1
|
Yamasaki S, Hashiguchi M, Yoshida-Sakai N, Jojima H, Osaki K, Okamura T, Imamura Y. Efficacy of Anti-CD38 Monoclonal Antibodies for Relapsed or Refractory Multiple Myeloma in Stem Cell Transplant-Ineligible Patients Aged over 65 Years: A Propensity Score-Matched Study. Hematol Rep 2024; 16:714-723. [PMID: 39584925 PMCID: PMC11587159 DOI: 10.3390/hematolrep16040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The development of newer agents, including anti-CD38 monoclonal antibodies (mAbs), has significantly improved overall survival (OS) in patients with relapsed or refractory multiple myeloma (RRMM). However, the treatment of older patients with RRMM who are transplant-ineligible remains challenging. METHODS We retrospectively evaluated OS in 78 transplant-ineligible patients with RRMM who were aged ≥ 65 years and treated at our institution between February 2012 and November 2023. RESULTS Unadjusted OS was significantly longer in the anti-CD38 mAb-exposed group (i.e., those previously treated with daratumumab and receiving isatuximab plus pomalidomide and low-dose dexamethasone because of disease progression during treatment with daratumumab [n = 6], daratumumab plus pomalidomide and low-dose dexamethasone [n = 9], or isatuximab plus pomalidomide and low-dose dexamethasone without daratumumab-exposure [n = 14]) than in the anti-CD38 mAb-naïve group (no exposure to daratumumab or isatuximab [n = 49]) (p < 0.001). To address potential confounder factors associated with use or nonuse of anti-CD38 mAbs, we performed propensity score matching (PSM) using age, sex, performance status, and Geriatric 8 and Instrumental Activities of Daily Living scores. PSM identified 14 subjects from the anti-CD38 mAb-exposed group with baseline characteristics similar to those of 14 subjects from the anti-CD38 mAb-naïve group. After PSM, the adjusted OS was significantly longer in the anti-CD38 mAb-exposed group than in the anti-CD38 mAb-naïve group (p < 0.001). CONCLUSION These findings provide insights into the optimal use of anti-CD38 mAbs in patients with RRMM who are transplant-ineligible and aged ≥65 years and on candidates who are appropriate for novel approaches, such as chimeric antigen receptor T-cell or bispecific T-cell engager therapy.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Department of Hematology, St. Mary’s Hospital, Kurume 830-8543, Japan; (M.H.); (N.Y.-S.); (H.J.); (T.O.); (Y.I.)
| | - Michitoshi Hashiguchi
- Department of Hematology, St. Mary’s Hospital, Kurume 830-8543, Japan; (M.H.); (N.Y.-S.); (H.J.); (T.O.); (Y.I.)
| | - Nao Yoshida-Sakai
- Department of Hematology, St. Mary’s Hospital, Kurume 830-8543, Japan; (M.H.); (N.Y.-S.); (H.J.); (T.O.); (Y.I.)
| | - Hiroto Jojima
- Department of Hematology, St. Mary’s Hospital, Kurume 830-8543, Japan; (M.H.); (N.Y.-S.); (H.J.); (T.O.); (Y.I.)
| | - Koichi Osaki
- Department of Transfusion Medicine, St. Mary’s Hospital, Kurume 830-8543, Japan;
| | - Takashi Okamura
- Department of Hematology, St. Mary’s Hospital, Kurume 830-8543, Japan; (M.H.); (N.Y.-S.); (H.J.); (T.O.); (Y.I.)
| | - Yutaka Imamura
- Department of Hematology, St. Mary’s Hospital, Kurume 830-8543, Japan; (M.H.); (N.Y.-S.); (H.J.); (T.O.); (Y.I.)
