas Hiremath
- Vijayashree Diagnostics, Specialized Coagulation Lab, Bengaluru, Karnataka, India
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India.,Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| |
Collapse
|
5
|
Tavares LS, Ralph MT, Batista JEC, Sales AC, Ferreira LCA, Usman UA, da Silva Júnior VA, Ramos MV, Lima-Filho JV. Perspectives for the use of latex peptidases from Calotropis procera for control of inflammation derived from Salmonella infections. Int J Biol Macromol 2021; 171:37-43. [PMID: 33418044 DOI: 10.1016/j.ijbiomac.2020.12.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Anti-inflammatory properties have been attributed to latex proteins of the medicinal plant Calotropis procera. PURPOSE A mixture of cysteine peptidases (LPp2) from C. procera latex was investigated for control of inflammatory mediators and inflammation in a mouse model of Salmonella infection. METHODS LPp2 peptidase activity was confirmed by the BANA assay. Cytotoxicity assays were conducted with immortalized macrophages. Peritoneal macrophages (pMØ) from Swiss mice were stimulated with lipopolysaccharide (LPS) in 96-well plates and then cultured with nontoxic concentrations of LPp2. Swiss mice intravenously received LPp2 (10 mg/kg) and then were challenged intraperitoneally with virulent Salmonella enterica Ser. Typhimurium. RESULTS LPp2 was not toxic at dosages lower than 62.2 μg/mL. LPp2 treatments of pMØ stimulated with LPS impaired mRNA expression of pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and IL-10. LPp2 increased the intracellular bacterial killing in infected pMØ. Mice given LPp2 had a lower number of leukocytes in the peritoneal cavity in comparison to control groups 6 h after infection. The bacterial burden and histological damage were widespread in target organs of mice receiving LPp2. CONCLUSION We conclude that LPp2 contains peptidases with strong anti-inflammatory properties, which may render mice more susceptible to early disseminated infection caused by Salmonella.
Collapse
Affiliation(s)
| | - Maria Taciana Ralph
- Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Ana Clarissa Sales
- Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Usman Abdulhadi Usman
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Marcio Viana Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
6
|
Urs AP, Manjuprasanna VN, Rudresha GV, Hiremath V, Sharanappa P, Rajaiah R, Vishwanath BS. Thrombin-like serine protease, antiquorin from Euphorbia antiquorum latex induces platelet aggregation via PAR1-Akt/p38 signaling axis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118925. [PMID: 33333088 DOI: 10.1016/j.bbamcr.2020.118925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 12/28/2022]
Abstract
Plant latex proteases (PLPs) are pharmacologically essential and are integral components of traditional medicine in the management of bleeding wounds. PLPs are known to promote blood coagulation and stop bleeding by interfering at various stages of hemostasis. There are a handful of scientific reports on thrombin-like enzymes characterized from plant latices. However, the role of plant latex thrombin-like enzymes in platelet aggregation is not well known. In the present study, we attempted to purify and characterize thrombin-like protease responsible for platelet aggregation. Among tested plant latices, Euphorbia genus latex protease fractions (LPFs) induced platelet aggregation. In Euphorbia genus, E. antiquorum LPF (EaLPF) strongly induced platelet aggregation and attenuated bleeding in mice. The purified thrombin-like serine protease, antiquorin (Aqn) is a glycoprotein with platelet aggregating activities that interfere in intrinsic and common pathways of blood coagulation cascade and alleviates bleeding and enhanced excision wound healing in mice. In continuation, the pharmacological inhibitor of PAR1 inhibited Aqn-induced phosphorylation of cPLA2, Akt, and P38 in human platelets. Moreover, Aqn-induced platelet aggregation was inhibited by pharmacological inhibitors of PAR1, PI3K, and P38. These data indicate that PAR1-Akt/P38 signaling pathways are involved in Aqn-induced platelet aggregation. The findings of the present study may open up a new avenue for exploiting Aqn in the treatment of bleeding wounds.
