1
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Zheng J, Duan H, Jiang Z, Chen L, You S, Huang L, Huang H. Identification and functionalization of thyrotropin receptor antibodies with different antigenic epitopes. Am J Physiol Endocrinol Metab 2024; 327:E328-E343. [PMID: 39046281 DOI: 10.1152/ajpendo.00123.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
One of the sensitive markers for autoimmune thyroid disease (AITD) clinical identification is thyroid-stimulating hormone receptor antibodies (TRAbs). To quickly distinguish TRAb with distinct antigenic epitopes, a straightforward and uncomplicated technique has not yet been created. The objective of this study is to search for molecular diagnostic targets for different types of AITD {Graves' disease (GD), Graves' orbitopathy (GO), GD with third-degree goiter [GD(3)], hypothyroidism combined with positive TRAb [HT(TRAb+)]} as molecular diagnostic targets. Following action on thyroid cells, differential genes (DEGs) generated by TRAb with distinct antigenic epitopes were detected and identified by RNA sequencing (RNA-Seq), bioinformatics analysis, and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) in the serum of patients with AITD. Using the 5-ethynyl-2'-deoxyuridine (EdU) assay, the effect of coculturing thyroid cells with different antigenic TRAb epitopes on the cells' capacity to proliferate was investigated. Bioinformatics analysis and RT-qPCR validation identified one GD key gene alpha 2-HS glycoprotein (AHSG), two GO key genes [adrenoceptor alpha 1D (ADRA1D) and H2B clustered histone 18 (H2BC18)], two GD(3) key genes [suppressor of cytokine signaling 1 (SOCS1) and cytochrome b-245 beta (CYBB)], and one HT(TRAb+) key gene (MASP2). Correlation analysis and ROC curves showed that the abovementioned genes could be used as molecular diagnostic targets for different types of AITD. Finally, EdU results showed that TRAb inhibited thyroid cell proliferation in the HT(TRAb+) group compared with the normal control group, whereas the remaining three groups promoted thyroid cell proliferation, with a statistically significant difference (P < 0.05). We identified six key genes for different types of AITD, which have diagnostic value for different types of AITD. Meanwhile, we found that TRAbs with different antigenic epitopes in AITD have different biological functions.NEW & NOTEWORTHY We identified six molecular targets of different types of AITD [GD, GO, GD(3), and HT(TRAb+)], which have diagnostic value for different types of AITD. Meanwhile, we found that TRAb with different antigenic epitopes extracted from the sera of patients with AITD had different biological functions, which also provided a new idea for further research on the mechanism of action of TRAb with different antigenic epitopes in AITD.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Honghong Duan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Zhengrong Jiang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Lijun Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Sufang You
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Linghong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Huibin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| |
Collapse
|
3
|
A 5-Pathway Signature Predicts Prognosis Based on Immune-Derived lncRNAs in Patients with Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2906049. [PMID: 36545126 PMCID: PMC9763012 DOI: 10.1155/2022/2906049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Background Currently, predictive models were not developed based on the signaling pathway signatures of immune-related lncRNAs in breast cancer (BRCA) patients. Methods We selected unsupervised hierarchical clustering algorithm to classify patients with BRCA based on the significant immune-derived lncRNAs from the TCGA dataset. And different methods including ESTIMATE, ImmuneCellAI, and CIBERSORT were performed to evaluate the immune infiltration of tumor microenvironment. Using Lasso regression algorithm, we filtered the significant signaling pathways enriched by GSEA, GSVA, or PPI analysis to develop a prognostic model. And a nomogram integrated with clinical factors and significant pathways was constructed to predict the precise probability of overall survival (OS) of BRCA patients in the TCGA dataset (n = 1,098) and another two testing sets (n = 415). Results BRCA patients were stratified into the PC (n = 571) and GC (n = 527) subgroup with significantly different prognosis with 550 immune-related lncRNAs in the TCGA dataset. Integrated analysis revealed different immune response, oncogenic signaling, and metabolic reprograming pathways between these two subgroups. And a 5-pathway signature could predict the prognosis of BRCA patients between these two subgroups independently in the TCGA dataset, which was confirmed in another two cohorts from the GEO dataset. In the TCGA dataset, 5-year OS rate was 78% (95% CI: 73-84) vs. 82% (95% CI: 77-87) for the PC and GC group (HR = 1.63 (95% CI: 1.17-2.28), p = 0.004). The predictive power was similar in another two testing sets (HR > 1.20, p < 0.01). Finally, a nomogram is developed for clinical application, which integrated this signature and age to accurately predict the survival probability in BRCA patients. Conclusion This 5-pathway signature correlated with immune-derived lncRNAs was able to precisely predict the prognosis for patients with BRCA and provided a rich source characterizing immune-related lncRNAs and further informed strategies to target BRCA vulnerabilities.