| |
Collapse
|
2
|
Yang X, Han F, Hu X, Li G, Wu H, Can C, Wei Y, Liu J, Wang R, Jia W, Ji C, Ma D. EIF4A3-induced Circ_0001187 facilitates AML suppression through promoting ubiquitin-proteasomal degradation of METTL3 and decreasing m6A modification level mediated by miR-499a-5p/RNF113A pathway. Biomark Res 2023; 11:59. [PMID: 37280654 DOI: 10.1186/s40364-023-00495-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Aberrant expression of circRNAs has been proven to play a crucial role in the progression of acute myeloid leukemia (AML); however, its regulatory mechanism remains unclear. Herein, we identified a novel circRNA, Circ_0001187, which is downregulated in AML patients, and its low level contributes to a poor prognosis. We further validated their expression in large-scale samples and found that only the expression of Circ_0001187 was significantly decreased in newly diagnosed (ND) AML patients and increased in patients with hematological complete remission (HCR) compared with controls. Knockdown of Circ_0001187 significantly promoted proliferation and inhibited apoptosis of AML cells in vitro and in vivo, whereas overexpression of Circ _0001187 exerted the opposite effects. Interestingly, we found that Circ_0001187 decreases mRNA m6A modification in AML cells by enhancing METTL3 protein degradation. Mechanistically, Circ_0001187 sponges miR-499a-5p to enhance the expression of E3 ubiquitin ligase RNF113A, which mediates METTL3 ubiquitin/proteasome-dependent degradation via K48-linked polyubiquitin chains. Moreover, we found that the low expression of Circ _0001187 is regulated by promoter DNA methylation and histone acetylation. Collectively, our findings highlight the potential clinical implications of Circ _0001187 as a key tumor suppressor in AML via the miR-499a-5p/RNF113A/METTL3 pathway.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Hanyang Wu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Can Can
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenbo Jia
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Shan W, Ge H, Chen B, Huang L, Zhu S, Zhou Y. Upregulation of miR-499a-5p Decreases Cerebral Ischemia/Reperfusion Injury by Targeting PDCD4. Cell Mol Neurobiol 2022; 42:2157-2170. [PMID: 33837492 PMCID: PMC11421641 DOI: 10.1007/s10571-021-01085-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
MiR-499a-5p was significantly downregulated in degenerative tissues and correlated with apoptosis. Nonetheless, the biological function of miR-499a-5p in acute ischemic stroke has been still unclear. In this study, we found that the plasma levels of miR-499a-5p were significantly downregulated in 64 ischemic stroke patients and negatively correlated with the National Institutes of Health Stroke Scale score. Then, we constructed cerebral ischemia/reperfusion (I/R) injury in rats after middle cerebral artery occlusion and subsequent reperfusion and oxygen-glucose deprivation and reoxygenation (OGD/R)-treated SH-SY5Y cell model. Transfection with miR-499a-5p mimic was accomplished by intracerebroventricular injection in the in vivo I/R injury model. We further found that miR-499a-5p overexpression decreased infarct volumes and cell apoptosis in the in vivo I/R stroke model using TTC and TUNEL staining. PDCD4 was a direct target of miR-499a-5p by luciferase report assay and Western blotting. Knockdown of PDCD4 reduced the infarct damage and cortical neuron apoptosis caused by I/R injury. MiR-499a-5p exerted neuroprotective roles mainly through inhibiting PDCD4-mediated apoptosis by CCK-8 assay, LDH release assay, and flow cytometry analysis. These findings suggest that miR-499a-5p might represent a novel target that regulates brain injury by inhibiting PDCD4-mediating apoptosis.
Collapse
Affiliation(s)
- Weifeng Shan
- Department of Anesthesiology, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Huifeng Ge
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Bingquan Chen
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linger Huang
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Shaojun Zhu
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yanfeng Zhou
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
4
|
Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int J Mol Sci 2022; 23:ijms231810635. [PMID: 36142536 PMCID: PMC9501303 DOI: 10.3390/ijms231810635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM.