Collapse
Affiliation(s)
- Amog P Urs
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | | | - Gotravalli V Rudresha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Vilas Hiremath
- Vijayashree Diagnostics, Specialized Coagulation Lab, Bengaluru, India
| | - P Sharanappa
- Department of Studies in Botany, University of Mysore, Hassan, Karnataka, India
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| |
Collapse
|
7
|
León F, Hernandez-Zapata V, Bacab MC, Maldonado G, Lezama JA, Monteon V. The wound healing action of a cream latex formulation of Jatropha gaumeri Greenm. in a pre-clinical model. Vet World 2020; 13:2508-2514. [PMID: 33363348 PMCID: PMC7750221 DOI: 10.14202/vetworld.2020.2508-2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Jatropha gaumeri Greenm. is commonly used to treat mouth blisters and skin rashes, its latex has analgesic and anti-inflammatory activity on buccal ulcer. This study aimed to demonstrate the wound healing activity of a cream formulation of Jatropha gaumeri Greenm. latex in a murine model, provide a histological assessment of its scarring effects, and identify the family of phytochemicals involved in these effects. Materials and Methods: Latex was obtained from the cut stalk leaves and young stems of J. gaumeri and stored in sterile tubes with protection from light. Chloroform, ethyl acetate, and aqueous fractions of the latex were obtained. Fifty male Balb/c mice aged 10-12 weeks were divided into10 groups of five mice: Group 1 corresponded to healthy mice with wounds; Group 2 corresponded to mice with wounds and treated with A-Derma®; and from Group 3 to group 10 corresponded to mice treated with a different latex fraction. A circular skin wound of about 1 cm was made on the paravertebral region of each mouse under anesthetized and aseptic conditions. The wounds were topically treated every 24 h with the respective extracts for 22 days, after which skin tissue specimens were obtained and stained with hematoxylin-eosin and Masson’s trichrome. The efficiency of healing was measured by quantifying the tensile strength of the scars. The phytochemicals in the latex were elucidated using thin chromatography. Results: The aqueous latex fraction produced the best wound healing activity and was superior to the positive control. Reepithelialization at the histological level resulted in tissue that resembled healthy skin in terms of the appearance of collagen, the regeneration of hair follicles, and cellularity of the dermis, which showed organized epithelialization. A wound healing efficacy of 97% was observed, and it seems that alkaloids were the phytochemicals mostly likely responsible for these effects. Conclusion: J. gaumeri latex exhibited wound healing activity, possibly mediated by phytochemicals such as alkaloids in the aqueous fraction.
Collapse
Affiliation(s)
- Floribeth León
- Facultad Odonttología, Universidad Autonoma Campeche, Mexico
| | | | | | | | | | - Victor Monteon
- Centro Investigaciones Biomedicas, Universidad Autonoma Campeche, Mexico
| |
Collapse
|
8
|
Manjuprasanna VN, Rudresha GV, Urs AP, Milan Gowda MD, Rajaiah R, Vishwanath BS. Drupin, a cysteine protease from Ficus drupacea latex accelerates excision wound healing in mice. Int J Biol Macromol 2020; 165:691-700. [PMID: 33010277 DOI: 10.1016/j.ijbiomac.2020.09.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
Wound healing is a tightly regulated physiological process that restores tissue integrity after injury. Plant latex proteases (PLPs) are considered an integral part in herbal wound care as it interferes at different phases of the wound healing process. Although many studies have reported the involvement of PLPs in healing process, an in-depth investigation is required to understand the molecular mechanism. Hence, the effect of PLPs with fibrinolytic activity on wound healing was investigated systematically using mouse excision wound model. Among 29 latices from Ficus genus tested, Ficus drupacea exhibited potent fibrinolytic activity. Cysteine protease responsible for fibrinolysis was purified from the F. drupacea latex named it as drupin, tested for its wound healing efficacy. The accelerated wound healing was mediated by downregulation of matrix metalloprotease (MMP)-9 without altering MMP-8 expression. Besides, drupin enhanced the rate of collagen synthesis at the wound site by increasing arginase 1 activity. And also, drupin increased the expression of arginase 1 in macrophages and involved in cell proliferation, and migration via MAP kinase and PI3K/Akt pathways. Overall, the present study highlights the interference of drupin in wound healing by increased arginase 1 activity and collagen synthesis, and cell proliferation and migration.
Collapse
Affiliation(s)
| | - Gotravalli V Rudresha
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - Amog P Urs
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | | | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India.
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India.
| |
Collapse
|