Collapse
|
4
|
Xian W, Wu D, Liu B, Hong S, Huo Z, Xiao H, Li Y. Graves' disease and inflammatory bowel disease: A bidirectional Mendelian randomization. J Clin Endocrinol Metab 2022; 108:1075-1083. [PMID: 36459455 PMCID: PMC10099169 DOI: 10.1210/clinem/dgac683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
CONTEXT Both Graves' disease (GD) and inflammatory bowel disease (IBD) are common autoimmune diseases that severely damage patients' quality of life. Previous epidemiological studies have suggested associations between GD and IBD. However, whether a causal relationship exists between these two diseases remains unknown. OBJECTIVE To infer a causal relationship between GD and IBD using bidirectional two-sample Mendelian randomization(MR). METHODS We performed bidirectional two-sample MR to infer a causal relationship between GD and IBD using GWAS summary data obtained from Biobank Japan (BBJ) and the International Inflammatory Bowel Disease Genetic Consortium (IIBDGC). Several methods (random-effect inverse variance weighted, weighted median, MR‒Egger regression, and MR-PRESSO) were used to ensure the robustness of the causal effect. Heterogeneity was measured based on Cochran's Q value. Horizontal pleiotropy was evaluated by MR‒Egger regression and leave-one-out analysis. RESULTS Genetically predicted IBD may increase the risk of GD by 24% (OR 1.24, 95% CI 1.01-1.52, p = 0.041). Crohn's disease (CD) may increase the risk of GD, whereas ulcerative colitis (UC) may prevent patients from developing GD. Conversely, genetically predicted GD may slightly increase the risk of CD, although evidence indicating that the presence of GD increased the risk of UC or IBD was lacking. Outlier-corrected results were consistent with raw causal estimates. CONCLUSIONS Our study revealed a potentially higher comorbidity rate for GD and CD. However, UC might represent a protective factor for GD. The underlying mechanism and potential common pathways await discovery.
Collapse
Affiliation(s)
- Wei Xian
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dide Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Boyuan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zijun Huo
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Zhao Y, Xu L, Wang Q, Li C, Zhang T, Xing S, Yu X. LINC01061 triggers inflammation and inflammasome activation in autoimmune thyroiditis via microRNA-612/BRD4 axis. Int Immunopharmacol 2022; 111:109050. [PMID: 35998503 DOI: 10.1016/j.intimp.2022.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Considering the significance of LINC01061 in papillary thyroid cancer, here, we commenced to study the role of LINC01061 in autoimmune thyroid disease (AITD) and the potential mechanism. Thyroid tissues were attained from patients with AITD, and Nthy-ori 3-1 cells were induced with lipopolysaccharide (LPS), followed by measurement of LINC01061, microRNA (miR)-612, and BRD4 expression as well as their binding relation. The ectopic expression and silencing experimentations were carried out in LPS-induced Nthy-ori 3-1 cells to detect cell viability and apoptosis as well as inflammation and inflammasome. BRD4 and LINC01061 upregulation and miR-612 downregulation were observed in thyroid tissues of AITD patients and LPS-induced Nthy-ori 3-1 cells. Mechanistic analysis manifested that LINC01061 bound to miR-612 that negatively targeted BRD4. LINC01061 upregulated BRD4 to enhance cell viability, trigger inflammation and inflammasome activation but reduce apoptosis of LPS-induced Nthy-ori 3-1 cells by sponging miR-612. In conclusion, LINC01061 induced the occurrence of AITD by upregulation of miR-612-mediated BRD4 expression.
Collapse
Affiliation(s)
- Yuhang Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Qing Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Chengqian Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Tao Zhang
- Qilu Medical College, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Shichao Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Xiaolong Yu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China.