Collapse
|
5
|
Chen Y, Dong S, Tian L, Chen H, Chen J, He C. Combination of azithromycin and methylprednisolone alleviates Mycoplasma pneumoniae induced pneumonia by regulating miR‑499a‑5p/STAT3 axis. Exp Ther Med 2022; 24:578. [PMID: 35949317 PMCID: PMC9353499 DOI: 10.3892/etm.2022.11515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/10/2022] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae) is a contributing factor to community-acquired pneumonia in children. The present study sought to explain the underlying mechanism of azithromycin (AZM) combined with methylprednisolone (MP) in the treatment of M. pneumoniae infection. Peripheral blood samples were obtained from patients with M. pneumoniae and healthy volunteers for analysis. A549 cells were infected with M. pneumoniae to construct an in vitro cell model with M. pneumoniae, followed by treatment with AZM and MP. Cell Counting Kit-8 and TUNEL assays were conducted to detect cell viability and apoptosis. RT-qPCR was employed to measure the expression levels of microRNA (miR)-499a-5p and STAT3. Western blotting was performed to measure the expression of STAT3 and apoptosis-related proteins. Luciferase report assay was performed to verify the binding site between miR-499a-5p and STAT3. The production of inflammatory cytokines was determined using ELISA kits. The results exhibited the downregulated miR-499a-5p and dysregulated inflammatory cytokines in peripheral blood of patients and M. pneumoniae-infected A549 cells. AZM and MP treatment alone or combined significantly inhibited inflammatory response, cell viability loss and promoted apoptosis in A549 cells infected with M. pneumoniae, which was partly reversed by inhibition of miR-499a-5p. Furthermore, miR-499a-5p could negatively regulate its direct target STAT3. In addition, STAT3 is also regulated by AZM and MP. Collectively, the present results suggested that combination treatment of AZM and MP could inhibit M. pneumoniae infection-induced inflammation, cell viability loss and promoted apoptosis partly by regulating miR-499a-5p/STAT3 axis.
Collapse
Affiliation(s)
- Yongli Chen
- Department of Paediatrics, Wuhan Fourth Hospital, Hankou, Wuhan, Hubei 430034, P.R. China
| | - Shanwu Dong
- Department of Paediatrics, Wuhan Fourth Hospital, Hankou, Wuhan, Hubei 430034, P.R. China
| | - Lin Tian
- Department of Paediatrics, Wuhan Fourth Hospital, Hankou, Wuhan, Hubei 430034, P.R. China
| | - Haishan Chen
- Department of Paediatrics, Wuhan Fourth Hospital, Hankou, Wuhan, Hubei 430034, P.R. China
| | - Jing Chen
- Department of Paediatrics, Wuhan Fourth Hospital, Hankou, Wuhan, Hubei 430034, P.R. China
| | - Chunzhi He
- Department of Paediatrics, Wuhan Fourth Hospital, Hankou, Wuhan, Hubei 430034, P.R. China
| |
Collapse
|
6
|
Yang C, Wen K. Predictive value and regulatory mechanism of serum miR-499a-5p on myocardial dysfunction in sepsis. J Cardiothorac Surg 2021; 16:301. [PMID: 34654440 PMCID: PMC8518260 DOI: 10.1186/s13019-021-01679-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background This study sought to investigate the predictive value and regulatory mechanism of serum miR-499a-5p in sepsis-induced myocardial dysfunction (SIMD). Methods A total of 60 patients with sepsis and 60 healthy volunteers were enrolled in this study. The serum levels of miRNAs (miR-451, miR-378 and miR-499a-5p) were detected. Receiver operating characteristic curve and logistic regression analysis were used to evaluate the diagnostic and prognostic value of miR-499a-5p in SIMD patients. AC16 cells were used to establish SIMD model in vitro using lipopolysaccharide (LPS). An analysis was conducted for miR-499a-5p expression, cell viability, and the concentration of creatine kinase-MB isoform (CK-MB), brain natriuretic peptide (BNP), superoxide dismutase (SOD) and cytochrome C oxidase IV (COX IV). The downstream target of miR-499a-5p was verified. Results Our results revealed a poor expression of miR-499a-5p in the serum of SIMD patients, while no significant difference was evident for miR-451 and miR-378. The level of miR-499a-5p in the survival group was higher than the non-survival group. miR-499a-5p elicited good diagnostic and prognostic value for SIMD. Our findings revealed that miR-499a-5p was decreased significantly in LPS-treated cardiomyocytes. After overexpression of miR-499a-5p, the cell viability increased, and the concentrations of CK-MB and BNP were decreased, while the concentrations of SOD and COX IV were increased. EIF4E was validated as the target of miR-499a-5p. After overexpression of EIF4E, the cell viability was decreased and the concentrations of CK-MB and BNP were increased while the concentrations of SOD and COX IV were decreased. Conclusion The level of miR-499a-5p is weak in SIMD patients. miR-499a-5p has a good diagnostic and prognostic value for SIMD by inhibiting EIF4E transcription.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Critical Care Medicine, The Second Hospital of Shandong University, No. 247 Beiyuan Dajie Street, Jinan City, 250012, Shandong Province, China
| | - Kun Wen
- Department of Critical Care Medicine, The Second Hospital of Shandong University, No. 247 Beiyuan Dajie Street, Jinan City, 250012, Shandong Province, China.
