1
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
3
|
Ota S, Tanaka Y, Yasutake R, Ikeda Y, Yuki R, Nakayama Y, Saito Y. Distinct effects of heat shock temperatures on mitotic progression by influencing the spindle assembly checkpoint. Exp Cell Res 2023; 429:113672. [PMID: 37339729 DOI: 10.1016/j.yexcr.2023.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures.
Collapse
Affiliation(s)
- Saki Ota
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yui Tanaka
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ryuji Yasutake
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuki Ikeda
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
4
|
Azaphilones produced by Penicillium maximae with their cell death-inducing activity on Adriamycin-treated cancer cell. Genes Environ 2023; 45:5. [PMID: 36658662 PMCID: PMC9850696 DOI: 10.1186/s41021-023-00261-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Heat shock proteins (Hsps) are overexpressed in several tumors and contribute to cell proliferation, metastasis, and anticancer drug resistance. Therefore, Hsp inhibitors have enhanced cytotoxicity as chemotherapeutic agents and may be effective with a reduced dosage for tumor therapy to avoid side effects. RESULTS Four new azaphilones, maximazaphilones I-IV (1-4), and three known compounds (5-7) have been isolated from the airborne-derived fungus Penicillium maximae. Inhibitory effects of isolated compounds against induction of Hsp105 were evaluated by the luciferase assay system using Hsp105 promoter. In this assay, 2-4, 6, and 7 significantly inhibited hsp105 promoter activity without cytotoxicity. In addition, all isolated compounds except for 5 significantly induced the death of Adriamycin (ADR)-treated HeLa cells. Interestingly, 1-4, 6, and 7 didn't show anti-proliferative and cell death-inducing activity without ADR. CONCLUSION This study revealed the chemical structures of maximazaphilones I-IV (1-4) and the potency of azaphilones may be useful for cancer treatment and reducing the dose of anticancer agents. In addition, one of the mechanisms of cell death-inducing activity for 2-4, 6, and 7 was suggested to be inhibitory effects of Hsp105 expression.
Collapse
|
5
|
Matsumoto T, Watanabe T, Kitagawa T, Imahori D. Chemical Structures and Cell Death Inducing Activities of Constituents Isolated from Hibiscus tiliaceus. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Μatsumoto T, Imahori D, Ohnishi E, Okayama M, Kitagawa T, Ohta T, Yoshida T, Kojima N, Yamashita M, Watanabe T. Chemical structures and induction of cell death via heat shock protein inhibition of the prenylated phloroglucinol derivatives isolated from Hypericum erectum. Fitoterapia 2021; 156:105097. [PMID: 34890752 DOI: 10.1016/j.fitote.2021.105097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022]
Abstract
Four new prenylated phloroglucinol derivatives (+)-erectumol I (1a), (-)-erectumol I (1b), (-)-erectumol II (2a), and (+)-erectumol II (2b) were isolated from the methanol extracts of the whole plants of Hypericum erectum. These new compounds were isolated as a pair of enantiomers, respectively. The planar chemical structures and relative configurations of the new compounds were suggested by Cu-Kα X-ray diffraction analysis and been confirmed by high-resolution mass and 1D and 2D NMR spectroscopic data. The absolute configuration of the four new compounds were established by comparing the experimental and predicted electronic circular dichroism data. Isolated compounds 1b and 2b induced death of Adriamycin-treated HeLa cells. Their enantiomers 1a and 2a did not. In addition, the apparent mechanism of cell death of 1b was the inhibited expression of heat shock protein 105.