| |
Collapse
|
6
|
Chen F, Zhang X, Chen Y, Chai Y, Jiang X, Li H. Construction of lncRNA-miRNA-mRNA network based on ceRNA mechanism reveals the function of lncRNA in the pathogenesis of gout. J Clin Lab Anal 2022; 36:e24451. [PMID: 35524416 PMCID: PMC9169187 DOI: 10.1002/jcla.24451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To identify differentially expressed lncRNA, miRNA, and mRNA during the pathogenesis of gout, explore the ceRNA network regulatory mechanism of gout, and seek potential therapeutic targets. Method First, gout‐related chips were retrieved by GEO database. Then, the analysis of differentially expressed lncRNAs and mRNAs was conducted by R language and other software. Besides, miRNA and its regulated mRNA were predicted based on public databases, the intersection of differentially expressed mRNA and predicated mRNA was taken, and the lncRNA‐miRNA‐mRNA regulatory relationships were obtained to construct the ceRNA regulatory network. Subsequently, hub genes were screened by the STRING database and Cytoscape software. Then the DAVID database was used to illustrate the gene functions and related pathways of hub genes and to mine key ceRNA networks. Results Three hundred and eighty‐eight lncRNAs and 758 mRNAs were identified with significant differential expression in gout patient, which regulates hub genes in the ceRNA network, such as JUN, FOS, PTGS2, NR4A2, and TNFAIP3. In the ceRNA network, lncRNA competes with mRNA for miRNA, thus affecting the IL‐17 signaling pathway, TNF signaling pathway, Oxytocin signaling pathway, and NF‐κB signaling pathway through regulating the cell's response to chemical stress. The research indicates that five miRNAs (miR‐429, miR‐137, miR‐139‐5p, miR‐217, miR‐23b‐3p) and five lncRNAs (SNHG1, FAM182A, SPAG5‐AS1, HNF1A‐AS1, UCA1) play an important role in the formation and development of gout. Conclusion The interaction in the ceRNA network can affect the formation and development of gout by regulating the body's inflammatory response as well as proliferation, differentiation, and apoptosis of chondrocytes and osteoclasts. The identification of potential therapeutic targets and signaling pathways through ceRNA network can provide a reference for further research on the pathogenesis of gout.
Collapse
Affiliation(s)
- Feng Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoyun Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yueping Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yuan Chai
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao Jiang
- The Second Hospital of Dalian Medical University, DaLian, China
| | - Huanan Li
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
7
|
Huang FJ, Liu YL, Wang J, Zhou YY, Zhao SY, Qin GJ. LncRNA RUNX1-IT1 affects the differentiation of Th1 cells by regulating NrCAM transcription in Graves' disease. Cell Cycle 2022; 21:921-933. [PMID: 35220890 PMCID: PMC9037574 DOI: 10.1080/15384101.2022.2034431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Graves' disease (GD) is a kind of autoimmune diseases. The development of GD is closely related to the imbalance of Th1/Th2 generated by the differentiation of CD4+ T cells. This study was sought to clarify the role of lncRNA RUNX1-IT1 and explore the mechanism of its function. The expressions of RUNX1-IT1 and Neural cell adhesion molecule (NrCAM) in the peripheral blood of GD patients were detected by qRT-PCR and Western blot. We performed RNA pull down, RIP, and ChIP experiments to verify the correlation between p53 and RUNX1-IT1, p53 and NrCAM. The levels of Th1 cells differentiation markers were detected by Flow cytometry assay and ELISA. The expressions of lncRNA RUNX1-IT1 and NrCAM were most significantly up-regulated in CD4+ T cells of GD patients, and NrCAM expression was significantly positively correlated with RUNX1-IT1 expression. Furthermore, p53 was a potential transcription factor of NrCAM, which could interact with NrCAM. NrCAM level was up-regulated after the overexpression of p53 in CD4+ T cells, while knockdown of RUNX1-IT1 reversed this effect. Down-regulation of NrCAM and RUNX1-IT1 could decrease the mRNA and protein levels of transcriptional regulator T-bet and CXC chemokine ligand 10 (CXCL10) in CD4+ T cells. Our results suggested that RUNX1-IT1 regulated the expressions of the important Th1 factor T-bet, CXCL10, and interferon γ (IFN-γ) by regulating NrCAM transcription, thus participating in the occurrence and development of specific autoimmune disease GD.