| |
Collapse
|
7
|
Terpos E, Stamatelopoulos K, Makris N, Georgiopoulos G, Ntanasis-Stathopoulos I, Gavriatopoulou M, Laina A, Eleutherakis-Papaiakovou E, Fotiou D, Kanellias N, Malandrakis P, Delialis D, Andreadou I, Kastritis E, Dimopoulos MA. Daratumumab May Attenuate Cardiac Dysfunction Related to Carfilzomib in Patients with Relapsed/Refractory Multiple Myeloma: A Prospective Study. Cancers (Basel) 2021; 13:cancers13205057. [PMID: 34680206 PMCID: PMC8533991 DOI: 10.3390/cancers13205057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The management of cardiovascular adverse events in patients with relapsed/refractory multiple myeloma undergoing treatment with carfilzomib can be challenging. Herein, we evaluated the potential cardioprotective effect of daratumumab when administered in combination with carfilzomib and dexamethasone (DaraKd). The study included 25 patients receiving either DaraKd (n = 14) or Kd (n = 11) who were evaluated for echocardiographic changes at the sixth cycle of treatment compared with baseline assessment. DaraKd was associated with preserved post-treatment cardiac systolic function compared with Kd. CD38 inhibition by daratumumab might restore metabolic disequilibrium in the cardiac tissue and prevent cardiac injury. A trend for a lower rate of cardiovascular adverse events among patients receiving DaraKd was also evident, although larger studies are needed to determine the association between echocardiographic and/or biomarker changes with cardiovascular adverse events. Abstract Carfilzomib has improved survival in patients with relapsed/refractory multiple myeloma (RRMM), but it may exert cardiovascular adverse events (CVAEs). The aim of this study was to assess whether treatment with daratumumab may ameliorate carfilzomib-related toxicity. We prospectively evaluated 25 patients with RRMM who received either daratumumab in combination with carfilzomib and dexamethasone (DaraKd) (n = 14) or Kd (n = 11). Cardiac ultrasound was performed before treatment initiation and C6D16 or at the time of treatment interruption. Patients were followed for a median of 10 months for CVAEs. The mean (± SD) age was 67.8 ± 7.6 years and 60% were men. The two treatment groups did not significantly differ in baseline demographic characteristics (p > 0.1 for all). In the DaraKd group, we did not observe any significant change in markers of ventricular systolic function. However, these markers deteriorated in the Kd group; left ventricular (LV) ejection fraction, LV global longitudinal strain, tricuspid annular plane systolic excursion and RV free wall longitudinal strain significantly decreased from baseline to second visit (p < 0.05). A significant group interaction (p < 0.05) was observed for the abovementioned changes. CVAEs occurred more frequently in the Kd than the DaraKd group (45% vs. 28.6%). DaraKd was associated with preserved post-treatment cardiac systolic function and lower CVAE rate compared with Kd. The clinical significance and the underlying mechanisms merit further investigation.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
- Correspondence:
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Nikolaos Makris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
- Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Ageliki Laina
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Dimitris Delialis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (K.S.); (N.M.); (G.G.); (I.N.-S.); (M.G.); (A.L.); (E.E.-P.); (D.F.); (N.K.); (P.M.); (D.D.); (E.K.); (M.A.D.)