Collapse
Affiliation(s)
- Takahiro Μatsumoto
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Daisuke Imahori
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Erika Ohnishi
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Masaya Okayama
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Takahiro Kitagawa
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-Cho, Sasebo, Nagasaki 859-3298, Japan
| | - Tatsusada Yoshida
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-Cho, Sasebo, Nagasaki 859-3298, Japan
| | - Naoto Kojima
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Masayuki Yamashita
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Tetsushi Watanabe
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| |
Collapse
|
7
|
Synergistic Cytotoxicity between Elephantopus scaber and Tamoxifen on MCF-7-Derived Multicellular Tumor Spheroid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6355236. [PMID: 34712346 PMCID: PMC8548115 DOI: 10.1155/2021/6355236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Elephantopus scaber Linn, a traditional herb, exhibited anticancer properties, and it was cytotoxic against the monolayer estrogen receptor-positive breast cancer cell line, MCF-7, in the previous study. In order to determine the potential of E. scaber as a complementary medicine for breast cancer, this study aimed to evaluate the synergism between E. scaber and tamoxifen in cytotoxicity using MCF-7 in the form of 3-dimensional multicellular tumor spheroid (MCTS) cultures. MCTS represents a more reliable model for studying drug penetration as compared to monolayer cells due to its greater resemblance to solid tumor. Combination of E. scaber ethanol extract and tamoxifen, which were used in concentrations lower than their respective IC50 values, had successfully induced apoptosis on MCTS in this study. The combinatorial treatment showed >58% increase of lactate dehydrogenase release in cell media, cell cycle arrest at the S phase, and 1.3 fold increase in depolarization of mitochondrial membrane potential. The treated MCTS also experienced DNA fragmentation; this had been quantified by TUNEL-positive assay, which showed >64% increase in DNA damaged cells. Higher externalization of phospatidylserine and distorted and disintegrated spheroids stained by acridine orange/propidium iodide showed that the cell death was mainly due to apoptosis. Further exploration showed that the combinatorial treatment elevated caspases-8 and 9 activities involving both extrinsic and intrinsic pathways of apoptosis. The treatment also upregulated the expression of proapoptotic gene HSP 105 and downregulated the expression of prosurvival genes such as c-Jun, ICAM1, and VEGF. In conclusion, these results suggested that the coupling of E. scaber to low concentration of tamoxifen showed synergism in cytotoxicity and reducing drug resistance in estrogen receptor-positive breast cancer.
Collapse
|
8
|
Teshima H, Watanabe H, Yasutake R, Ikeda Y, Yonezu Y, Okamoto N, Kakihana A, Yuki R, Nakayama Y, Saito Y. Functional differences between Hsp105/110 family proteins in cell proliferation, cell division, and drug sensitivity. J Cell Biochem 2021; 122:1958-1967. [PMID: 34617313 DOI: 10.1002/jcb.30158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022]
Abstract
The mammalian HSP105/110 family consists of four members, including Hsp105 and Apg-1, which function as molecular chaperones. Recently, we reported that Hsp105 knockdown increases sensitivity to the DNA-damaging agent Adriamycin but decreases sensitivity to the microtubule-targeting agent paclitaxel. However, whether the other Hsp105/110 family proteins have the same functional property is unknown. Here, we show that Apg-1 has different roles from Hsp105 in cell proliferation, cell division, and drug sensitivity. We generated the Apg-1-knockdown HeLa S3 cells by lentiviral expression of Apg-1-targeting short hairpin RNA. Knockdown of Apg-1 but not Hsp105 decreased cell proliferation. Apg-1 knockdown increased cell death upon Adriamycin treatment without affecting paclitaxel sensitivity. The cell synchronization experiment suggests that Apg-1 functions in mitotic progression at a different mitotic subphase from Hsp105, which cause difference in paclitaxel sensitivity. Since Apg-1 is overexpressed in certain types of tumors, Apg-1 may become a potential therapeutic target for cancer treatment without causing resistance to the microtubule-targeting agents.
Collapse
Affiliation(s)
- Hiroko Teshima
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroko Watanabe
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuji Yasutake
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Ikeda
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukiko Yonezu
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Namiko Okamoto
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayana Kakihana
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
9
|
Imahori D, Μatsumoto T, Saito Y, Ohta T, Yoshida T, Nakayama Y, Watanabe T. Cell death-inducing activities via P-glycoprotein inhibition of the constituents isolated from fruits of Nandina domestica. Fitoterapia 2021; 154:105023. [PMID: 34428520 DOI: 10.1016/j.fitote.2021.105023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
Two new pyrrole alkaloids methyl-E-mangolamide (1) and methyl-Z-mangolamide (2), four new megastigmane glycosides nandinamegastigmanes I-IV (3-6), and eight known compounds (7-14) were isolated from the methanol extract of the fruits of Nandina domestica. The structures of the new compounds were elucidated based on chemical and spectroscopic evidence. The absolute stereochemistry of nandinamegastigmane I (3) was established upon comparing the experimental and predicted electronic circular dichroism (ECD) data. Among the isolated compounds, 1 and 2 showed cell death-inducing activity on the Adriamycin-treated HeLa cells. In addition, one of the mechanisms for cell death-inducing activity of 1 and 2 was suggested as inhibition of P-glycoprotein.