Collapse
Affiliation(s)
- Feng-Jiao Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Ling Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Ying Zhou
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shui-Ying Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gui-Jun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,CONTACT Gui-Jun Qin Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Zhengzhou450052, China
| |
Collapse
|
8
|
Rong C, Xu H, Yan C, Wei F, Zhou H, Guan X. Linc8986 and linc0597 in plasma are novel biomarkers for systemic lupus erythematosus. Exp Ther Med 2021; 22:1210. [PMID: 34584555 PMCID: PMC8422381 DOI: 10.3892/etm.2021.10644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/22/2021] [Indexed: 11/05/2022] Open
Abstract
Despite increasing evidence that large intergenic non-coding RNAs (lincRNAs) are widely involved in human disease, the role of lincRNAs in the development of systemic lupus erythematosus (SLE) has remained largely elusive. The purpose of the present study was to investigate the expression of three lincRNAs (linc0597, linc8986 and linc7190) in the plasma of patients with SLE and their potential use as biomarkers for the diagnosis and treatment of SLE. Plasma samples were obtained from 54 patients with SLE, 24 patients with rheumatoid arthritis (RA), 24 patients with Sjogren's syndrome (SS) and 22 healthy controls. LincRNA expression levels were measured by reverse transcription-quantitative PCR. Compared with those in the healthy controls, the plasma levels of linc0597 and linc8986 were significantly increased in the patients with SLE (P<0.001), while the difference in the level of linc7190 was not significant (P=0.052). In addition, there was no significant difference in the levels of linc0597 and linc8986 among patients with RA, patients with SS and the healthy controls (P>0.05). Compared with patients with SLE without lupus nephritis (LN), the levels of linc0597 were significantly higher in patients with LN (P=0.044). For linc7190 and linc8986, there was no significant difference between patients with and without LN (P>0.05). Furthermore, complement component 3 (C3) levels were used to evaluate whether the expression of linc8986 and linc0597 is related to the activity of SLE. The results indicated that the levels of linc8986 and linc0597 were negatively correlated with the level of C3 (P<0.001 and P=0.004, respectively). Further analysis suggested that linc0597 and linc8986 were able to specifically identify patients with SLE and that a combination of linc0597 and linc8986 may improve the diagnostic accuracy. Therefore, the plasma levels of linc0597 and linc8986 may be suitable biomarkers for diagnosing SLE.
Collapse
Affiliation(s)
- Chunli Rong
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huafeng Xu
- Department of Radio-Immunity, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Changxin Yan
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Feng Wei
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuru Guan
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
9
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in autoimmune thyroid disease. Exp Mol Pathol 2020; 117:104527. [PMID: 32916160 DOI: 10.1016/j.yexmp.2020.104527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022]
Abstract
Autoimmune thyroid disease (AITD) is a complex disorder with both genetic and environmental risk factors. A number of genetic factors such as HLA and CTLA-4 loci have been associated with risk of this disorder. In addition to these factors, recent studies have shown contribution of non-coding RNAs in the pathogenesis of this condition. Several microRNAs (miRNAs) and a number of long noncoding RNAs (lncRNAs) such as IFNG-AS1, Heg, NR_038461, NR_038462, T204821 and NR_104125 have been dysregulated in peripheral blood of patients with AITD. These transcripts are mostly enriched in pathways that modulate humoral and cellular immune responses such as those associated with antigen presentation and differentiation of Th1, Th2 and Th17 cells. Functional studies verified the role of a number of lncRNAs and miRNAs in regulation of critical immune-related pathways in AITD. Thus, they participate in the pathophysiology of AITD. In the current review, we summarize the results of studies that assessed participation of non-coding RNAs in the pathophysiology of AITD.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Department of Medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Soudeh Ghafouri-Fard
- Department of Medical genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
RNA Sequencing for Gene Expression Profiles in Peripheral Blood Mononuclear Cells with Ankylosing Spondylitis RNA. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5304578. [PMID: 32596323 PMCID: PMC7298317 DOI: 10.1155/2020/5304578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Several previous studies have attempted to investigate the regulatory mechanisms underlying gene expression in ankylosing spondylitis (AS). However, the specific molecular pathways underlying this condition remain unclear. Previous research used next-generation RNA sequencing to identify a series of differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) when compared between patients with AS and healthy controls, thus implying that these DEGs may be related to AS. Furthermore, by screening these DEGS, it may be possible to facilitate clinical diagnosis and optimize treatment strategies. In order to test this hypothesis, we recruited 15 patients with AS and 15 healthy controls. We randomly selected five subjects from each group of patients for RNA sequencing analysis. Sequence reads were generated by an Illumina HiSeq2500 platform and mapped on to the human reference genome using HISAT2. We successfully identified 973 significant DEGs (p < 0.05) in PBMCs. When compared with controls, 644 of these genes were upregulated (with a fold change (FC) > 2) in AS patients and 329 were downregulated (FC < 0.5). Our analysis identified numerous genes related to immune response. Gene Ontology (GO) analysis indicated that these DEGs were significantly related to the positive regulation of epidermal growth factor-activated receptor activity, the positive regulation of the ERBB (erb-b2 receptor tyrosine kinase) signaling pathway, the differentiation of trophoblast giant cells, oxygen transport, immune-related pathways, and inflammation-related pathways. The DEGs were also closely related to the TNF and NF-κB signaling pathways. Six DEGs were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) curve analysis indicated that IL6 may represent a useful biomarker for diagnosing AS. The development of new biomarkers may help us to elucidate the specific mechanisms involved in the development and progression of AS.
Collapse
|