| |
Collapse
|
8
|
Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus-One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells 2020; 9:cells9061557. [PMID: 32604801 PMCID: PMC7349356 DOI: 10.3390/cells9061557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM), one of the major pregnancy-related complications, characterized as a transitory form of diabetes induced by insulin resistance accompanied by a low/absent pancreatic beta-cell compensatory adaptation to the increased insulin demand, causes the acute, long-term, and transgenerational health complications. The aim of the study was to assess if alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases are present in whole peripheral blood of children aged 3-11 years descending from GDM complicated pregnancies. A substantially altered microRNA expression profile was found in children descending from GDM complicated pregnancies. Almost all microRNAs with the exception of miR-92a-3p, miR-155-5p, and miR-210-3p were upregulated. The microRNA expression profile also differed between children after normal and GDM complicated pregnancies in relation to the presence of overweight/obesity, prehypertension/hypertension, and/or valve problems and heart defects. Always, screening based on the combination of microRNAs was superior over using individual microRNAs, since at 10.0% false positive rate it was able to identify a large proportion of children with an aberrant microRNA expression profile (88.14% regardless of clinical findings, 75.41% with normal clinical findings, and 96.49% with abnormal clinical findings). In addition, the higher incidence of valve problems and heart defects was found in children with a prior exposure to GDM. The extensive file of predicted targets of all microRNAs aberrantly expressed in children descending from GDM complicated pregnancies indicates that a large group of these genes is involved in ontologies of diabetes/cardiovascular/cerebrovascular diseases. In general, children with a prior exposure to GDM are at higher risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases, and would benefit from dispensarisation as well as implementation of primary prevention strategies.
Collapse
|
9
|
Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. Int J Mol Sci 2020; 21:ijms21072437. [PMID: 32244558 PMCID: PMC7177375 DOI: 10.3390/ijms21072437] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Mothers with a history of gestational diabetes mellitus (GDM) have an increased risk of developing diabetes in the future and a lifelong cardiovascular risk. Postpartal expression profile of cardiovascular/cerebrovascular disease associated microRNAs was assessed 3–11 years after the delivery in whole peripheral blood of young and middle-aged mothers with a prior exposure to GDM with the aim to identify a high-risk group of mothers at risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases who would benefit from implementation of early primary prevention strategies and long-term follow-up. The hypothesis of the assessment of cardiovascular risk in women was based on the knowledge that a series of microRNAs play a role in the pathogenesis of diabetes mellitus and cardiovascular/cerebrovascular diseases. Abnormal expression profile of multiple microRNAs was found in women with a prior exposure to GDM (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-342-3p, miR-499a-5p, and-miR-574-3p). Postpartal combined screening of miR-1-3p, miR-16-5p, miR-17-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-26a-5p, miR-29a-3p, miR-103a-3p, miR-133a-3p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, and miR-499a-5p showed the highest accuracy for the identification of mothers with a prior exposure to GDM at a higher risk of later development of cardiovascular/cerebrovascular diseases (AUC 0.900, p < 0.001, sensitivity 77.48%, specificity 93.26%, cut off >0.611270413). It was able to identify 77.48% mothers with an increased cardiovascular risk at 10.0% FPR. Any of changes in epigenome (upregulation of miR-16-5p, miR-17-5p, miR-29a-3p, and miR-195-5p) that were induced by GDM-complicated pregnancy are long-acting and may predispose mothers affected with GDM to later development of diabetes mellitus and cardiovascular/cerebrovascular diseases. In addition, novel epigenetic changes (upregulation of serious of microRNAs) appeared in a proportion of women that were exposed to GDM throughout the postpartal life. Likewise, a previous occurrence of either GH, PE, and/or FGR, as well as a previous occurrence of GDM, is associated with the upregulation of miR-1-3p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-29a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-199a-5p, miR-221-3p, and miR-499a-5p. On the other hand, upregulation of miR-16-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-103a-3p, miR-195-5p, miR-342-3p, and miR-574-3p represents a unique feature of aberrant expression profile of women with a prior exposure to GDM. Screening of particular microRNAs may stratify a high-risk group of mothers with a history of GDM who might benefit from implementation of early primary prevention strategies.
Collapse
|