Collapse
Affiliation(s)
- Daisuke Imahori
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Takahiro Μatsumoto
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Tatsusada Yoshida
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan.
| |
Collapse
|
10
|
Matsumoto T, Kitagawa T, Imahori D, Yoshikawa H, Okayama M, Kobayashi M, Kojima N, Yamashita M, Watanabe T. Cell death-inducing activities via Hsp inhibition of the sesquiterpenes isolated from Valeriana fauriei. J Nat Med 2021; 75:942-948. [PMID: 34212302 DOI: 10.1007/s11418-021-01543-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
Three new sesquiterpenes, valerianaterpenes I-III, and eight known compounds have been isolated from the methanol extract of the rhizomes and roots of Valeriana fauriei. The chemical structures of the three new sesquiterpenes were elucidated based on chemical and spectroscopic evidence. The absolute stereochemistry of valerianaterpene I was determined using X-ray crystallography. The cell death-inducing activity of isolated compounds alone or combination with Adriamycin (ADR) was observed by time-lapse cell imaging. Although the isolated compounds did not affect the number of mitotic entry cells and dead cells alone, kessyl glycol, kessyl glycol diacetate, and iso-teucladiol significantly increased the number of dead cells on ADR treated human cervical cancer cells. One of the mechanisms of cell death-inducing activity for the kessyl glycol acetate was suggested to be the inhibition of heat-shock protein 105 (Hsp105) expression level. This paper first deals with the naturally occurring compounds as Hsp105 inhibitor.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Takahiro Kitagawa
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Daisuke Imahori
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Hayato Yoshikawa
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Masaya Okayama
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Mayuka Kobayashi
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Naoto Kojima
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Masayuki Yamashita
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tetsushi Watanabe
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
11
|
Kitagawa T, Matsumoto T, Imahori D, Kobayashi M, Okayama M, Ohta T, Yoshida T, Watanabe T. Limonoids isolated from the Fortunella crassifolia and the Citrus junos with their cell death-inducing activity on Adriamycin-treated cancer cell. J Nat Med 2021; 75:998-1004. [PMID: 33991286 DOI: 10.1007/s11418-021-01528-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/06/2021] [Indexed: 01/26/2023]
Abstract
From the fruits of Fortunella crassifolia and the peels of Citrus junos, two new limonoids, fortunellone and junosol were isolated together with three known compounds including nomilin. The chemical structures of the new compounds were elucidated based on chemical/physicochemical evidence. For fortunellone, the absolute configuration was established by comparison of experimental and predicted electronic circular dichroism (ECD) data. Fortunellon and nomilin significantly increased the number of dead cells on adriamycin (ADR)-treated human cervical cancer cells (HeLa). On the other hand, fortunellon and nomilin did not affects the number of dead cells alone. These results suggested that fortunellone and nomilin may have the potency as the chemotherapy enhancement agents.
Collapse
Affiliation(s)
- Takahiro Kitagawa
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Takahiro Matsumoto
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Daisuke Imahori
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Mayuka Kobayashi
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Masaya Okayama
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Tatsusada Yoshida
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
12
|
Μatsumoto T, Imahori D, Achiwa K, Saito Y, Ohta T, Yoshida T, Kojima N, Yamashita M, Nakayama Y, Watanabe T. Chemical structures and cytotoxic activities of the constituents isolated from Hibiscus tiliaceus. Fitoterapia 2020; 142:104524. [DOI: 10.1016/j.fitote.2020.104524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
|